144 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			144 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file Expression.h
 | |
|  * @date September 18, 2014
 | |
|  * @author Frank Dellaert
 | |
|  * @author Paul Furgale
 | |
|  * @brief Expressions for Block Automatic Differentiation
 | |
|  */
 | |
| 
 | |
| #include <gtsam_unstable/nonlinear/Expression.h>
 | |
| #include <gtsam/nonlinear/NonlinearFactor.h>
 | |
| #include <gtsam/base/Testable.h>
 | |
| #include <boost/range/adaptor/map.hpp>
 | |
| #include <boost/range/algorithm.hpp>
 | |
| #include <numeric>
 | |
| 
 | |
| namespace gtsam {
 | |
| 
 | |
| /**
 | |
|  * Factor that supports arbitrary expressions via AD
 | |
|  */
 | |
| template<class T>
 | |
| class ExpressionFactor: public NoiseModelFactor {
 | |
| 
 | |
|   T measurement_; ///< the measurement to be compared with the expression
 | |
|   Expression<T> expression_; ///< the expression that is AD enabled
 | |
|   std::vector<size_t> dimensions_; ///< dimensions of the Jacobian matrices
 | |
|   size_t augmentedCols_; ///< total number of columns + 1 (for RHS)
 | |
| 
 | |
|   static const int Dim = traits::dimension<T>::value;
 | |
| 
 | |
| public:
 | |
| 
 | |
|   /// Constructor
 | |
|   ExpressionFactor(const SharedNoiseModel& noiseModel, //
 | |
|       const T& measurement, const Expression<T>& expression) :
 | |
|       measurement_(measurement), expression_(expression) {
 | |
|     if (!noiseModel)
 | |
|       throw std::invalid_argument("ExpressionFactor: no NoiseModel.");
 | |
|     if (noiseModel->dim() != Dim)
 | |
|       throw std::invalid_argument(
 | |
|           "ExpressionFactor was created with a NoiseModel of incorrect dimension.");
 | |
|     noiseModel_ = noiseModel;
 | |
| 
 | |
|     // Get dimensions of Jacobian matrices
 | |
|     // An Expression is assumed unmutable, so we do this now
 | |
|     std::map<Key, size_t> map;
 | |
|     expression_.dims(map);
 | |
|     size_t n = map.size();
 | |
| 
 | |
|     keys_.resize(n);
 | |
|     boost::copy(map | boost::adaptors::map_keys, keys_.begin());
 | |
| 
 | |
|     dimensions_.resize(n);
 | |
|     boost::copy(map | boost::adaptors::map_values, dimensions_.begin());
 | |
| 
 | |
|     // Add sizes to know how much memory to allocate on stack in linearize
 | |
|     augmentedCols_ = std::accumulate(dimensions_.begin(), dimensions_.end(), 1);
 | |
| 
 | |
| #ifdef DEBUG_ExpressionFactor
 | |
|     BOOST_FOREACH(size_t d, dimensions_)
 | |
|     std::cout << d << " ";
 | |
|     std::cout << " -> " << Dim << "x" << augmentedCols_ << std::endl;
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Error function *without* the NoiseModel, \f$ h(x)-z \f$.
 | |
|    * We override this method to provide
 | |
|    * both the function evaluation and its derivative(s) in H.
 | |
|    */
 | |
|   virtual Vector unwhitenedError(const Values& x,
 | |
|       boost::optional<std::vector<Matrix>&> H = boost::none) const {
 | |
|     if (H) {
 | |
|       // H should be pre-allocated
 | |
|       assert(H->size()==size());
 | |
| 
 | |
|       VerticalBlockMatrix Ab(dimensions_, Dim);
 | |
| 
 | |
|       // Wrap keys and VerticalBlockMatrix into structure passed to expression_
 | |
|       JacobianMap map(keys_, Ab);
 | |
|       Ab.matrix().setZero();
 | |
| 
 | |
|       // Evaluate error to get Jacobians and RHS vector b
 | |
|       T value = expression_.value(x, map); // <<< Reverse AD happens here !
 | |
| 
 | |
|       // Copy blocks into the vector of jacobians passed in
 | |
|       for (DenseIndex i = 0; i < size(); i++)
 | |
|         H->at(i) = Ab(i);
 | |
| 
 | |
|       return measurement_.localCoordinates(value);
 | |
|     } else {
 | |
|       const T& value = expression_.value(x);
 | |
|       return measurement_.localCoordinates(value);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   virtual boost::shared_ptr<GaussianFactor> linearize(const Values& x) const {
 | |
| 
 | |
|     // Only linearize if the factor is active
 | |
|     if (!active(x))
 | |
|       return boost::shared_ptr<JacobianFactor>();
 | |
| 
 | |
|     // Create a writeable JacobianFactor in advance
 | |
|     // In case noise model is constrained, we need to provide a noise model
 | |
|     bool constrained = noiseModel_->is_constrained();
 | |
|     boost::shared_ptr<JacobianFactor> factor(
 | |
|         constrained ? new JacobianFactor(keys_, dimensions_, Dim,
 | |
|             boost::static_pointer_cast<noiseModel::Constrained>(noiseModel_)->unit()) :
 | |
|             new JacobianFactor(keys_, dimensions_, Dim));
 | |
| 
 | |
|     // Wrap keys and VerticalBlockMatrix into structure passed to expression_
 | |
|     VerticalBlockMatrix& Ab = factor->matrixObject();
 | |
|     JacobianMap map(keys_, Ab);
 | |
| 
 | |
|     // Zero out Jacobian so we can simply add to it
 | |
|     Ab.matrix().setZero();
 | |
| 
 | |
|     // Evaluate error to get Jacobians and RHS vector b
 | |
|     T value = expression_.value(x, map); // <<< Reverse AD happens here !
 | |
|     Ab(size()).col(0) = -measurement_.localCoordinates(value);
 | |
| 
 | |
|     // Whiten the corresponding system, Ab already contains RHS
 | |
|     Vector dummy(Dim);
 | |
|     noiseModel_->WhitenSystem(Ab.matrix(),dummy);
 | |
| 
 | |
|     return factor;
 | |
|   }
 | |
| };
 | |
| // ExpressionFactor
 | |
| 
 | |
| }
 | |
| 
 |