160 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * Rot2.h
 | |
|  *
 | |
|  *  Created on: Dec 9, 2009
 | |
|  *      Author: Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #ifndef ROT2_H_
 | |
| #define ROT2_H_
 | |
| 
 | |
| #include <boost/optional.hpp>
 | |
| #include "Testable.h"
 | |
| #include "Point2.h"
 | |
| #include "Matrix.h"
 | |
| #include "Lie.h"
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
|   /* Rotation matrix */
 | |
|   class Rot2: Testable<Rot2>, public Lie<Rot2> {
 | |
|   private:
 | |
|     /** we store cos(theta) and sin(theta) */
 | |
|     double c_, s_;
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     /** constructor from cos/sin */
 | |
|     Rot2(double c, double s) :
 | |
|       c_(c), s_(s) {
 | |
|     	// rtodo: Could do this scale correction only when creating from compose
 | |
|     	// Don't let scale drift
 | |
|     	double scale = c*c + s*s;
 | |
|     	if(scale != 1.0) {
 | |
|     		scale = pow(scale, -0.5);
 | |
|     		c_ *= scale;
 | |
|     		s_ *= scale;
 | |
|     	}
 | |
|     }
 | |
| 
 | |
|     /** default constructor, zero rotation */
 | |
|     Rot2() : c_(1.0), s_(0.0) {}
 | |
| 
 | |
|     /** constructor from angle == exponential map at identity */
 | |
|     Rot2(double theta) : c_(cos(theta)), s_(sin(theta)) {}
 | |
| 
 | |
|     /** return angle */
 | |
|     double theta() const { return atan2(s_,c_); }
 | |
| 
 | |
|     /** return cos */
 | |
|     double c() const { return c_; }
 | |
| 
 | |
|     /** return sin */
 | |
|     double s() const { return s_; }
 | |
| 
 | |
|     /** print */
 | |
|     void print(const std::string& s = "theta") const;
 | |
| 
 | |
|     /** equals with an tolerance */
 | |
|     bool equals(const Rot2& R, double tol = 1e-9) const;
 | |
| 
 | |
|     /** return 2*2 rotation matrix */
 | |
|     Matrix matrix() const;
 | |
| 
 | |
|     /** return 2*2 transpose (inverse) rotation matrix   */
 | |
|     Matrix transpose() const;
 | |
| 
 | |
|     /** return 2*2 negative transpose */
 | |
|     Matrix negtranspose() const;
 | |
| 
 | |
|     /** rotate from world to rotated = R*p */
 | |
|     Point2 rotate(const Point2& p) const;
 | |
| 
 | |
|     /** rotate from world to rotated = R'*p */
 | |
|     Point2 unrotate(const Point2& p) const;
 | |
| 
 | |
|   private:
 | |
|     /** Serialization function */
 | |
|     friend class boost::serialization::access;
 | |
|     template<class Archive>
 | |
|     void serialize(Archive & ar, const unsigned int version) {
 | |
|       ar & BOOST_SERIALIZATION_NVP(c_);
 | |
|       ar & BOOST_SERIALIZATION_NVP(s_);
 | |
|     }
 | |
|   };
 | |
| 
 | |
| 
 | |
|   // Lie group functions
 | |
| 
 | |
|   /** Global print calls member function */
 | |
|   inline void print(const Rot2& r, const std::string& s = "") { r.print(s); }
 | |
| 
 | |
|   /** Dimensionality of the tangent space */
 | |
|   inline size_t dim(const Rot2&) { return 1; }
 | |
| 
 | |
|   /** Expmap around identity - create a rotation from an angle */
 | |
|   template<> inline Rot2 expmap(const Vector& v) {
 | |
|     if (zero(v)) return (Rot2());
 | |
|     else return Rot2(v(0));
 | |
|   }
 | |
| 
 | |
|   /** Logmap around identity - return the angle of the rotation */
 | |
|   inline Vector logmap(const Rot2& r) {
 | |
|     return Vector_(1, r.theta());
 | |
|   }
 | |
| 
 | |
|   /** Compose - make a new rotation by adding angles */
 | |
|   inline Rot2 compose(const Rot2& r0, const Rot2& r1) {
 | |
|     return Rot2(
 | |
|         r0.c() * r1.c() - r0.s() * r1.s(),
 | |
|         r0.s() * r1.c() + r0.c() * r1.s());
 | |
|   }
 | |
| 
 | |
|   /** Syntactic sugar R1*R2 = compose(R1,R2) */
 | |
|   inline Rot2 operator*(const Rot2& r0, const Rot2& r1) {
 | |
|     return compose(r0, r1);
 | |
|   }
 | |
| 
 | |
|   /** The inverse rotation - negative angle */
 | |
|   inline Rot2 inverse(const Rot2& r) { return Rot2(r.c(), -r.s());}
 | |
| 
 | |
|   /** Shortcut to compose the inverse: invcompose(R0,R1) = inverse(R0)*R1 */
 | |
|   inline Rot2 invcompose(const Rot2& r0, const Rot2& r1) {
 | |
|     return Rot2(
 | |
|          r0.c() * r1.c() + r0.s() * r1.s(),
 | |
|         -r0.s() * r1.c() + r0.c() * r1.s());
 | |
|   }
 | |
| 
 | |
| 
 | |
|   /**
 | |
|    * rotate point from rotated coordinate frame to
 | |
|    * world = R*p
 | |
|    */
 | |
|   inline Point2 operator*(const Rot2& R, const Point2& p) {return R.rotate(p);}
 | |
| 	Point2 rotate(const Rot2 & R, const Point2& p, boost::optional<Matrix&> H1 =
 | |
| 			boost::none, boost::optional<Matrix&> H2 = boost::none);
 | |
| 
 | |
|   /**
 | |
|    * rotate point from world to rotated
 | |
|    * frame = R'*p
 | |
|    */
 | |
| 	Point2 unrotate(const Rot2 & R, const Point2& p, boost::optional<Matrix&> H1 =
 | |
| 			boost::none, boost::optional<Matrix&> H2 = boost::none);
 | |
| 
 | |
| 	/**
 | |
| 	 * Calculate relative bearing to a landmark in local coordinate frame
 | |
| 	 * @param point 2D location of landmark
 | |
| 	 * @param H optional reference for Jacobian
 | |
| 	 * @return 2D rotation \in SO(2)
 | |
| 	 */
 | |
| 	Rot2 relativeBearing(const Point2& d);
 | |
| 
 | |
| 	/**
 | |
| 	 * Calculate relative bearing and optional derivative
 | |
| 	 */
 | |
| 	Rot2 relativeBearing(const Point2& d, boost::optional<Matrix&> H);
 | |
| 
 | |
| } // gtsam
 | |
| 
 | |
| #endif /* ROT2_H_ */
 |