130 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			130 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file easyPoint2KalmanFilter.cpp
 | |
|  *
 | |
|  * simple linear Kalman filter on a moving 2D point, but done using factor graphs
 | |
|  * This example uses the templated ExtendedKalmanFilter class to perform the same
 | |
|  * operations as in elaboratePoint2KalmanFilter
 | |
|  *
 | |
|  * @date Aug 19, 2011
 | |
|  * @author Frank Dellaert
 | |
|  * @author Stephen Williams
 | |
|  */
 | |
| 
 | |
| #include <gtsam/nonlinear/ExtendedKalmanFilter.h>
 | |
| #include <gtsam/inference/Symbol.h>
 | |
| #include <gtsam/nonlinear/PriorFactor.h>
 | |
| #include <gtsam/slam/BetweenFactor.h>
 | |
| #include <gtsam/geometry/Point2.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Define Types for Linear System Test
 | |
| typedef Point2 LinearMeasurement;
 | |
| 
 | |
| int main() {
 | |
| 
 | |
|   // Create the Kalman Filter initialization point
 | |
|   Point2 x_initial(0.0, 0.0);
 | |
|   SharedDiagonal P_initial = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1));
 | |
| 
 | |
|   // Create Key for initial pose
 | |
|   Symbol x0('x',0);
 | |
| 
 | |
|   // Create an ExtendedKalmanFilter object
 | |
|   ExtendedKalmanFilter<Point2> ekf(x0, x_initial, P_initial);
 | |
| 
 | |
|   // Now predict the state at t=1, i.e. argmax_{x1} P(x1) = P(x1|x0) P(x0)
 | |
|   // In Kalman Filter notation, this is x_{t+1|t} and P_{t+1|t}
 | |
|   // For the Kalman Filter, this requires a motion model, f(x_{t}) = x_{t+1|t)
 | |
|   // Assuming the system is linear, this will be of the form f(x_{t}) = F*x_{t} + B*u_{t} + w
 | |
|   // where F is the state transition model/matrix, B is the control input model,
 | |
|   // and w is zero-mean, Gaussian white noise with covariance Q
 | |
|   // Note, in some models, Q is actually derived as G*w*G^T where w models uncertainty of some
 | |
|   // physical property, such as velocity or acceleration, and G is derived from physics
 | |
|   //
 | |
|   // For the purposes of this example, let us assume we are using a constant-position model and
 | |
|   // the controls are driving the point to the right at 1 m/s. Then, F = [1 0 ; 0 1], B = [1 0 ; 0 1]
 | |
|   // and u = [1 ; 0]. Let us also assume that the process noise Q = [0.1 0 ; 0 0.1].
 | |
|   Vector u = Vector2(1.0, 0.0);
 | |
|   SharedDiagonal Q = noiseModel::Diagonal::Sigmas(Vector2(0.1, 0.1), true);
 | |
| 
 | |
|   // This simple motion can be modeled with a BetweenFactor
 | |
|   // Create Key for next pose
 | |
|   Symbol x1('x',1);
 | |
|   // Predict delta based on controls
 | |
|   Point2 difference(1,0);
 | |
|   // Create Factor
 | |
|   BetweenFactor<Point2> factor1(x0, x1, difference, Q);
 | |
| 
 | |
|   // Predict the new value with the EKF class
 | |
|   Point2 x1_predict = ekf.predict(factor1);
 | |
|   traits<Point2>::Print(x1_predict, "X1 Predict");
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Now, a measurement, z1, has been received, and the Kalman Filter should be "Updated"/"Corrected"
 | |
|   // This is equivalent to saying P(x1|z1) ~ P(z1|x1)*P(x1)
 | |
|   // For the Kalman Filter, this requires a measurement model h(x_{t}) = \hat{z}_{t}
 | |
|   // Assuming the system is linear, this will be of the form h(x_{t}) = H*x_{t} + v
 | |
|   // where H is the observation model/matrix, and v is zero-mean, Gaussian white noise with covariance R
 | |
|   //
 | |
|   // For the purposes of this example, let us assume we have something like a GPS that returns
 | |
|   // the current position of the robot. Then H = [1 0 ; 0 1]. Let us also assume that the measurement noise
 | |
|   // R = [0.25 0 ; 0 0.25].
 | |
|   SharedDiagonal R = noiseModel::Diagonal::Sigmas(Vector2(0.25, 0.25), true);
 | |
| 
 | |
|   // This simple measurement can be modeled with a PriorFactor
 | |
|   Point2 z1(1.0, 0.0);
 | |
|   PriorFactor<Point2> factor2(x1, z1, R);
 | |
| 
 | |
|   // Update the Kalman Filter with the measurement
 | |
|   Point2 x1_update = ekf.update(factor2);
 | |
|   traits<Point2>::Print(x1_update, "X1 Update");
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Do the same thing two more times...
 | |
|   // Predict
 | |
|   Symbol x2('x',2);
 | |
|   difference = Point2(1,0);
 | |
|   BetweenFactor<Point2> factor3(x1, x2, difference, Q);
 | |
|   Point2 x2_predict = ekf.predict(factor1);
 | |
|   traits<Point2>::Print(x2_predict, "X2 Predict");
 | |
| 
 | |
|   // Update
 | |
|   Point2 z2(2.0, 0.0);
 | |
|   PriorFactor<Point2> factor4(x2, z2, R);
 | |
|   Point2 x2_update = ekf.update(factor4);
 | |
|   traits<Point2>::Print(x2_update, "X2 Update");
 | |
| 
 | |
| 
 | |
| 
 | |
|   // Do the same thing one more time...
 | |
|   // Predict
 | |
|   Symbol x3('x',3);
 | |
|   difference = Point2(1,0);
 | |
|   BetweenFactor<Point2> factor5(x2, x3, difference, Q);
 | |
|   Point2 x3_predict = ekf.predict(factor5);
 | |
|   traits<Point2>::Print(x3_predict, "X3 Predict");
 | |
| 
 | |
|   // Update
 | |
|   Point2 z3(3.0, 0.0);
 | |
|   PriorFactor<Point2> factor6(x3, z3, R);
 | |
|   Point2 x3_update = ekf.update(factor6);
 | |
|   traits<Point2>::Print(x3_update, "X3 Update");
 | |
| 
 | |
|   return 0;
 | |
| }
 |