291 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			291 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Python
		
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import sys
 | 
						|
 | 
						|
import pytest
 | 
						|
 | 
						|
np = pytest.importorskip("numpy")
 | 
						|
eigen_tensor = pytest.importorskip("pybind11_tests.eigen_tensor")
 | 
						|
submodules = [eigen_tensor.c_style, eigen_tensor.f_style]
 | 
						|
try:
 | 
						|
    import eigen_tensor_avoid_stl_array as avoid
 | 
						|
 | 
						|
    submodules += [avoid.c_style, avoid.f_style]
 | 
						|
except ImportError as e:
 | 
						|
    # Ensure config, build, toolchain, etc. issues are not masked here:
 | 
						|
    msg = (
 | 
						|
        "import eigen_tensor_avoid_stl_array FAILED, while "
 | 
						|
        "import pybind11_tests.eigen_tensor succeeded. "
 | 
						|
        "Please ensure that "
 | 
						|
        "test_eigen_tensor.cpp & "
 | 
						|
        "eigen_tensor_avoid_stl_array.cpp "
 | 
						|
        "are built together (or both are not built if Eigen is not available)."
 | 
						|
    )
 | 
						|
    raise RuntimeError(msg) from e
 | 
						|
 | 
						|
tensor_ref = np.empty((3, 5, 2), dtype=np.int64)
 | 
						|
 | 
						|
for i in range(tensor_ref.shape[0]):
 | 
						|
    for j in range(tensor_ref.shape[1]):
 | 
						|
        for k in range(tensor_ref.shape[2]):
 | 
						|
            tensor_ref[i, j, k] = i * (5 * 2) + j * 2 + k
 | 
						|
 | 
						|
indices = (2, 3, 1)
 | 
						|
 | 
						|
 | 
						|
@pytest.fixture(autouse=True)
 | 
						|
def cleanup():
 | 
						|
    for module in submodules:
 | 
						|
        module.setup()
 | 
						|
 | 
						|
    yield
 | 
						|
 | 
						|
    for module in submodules:
 | 
						|
        assert module.is_ok()
 | 
						|
 | 
						|
 | 
						|
def test_import_avoid_stl_array():
 | 
						|
    pytest.importorskip("eigen_tensor_avoid_stl_array")
 | 
						|
    assert len(submodules) == 4
 | 
						|
 | 
						|
 | 
						|
def assert_equal_tensor_ref(mat, writeable=True, modified=None):
 | 
						|
    assert mat.flags.writeable == writeable
 | 
						|
 | 
						|
    copy = np.array(tensor_ref)
 | 
						|
    if modified is not None:
 | 
						|
        copy[indices] = modified
 | 
						|
 | 
						|
    np.testing.assert_array_equal(mat, copy)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
@pytest.mark.parametrize("member_name", ["member", "member_view"])
 | 
						|
def test_reference_internal(m, member_name):
 | 
						|
    if not hasattr(sys, "getrefcount"):
 | 
						|
        pytest.skip("No reference counting")
 | 
						|
    foo = m.CustomExample()
 | 
						|
    counts = sys.getrefcount(foo)
 | 
						|
    mem = getattr(foo, member_name)
 | 
						|
    assert_equal_tensor_ref(mem, writeable=False)
 | 
						|
    new_counts = sys.getrefcount(foo)
 | 
						|
    assert new_counts == counts + 1
 | 
						|
    assert_equal_tensor_ref(mem, writeable=False)
 | 
						|
    del mem
 | 
						|
    assert sys.getrefcount(foo) == counts
 | 
						|
 | 
						|
 | 
						|
assert_equal_funcs = [
 | 
						|
    "copy_tensor",
 | 
						|
    "copy_fixed_tensor",
 | 
						|
    "copy_const_tensor",
 | 
						|
    "move_tensor_copy",
 | 
						|
    "move_fixed_tensor_copy",
 | 
						|
    "take_tensor",
 | 
						|
    "take_fixed_tensor",
 | 
						|
    "reference_tensor",
 | 
						|
    "reference_tensor_v2",
 | 
						|
    "reference_fixed_tensor",
 | 
						|
    "reference_view_of_tensor",
 | 
						|
    "reference_view_of_tensor_v3",
 | 
						|
    "reference_view_of_tensor_v5",
 | 
						|
    "reference_view_of_fixed_tensor",
 | 
						|
]
 | 
						|
 | 
						|
assert_equal_const_funcs = [
 | 
						|
    "reference_view_of_tensor_v2",
 | 
						|
    "reference_view_of_tensor_v4",
 | 
						|
    "reference_view_of_tensor_v6",
 | 
						|
