235 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			235 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
/* ----------------------------------------------------------------------------
 | 
						|
 | 
						|
 * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | 
						|
 * Atlanta, Georgia 30332-0415
 | 
						|
 * All Rights Reserved
 | 
						|
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
						|
 | 
						|
 * See LICENSE for the license information
 | 
						|
 | 
						|
 * -------------------------------------------------------------------------- */
 | 
						|
 | 
						|
/**
 | 
						|
 * @file testGaussianJunctionTreeB.cpp
 | 
						|
 * @date Jul 8, 2010
 | 
						|
 * @author nikai
 | 
						|
 */
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <CppUnitLite/TestHarness.h>
 | 
						|
#include <gtsam/base/TestableAssertions.h>
 | 
						|
 | 
						|
#include <boost/assign/list_of.hpp>
 | 
						|
#include <boost/assign/std/list.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/set.hpp> // for operator +=
 | 
						|
#include <boost/assign/std/vector.hpp>
 | 
						|
using namespace boost::assign;
 | 
						|
 | 
						|
#include <gtsam/base/debug.h>
 | 
						|
#include <gtsam/base/cholesky.h>
 | 
						|
#include <gtsam/inference/BayesTree-inl.h>
 | 
						|
#include <gtsam/nonlinear/Ordering.h>
 | 
						|
#include <gtsam/linear/GaussianJunctionTree.h>
 | 
						|
#include <gtsam/linear/GaussianSequentialSolver.h>
 | 
						|
#include <gtsam/linear/GaussianMultifrontalSolver.h>
 | 
						|
#include <gtsam/slam/smallExample.h>
 | 
						|
#include <gtsam/slam/planarSLAM.h>
 | 
						|
#include <gtsam/slam/pose2SLAM.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace gtsam;
 | 
						|
using namespace example;
 | 
						|
 | 
						|
Key kx(size_t i) { return Symbol('x',i); }
 | 
						|
Key kl(size_t i) { return Symbol('l',i); }
 | 
						|
 | 
						|
/* ************************************************************************* *
 | 
						|
 Bayes tree for smoother with "nested dissection" ordering:
 | 
						|
	 C1		 x5 x6 x4
 | 
						|
	 C2		  x3 x2 : x4
 | 
						|
	 C3		    x1 : x2
 | 
						|
	 C4		  x7 : x6
 | 
						|
*/
 | 
						|
TEST( GaussianJunctionTree, constructor2 )
 | 
						|
{
 | 
						|
	// create a graph
 | 
						|
  Ordering ordering; ordering += kx(1),kx(3),kx(5),kx(7),kx(2),kx(6),kx(4);
 | 
						|
  GaussianFactorGraph fg = createSmoother(7, ordering).first;
 | 
						|
 | 
						|
	// create an ordering
 | 
						|
	GaussianJunctionTree actual(fg);
 | 
						|
 | 
						|
	vector<Index> frontal1; frontal1 += ordering[kx(5)], ordering[kx(6)], ordering[kx(4)];
 | 
						|
	vector<Index> frontal2; frontal2 += ordering[kx(3)], ordering[kx(2)];
 | 
						|
	vector<Index> frontal3; frontal3 += ordering[kx(1)];
 | 
						|
	vector<Index> frontal4; frontal4 += ordering[kx(7)];
 | 
						|
	vector<Index> sep1;
 | 
						|
	vector<Index> sep2; sep2 += ordering[kx(4)];
 | 
						|
	vector<Index> sep3; sep3 += ordering[kx(2)];
 | 
						|
	vector<Index> sep4; sep4 += ordering[kx(6)];
 | 
						|
	EXPECT(assert_equal(frontal1, actual.root()->frontal));
 | 
						|
	EXPECT(assert_equal(sep1,     actual.root()->separator));
 | 
						|
	LONGS_EQUAL(5,               actual.root()->size());
 | 
						|
	list<GaussianJunctionTree::sharedClique>::const_iterator child0it = actual.root()->children().begin();
 | 
						|
  list<GaussianJunctionTree::sharedClique>::const_iterator child1it = child0it; ++child1it;
 | 
						|
  GaussianJunctionTree::sharedClique child0 = *child0it;
 | 
						|
  GaussianJunctionTree::sharedClique child1 = *child1it;
 | 
						|
	EXPECT(assert_equal(frontal2, child0->frontal));
