90 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			90 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|     tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array
 | |
|     arguments
 | |
| 
 | |
|     Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
 | |
| 
 | |
|     All rights reserved. Use of this source code is governed by a
 | |
|     BSD-style license that can be found in the LICENSE file.
 | |
| */
 | |
| 
 | |
| #include "pybind11_tests.h"
 | |
| #include <pybind11/numpy.h>
 | |
| 
 | |
| double my_func(int x, float y, double z) {
 | |
|     py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z));
 | |
|     return (float) x*y*z;
 | |
| }
 | |
| 
 | |
| TEST_SUBMODULE(numpy_vectorize, m) {
 | |
|     try { py::module::import("numpy"); }
 | |
|     catch (...) { return; }
 | |
| 
 | |
|     // test_vectorize, test_docs, test_array_collapse
 | |
|     // Vectorize all arguments of a function (though non-vector arguments are also allowed)
 | |
|     m.def("vectorized_func", py::vectorize(my_func));
 | |
| 
 | |
|     // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization)
 | |
|     m.def("vectorized_func2",
 | |
|         [](py::array_t<int> x, py::array_t<float> y, float z) {
 | |
|             return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y);
 | |
|         }
 | |
|     );
 | |
| 
 | |
|     // Vectorize a complex-valued function
 | |
|     m.def("vectorized_func3", py::vectorize(
 | |
|         [](std::complex<double> c) { return c * std::complex<double>(2.f); }
 | |
|     ));
 | |
| 
 | |
|     // test_type_selection
 | |
|     // Numpy function which only accepts specific data types
 | |
|     m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; });
 | |
|     m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; });
 | |
|     m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; });
 | |
| 
 | |
| 
 | |
|     // test_passthrough_arguments
 | |
|     // Passthrough test: references and non-pod types should be automatically passed through (in the
 | |
|     // function definition below, only `b`, `d`, and `g` are vectorized):
 | |
|     struct NonPODClass {
 | |
|         NonPODClass(int v) : value{v} {}
 | |
|         int value;
 | |
|     };
 | |
|     py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>());
 | |
|     m.def("vec_passthrough", py::vectorize(
 | |
|         [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) {
 | |
|             return *a + b + c.at(0) + d + e + f.value + g;
 | |
|         }
 | |
|     ));
 | |
| 
 | |
|     // test_method_vectorization
 | |
|     struct VectorizeTestClass {
 | |
|         VectorizeTestClass(int v) : value{v} {};
 | |
|         float method(int x, float y) { return y + (float) (x + value); }
 | |
|         int value = 0;
 | |
|     };
 | |
|     py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass");
 | |
|     vtc .def(py::init<int>())
 | |
|         .def_readwrite("value", &VectorizeTestClass::value);
 | |
| 
 | |
|     // Automatic vectorizing of methods
 | |
|     vtc.def("method", py::vectorize(&VectorizeTestClass::method));
 | |
| 
 | |
|     // test_trivial_broadcasting
 | |
|     // Internal optimization test for whether the input is trivially broadcastable:
 | |
|     py::enum_<py::detail::broadcast_trivial>(m, "trivial")
 | |
|         .value("f_trivial", py::detail::broadcast_trivial::f_trivial)
 | |
|         .value("c_trivial", py::detail::broadcast_trivial::c_trivial)
 | |
|         .value("non_trivial", py::detail::broadcast_trivial::non_trivial);
 | |
|     m.def("vectorized_is_trivial", [](
 | |
|                 py::array_t<int, py::array::forcecast> arg1,
 | |
|                 py::array_t<float, py::array::forcecast> arg2,
 | |
|                 py::array_t<double, py::array::forcecast> arg3
 | |
|                 ) {
 | |
|         ssize_t ndim;
 | |
|         std::vector<ssize_t> shape;
 | |
|         std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }};
 | |
|         return py::detail::broadcast(buffers, ndim, shape);
 | |
|     });
 | |
| }
 |