    "reference_const_tensor",
 | 
						|
    "reference_const_tensor_v2",
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
@pytest.mark.parametrize("func_name", assert_equal_funcs + assert_equal_const_funcs)
 | 
						|
def test_convert_tensor_to_py(m, func_name):
 | 
						|
    writeable = func_name in assert_equal_funcs
 | 
						|
    assert_equal_tensor_ref(getattr(m, func_name)(), writeable=writeable)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
def test_bad_cpp_to_python_casts(m):
 | 
						|
    with pytest.raises(
 | 
						|
        RuntimeError, match="Cannot use reference internal when there is no parent"
 | 
						|
    ):
 | 
						|
        m.reference_tensor_internal()
 | 
						|
 | 
						|
    with pytest.raises(RuntimeError, match="Cannot move from a constant reference"):
 | 
						|
        m.move_const_tensor()
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        RuntimeError, match="Cannot take ownership of a const reference"
 | 
						|
    ):
 | 
						|
        m.take_const_tensor()
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        RuntimeError,
 | 
						|
        match="Invalid return_value_policy for Eigen Map type, must be either reference or reference_internal",
 | 
						|
    ):
 | 
						|
        m.take_view_tensor()
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
def test_bad_python_to_cpp_casts(m):
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_tensor\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_tensor(np.zeros((2, 3)))
 | 
						|
 | 
						|
    with pytest.raises(TypeError, match=r"^Cannot cast array data from dtype"):
 | 
						|
        m.round_trip_tensor(np.zeros(dtype=np.str_, shape=(2, 3, 1)))
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError,
 | 
						|
        match=r"^round_trip_tensor_noconvert\(\): incompatible function arguments",
 | 
						|
    ):
 | 
						|
        m.round_trip_tensor_noconvert(tensor_ref)
 | 
						|
 | 
						|
    assert_equal_tensor_ref(
 | 
						|
        m.round_trip_tensor_noconvert(tensor_ref.astype(np.float64))
 | 
						|
    )
 | 
						|
 | 
						|
    bad_options = "C" if m.needed_options == "F" else "F"
 | 
						|
    # Shape, dtype and the order need to be correct for a TensorMap cast
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_view_tensor(
 | 
						|
            np.zeros((3, 5, 2), dtype=np.float64, order=bad_options)
 | 
						|
        )
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_view_tensor(
 | 
						|
            np.zeros((3, 5, 2), dtype=np.float32, order=m.needed_options)
 | 
						|
        )
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_view_tensor(
 | 
						|
            np.zeros((3, 5), dtype=np.float64, order=m.needed_options)
 | 
						|
        )
 | 
						|
 | 
						|
    temp = np.zeros((3, 5, 2), dtype=np.float64, order=m.needed_options)
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_view_tensor(
 | 
						|
            temp[:, ::-1, :],
 | 
						|
        )
 | 
						|
 | 
						|
    temp = np.zeros((3, 5, 2), dtype=np.float64, order=m.needed_options)
 | 
						|
    temp.setflags(write=False)
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_view_tensor\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_view_tensor(temp)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
def test_references_actually_refer(m):
 | 
						|
    a = m.reference_tensor()
 | 
						|
    temp = a[indices]
 | 
						|
    a[indices] = 100
 | 
						|
    assert_equal_tensor_ref(m.copy_const_tensor(), modified=100)
 | 
						|
    a[indices] = temp
 | 
						|
    assert_equal_tensor_ref(m.copy_const_tensor())
 | 
						|
 | 
						|
    a = m.reference_view_of_tensor()
 | 
						|
    a[indices] = 100
 | 
						|
    assert_equal_tensor_ref(m.copy_const_tensor(), modified=100)
 | 
						|
    a[indices] = temp
 | 
						|
    assert_equal_tensor_ref(m.copy_const_tensor())