 | 
						|
	EXPECT(assert_equal(sep2,     child0->separator));
 | 
						|
	LONGS_EQUAL(4,               child0->size());
 | 
						|
	EXPECT(assert_equal(frontal3, child0->children().front()->frontal));
 | 
						|
	EXPECT(assert_equal(sep3,     child0->children().front()->separator));
 | 
						|
	LONGS_EQUAL(2,               child0->children().front()->size());
 | 
						|
	EXPECT(assert_equal(frontal4, child1->frontal));
 | 
						|
	EXPECT(assert_equal(sep4,     child1->separator));
 | 
						|
	LONGS_EQUAL(2,               child1->size());
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianJunctionTree, optimizeMultiFrontal )
 | 
						|
{
 | 
						|
	// create a graph
 | 
						|
  GaussianFactorGraph fg;
 | 
						|
  Ordering ordering;
 | 
						|
  boost::tie(fg,ordering) = createSmoother(7);
 | 
						|
 | 
						|
	// optimize the graph
 | 
						|
	GaussianJunctionTree tree(fg);
 | 
						|
	VectorValues actual = tree.optimize(&EliminateQR);
 | 
						|
 | 
						|
	// verify
 | 
						|
	VectorValues expected(vector<size_t>(7,2)); // expected solution
 | 
						|
	Vector v = Vector_(2, 0., 0.);
 | 
						|
	for (int i=1; i<=7; i++)
 | 
						|
		expected[ordering[Symbol('x',i)]] = v;
 | 
						|
  EXPECT(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST( GaussianJunctionTree, optimizeMultiFrontal2)
 | 
						|
{
 | 
						|
	// create a graph
 | 
						|
	example::Graph nlfg = createNonlinearFactorGraph();
 | 
						|
	Values noisy = createNoisyValues();
 | 
						|
  Ordering ordering; ordering += kx(1),kx(2),kl(1);
 | 
						|
	GaussianFactorGraph fg = *nlfg.linearize(noisy, ordering);
 | 
						|
 | 
						|
	// optimize the graph
 | 
						|
	GaussianJunctionTree tree(fg);
 | 
						|
	VectorValues actual = tree.optimize(&EliminateQR);
 | 
						|
 | 
						|
	// verify
 | 
						|
	VectorValues expected = createCorrectDelta(ordering); // expected solution
 | 
						|
  EXPECT(assert_equal(expected,actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianJunctionTree, slamlike) {
 | 
						|
  using planarSLAM::PoseKey;
 | 
						|
  using planarSLAM::PointKey;
 | 
						|
 | 
						|
  Values init;
 | 
						|
  planarSLAM::Graph newfactors;
 | 
						|
  planarSLAM::Graph fullgraph;
 | 
						|
  SharedDiagonal odoNoise = sharedSigmas(Vector_(3, 0.1, 0.1, M_PI/100.0));
 | 
						|
  SharedDiagonal brNoise = sharedSigmas(Vector_(2, M_PI/100.0, 0.1));
 | 
						|
 | 
						|
  size_t i = 0;
 | 
						|
 | 
						|
  newfactors = planarSLAM::Graph();
 | 
						|
  newfactors.addPrior(0, Pose2(0.0, 0.0, 0.0), odoNoise);
 | 
						|
  init.insert(PoseKey(0), Pose2(0.01, 0.01, 0.01));
 | 
						|
  fullgraph.push_back(newfactors);
 | 
						|
 | 
						|
  for( ; i<5; ++i) {
 | 
						|
    newfactors = planarSLAM::Graph();
 | 
						|
    newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | 
						|
    init.insert(PoseKey(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
  }
 | 
						|
 | 
						|
  newfactors = planarSLAM::Graph();
 | 
						|
  newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | 
						|
  newfactors.addBearingRange(i, 0, Rot2::fromAngle(M_PI/4.0), 5.0, brNoise);
 | 
						|
  newfactors.addBearingRange(i, 1, Rot2::fromAngle(-M_PI/4.0), 5.0, brNoise);
 | 
						|
  init.insert(PoseKey(i+1), Pose2(1.01, 0.01, 0.01));
 | 
						|
  init.insert(PointKey(0), Point2(5.0/sqrt(2.0), 5.0/sqrt(2.0)));
 | 
						|
  init.insert(PointKey(1), Point2(5.0/sqrt(2.0), -5.0/sqrt(2.0)));
 | 
						|
  fullgraph.push_back(newfactors);
 | 
						|
  ++ i;
 | 
						|
 | 
						|
  for( ; i<5; ++i) {
 | 
						|
    newfactors = planarSLAM::Graph();
 | 
						|
    newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | 
						|
    init.insert(PoseKey(i+1), Pose2(double(i+1)+0.1, -0.1, 0.01));
 | 
						|
    fullgraph.push_back(newfactors);
 | 
						|
  }
 | 
						|
 | 
						|
  newfactors = planarSLAM::Graph();
 | 
						|
  newfactors.addOdometry(i, i+1, Pose2(1.0, 0.0, 0.0), odoNoise);
 | 
						|
  newfactors.addBearingRange(i, 0, Rot2::fromAngle(M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
 | 
						|
  newfactors.addBearingRange(i, 1, Rot2::fromAngle(-M_PI/4.0 + M_PI/16.0), 4.5, brNoise);
 | 
						|
  init.insert(PoseKey(i+1), Pose2(6.9, 0.1, 0.01));
 | 
						|
  fullgraph.push_back(newfactors);
 | 
						|
  ++ i;
 | 
						|
 | 
						|
  // Compare solutions
 | 
						|
  Ordering ordering = *fullgraph.orderingCOLAMD(init);
 | 
						|
  GaussianFactorGraph linearized = *fullgraph.linearize(init, ordering);
 | 
						|
 | 
						|
  GaussianJunctionTree gjt(linearized);
 | 
						|
  VectorValues deltaactual = gjt.optimize(&EliminateQR);
 | 
						|
  Values actual = init.retract(deltaactual, ordering);
 | 
						|
 | 
						|
  GaussianBayesNet gbn = *GaussianSequentialSolver(linearized).eliminate();
 | 
						|
  VectorValues delta = optimize(gbn);
 | 
						|
  Values expected = init.retract(delta, ordering);
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, actual));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
TEST(GaussianJunctionTree, simpleMarginal) {
 | 
						|
 | 
						|
  typedef BayesTree<GaussianConditional> GaussianBayesTree;
 | 
						|
 | 
						|
  // Create a simple graph
 | 
						|
  pose2SLAM::Graph fg;
 | 
						|
  fg.addPrior(0, Pose2(), sharedSigma(3, 10.0));
 | 
						|
  fg.addOdometry(0, 1, Pose2(1.0, 0.0, 0.0), sharedSigmas(Vector_(3, 10.0, 1.0, 1.0)));
 | 
						|
 | 
						|
  Values init;
 | 
						|
  init.insert(pose2SLAM::PoseKey(0), Pose2());
 | 
						|
  init.insert(pose2SLAM::PoseKey(1), Pose2(1.0, 0.0, 0.0));
 | 
						|
 | 
						|
  Ordering ordering;
 | 
						|
  ordering += kx(1), kx(0);
 | 
						|
 | 
						|
  GaussianFactorGraph gfg = *fg.linearize(init, ordering);
 | 
						|
 | 
						|
  // Compute marginals with both sequential and multifrontal
 | 
						|
  Matrix expected = GaussianSequentialSolver(gfg).marginalCovariance(1);
 | 
						|
 | 
						|
  Matrix actual1 = GaussianMultifrontalSolver(gfg).marginalCovariance(1);
 | 
						|
  
 | 
						|
  // Compute marginal directly from marginal factor
 | 
						|
  GaussianFactor::shared_ptr marginalFactor = GaussianMultifrontalSolver(gfg).marginalFactor(1);
 | 
						|
  JacobianFactor::shared_ptr marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
 | 
						|
  Matrix actual2 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
 | 
						|
 | 
						|
  // Compute marginal directly from BayesTree
 | 
						|
  GaussianBayesTree gbt;
 | 
						|
  gbt.insert(GaussianJunctionTree(gfg).eliminate(EliminateLDL));
 | 
						|
  marginalFactor = gbt.marginalFactor(1, EliminateLDL);
 | 
						|
  marginalJacobian = boost::dynamic_pointer_cast<JacobianFactor>(marginalFactor);
 | 
						|
  Matrix actual3 = inverse(marginalJacobian->getA(marginalJacobian->begin()).transpose() * marginalJacobian->getA(marginalJacobian->begin()));
 | 
						|
 | 
						|
  EXPECT(assert_equal(expected, actual1));
 | 
						|
  EXPECT(assert_equal(expected, actual2));
 | 
						|
  EXPECT(assert_equal(expected, actual3));
 | 
						|
}
 | 
						|
 | 
						|
/* ************************************************************************* */
 | 
						|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
 | 
						|
/* ************************************************************************* */
 |