74 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			74 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Matlab
		
	
	
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| % GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
| % Atlanta, Georgia 30332-0415
 | |
| % All Rights Reserved
 | |
| % Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| % 
 | |
| % See LICENSE for the license information
 | |
| %
 | |
| % @brief A structure from motion example
 | |
| % @author Duy-Nguyen Ta
 | |
| %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| options.triangle = false;
 | |
| options.nrCameras = 10;
 | |
| options.showImages = false;
 | |
| 
 | |
| [data,truth] = VisualISAMGenerateData(options);
 | |
| 
 | |
| measurementNoiseSigma = 1.0;
 | |
| pointNoiseSigma = 0.1;
 | |
| poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
 | |
| 
 | |
| graph = NonlinearFactorGraph;
 | |
| 
 | |
| %% Add factors for all measurements
 | |
| measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
 | |
| for i=1:length(data.Z)
 | |
|     for k=1:length(data.Z{i})
 | |
|         j = data.J{i}{k};
 | |
|         graph.add(GenericProjectionFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('x',i), symbol('p',j), data.K));
 | |
|     end
 | |
| end
 | |
| 
 | |
| posePriorNoise  = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
 | |
| graph.add(PriorFactorPose3(symbol('x',1), truth.cameras{1}.pose, posePriorNoise));
 | |
| pointPriorNoise  = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
 | |
| graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise));
 | |
| 
 | |
| %% Initial estimate
 | |
| initialEstimate = Values;
 | |
| for i=1:size(truth.cameras,2)
 | |
|     pose_i = truth.cameras{i}.pose;
 | |
|     initialEstimate.insert(symbol('x',i), pose_i);
 | |
| end
 | |
| for j=1:size(truth.points,2)
 | |
|     point_j = truth.points{j};
 | |
|     initialEstimate.insert(symbol('p',j), point_j);
 | |
| end
 | |
| 
 | |
| %% Optimization
 | |
| optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate);
 | |
| for i=1:5
 | |
|     optimizer.iterate();
 | |
| end
 | |
| result = optimizer.values();
 | |
| 
 | |
| %% Marginalization
 | |
| marginals = Marginals(graph, result);
 | |
| marginals.marginalCovariance(symbol('p',1));
 | |
| marginals.marginalCovariance(symbol('x',1));
 | |
| 
 | |
| %% Check optimized results, should be equal to ground truth
 | |
| for i=1:size(truth.cameras,2)
 | |
|     pose_i = result.atPose3(symbol('x',i));
 | |
|     CHECK('pose_i.equals(truth.cameras{i}.pose,1e-5)',pose_i.equals(truth.cameras{i}.pose,1e-5))
 | |
| end
 | |
| 
 | |
| for j=1:size(truth.points,2)
 | |
|     point_j = result.atPoint3(symbol('p',j));
 | |
|     CHECK('point_j.equals(truth.points{j},1e-5)',norm(point_j - truth.points{j}) < 1e-5)
 | |
| end
 |