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
def test_round_trip(m):
 | 
						|
    assert_equal_tensor_ref(m.round_trip_tensor(tensor_ref))
 | 
						|
 | 
						|
    with pytest.raises(TypeError, match="^Cannot cast array data from"):
 | 
						|
        assert_equal_tensor_ref(m.round_trip_tensor2(tensor_ref))
 | 
						|
 | 
						|
    assert_equal_tensor_ref(m.round_trip_tensor2(np.array(tensor_ref, dtype=np.int32)))
 | 
						|
    assert_equal_tensor_ref(m.round_trip_fixed_tensor(tensor_ref))
 | 
						|
    assert_equal_tensor_ref(m.round_trip_aligned_view_tensor(m.reference_tensor()))
 | 
						|
 | 
						|
    copy = np.array(tensor_ref, dtype=np.float64, order=m.needed_options)
 | 
						|
    assert_equal_tensor_ref(m.round_trip_view_tensor(copy))
 | 
						|
    assert_equal_tensor_ref(m.round_trip_view_tensor_ref(copy))
 | 
						|
    assert_equal_tensor_ref(m.round_trip_view_tensor_ptr(copy))
 | 
						|
    copy.setflags(write=False)
 | 
						|
    assert_equal_tensor_ref(m.round_trip_const_view_tensor(copy))
 | 
						|
 | 
						|
    np.testing.assert_array_equal(
 | 
						|
        tensor_ref[:, ::-1, :], m.round_trip_tensor(tensor_ref[:, ::-1, :])
 | 
						|
    )
 | 
						|
 | 
						|
    assert m.round_trip_rank_0(np.float64(3.5)) == 3.5
 | 
						|
    assert m.round_trip_rank_0(3.5) == 3.5
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError,
 | 
						|
        match=r"^round_trip_rank_0_noconvert\(\): incompatible function arguments",
 | 
						|
    ):
 | 
						|
        m.round_trip_rank_0_noconvert(np.float64(3.5))
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError,
 | 
						|
        match=r"^round_trip_rank_0_noconvert\(\): incompatible function arguments",
 | 
						|
    ):
 | 
						|
        m.round_trip_rank_0_noconvert(3.5)
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_rank_0_view\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_rank_0_view(np.float64(3.5))
 | 
						|
 | 
						|
    with pytest.raises(
 | 
						|
        TypeError, match=r"^round_trip_rank_0_view\(\): incompatible function arguments"
 | 
						|
    ):
 | 
						|
        m.round_trip_rank_0_view(3.5)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
def test_round_trip_references_actually_refer(m):
 | 
						|
    # Need to create a copy that matches the type on the C side
 | 
						|
    copy = np.array(tensor_ref, dtype=np.float64, order=m.needed_options)
 | 
						|
    a = m.round_trip_view_tensor(copy)
 | 
						|
    temp = a[indices]
 | 
						|
    a[indices] = 100
 | 
						|
    assert_equal_tensor_ref(copy, modified=100)
 | 
						|
    a[indices] = temp
 | 
						|
    assert_equal_tensor_ref(copy)
 | 
						|
 | 
						|
 | 
						|
@pytest.mark.parametrize("m", submodules)
 | 
						|
def test_doc_string(m, doc):
 | 
						|
    assert (
 | 
						|
        doc(m.copy_tensor) == "copy_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
 | 
						|
    )
 | 
						|
    assert (
 | 
						|
        doc(m.copy_fixed_tensor)
 | 
						|
        == "copy_fixed_tensor() -> numpy.ndarray[numpy.float64[3, 5, 2]]"
 | 
						|
    )
 | 
						|
    assert (
 | 
						|
        doc(m.reference_const_tensor)
 | 
						|
        == "reference_const_tensor() -> numpy.ndarray[numpy.float64[?, ?, ?]]"
 | 
						|
    )
 | 
						|
 | 
						|
    order_flag = f"flags.{m.needed_options.lower()}_contiguous"
 | 
						|
    assert doc(m.round_trip_view_tensor) == (
 | 
						|
        f"round_trip_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}])"
 | 
						|
        f" -> numpy.ndarray[numpy.float64[?, ?, ?], flags.writeable, {order_flag}]"
 | 
						|
    )
 | 
						|
    assert doc(m.round_trip_const_view_tensor) == (
 | 
						|
        f"round_trip_const_view_tensor(arg0: numpy.ndarray[numpy.float64[?, ?, ?], {order_flag}])"
 | 
						|
        " -> numpy.ndarray[numpy.float64[?, ?, ?]]"
 | 
						|
    )
 |