126 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			C++
		
	
	
| /* ----------------------------------------------------------------------------
 | |
| 
 | |
|  * GTSAM Copyright 2010, Georgia Tech Research Corporation,
 | |
|  * Atlanta, Georgia 30332-0415
 | |
|  * All Rights Reserved
 | |
|  * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | |
| 
 | |
|  * See LICENSE for the license information
 | |
| 
 | |
|  * -------------------------------------------------------------------------- */
 | |
| 
 | |
| /**
 | |
|  * @file    SFMExample_SmartFactorPCG.cpp
 | |
|  * @brief   Version of SFMExample_SmartFactor that uses Preconditioned Conjugate Gradient
 | |
|  * @author  Frank Dellaert
 | |
|  */
 | |
| 
 | |
| // For an explanation of these headers, see SFMExample_SmartFactor.cpp
 | |
| #include "SFMdata.h"
 | |
| #include <gtsam/slam/SmartProjectionPoseFactor.h>
 | |
| 
 | |
| // These extra headers allow us a LM outer loop with PCG linear solver (inner loop)
 | |
| #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
 | |
| #include <gtsam/linear/Preconditioner.h>
 | |
| #include <gtsam/linear/PCGSolver.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace gtsam;
 | |
| 
 | |
| // Make the typename short so it looks much cleaner
 | |
| typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
 | |
| 
 | |
| // create a typedef to the camera type
 | |
| typedef PinholePose<Cal3_S2> Camera;
 | |
| 
 | |
| /* ************************************************************************* */
 | |
| int main(int argc, char* argv[]) {
 | |
|   // Define the camera calibration parameters
 | |
|   Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
 | |
| 
 | |
|   // Define the camera observation noise model
 | |
|   auto measurementNoise =
 | |
|       noiseModel::Isotropic::Sigma(2, 1.0);  // one pixel in u and v
 | |
| 
 | |
|   // Create the set of ground-truth landmarks and poses
 | |
|   vector<Point3> points = createPoints();
 | |
|   vector<Pose3> poses = createPoses();
 | |
| 
 | |
|   // Create a factor graph
 | |
|   NonlinearFactorGraph graph;
 | |
| 
 | |
|   // Simulated measurements from each camera pose, adding them to the factor graph
 | |
|   for (size_t j = 0; j < points.size(); ++j) {
 | |
|     // every landmark represent a single landmark, we use shared pointer to init
 | |
|     // the factor, and then insert measurements.
 | |
|     SmartFactor::shared_ptr smartfactor(new SmartFactor(measurementNoise, K));
 | |
| 
 | |
|     for (size_t i = 0; i < poses.size(); ++i) {
 | |
|       // generate the 2D measurement
 | |
|       Camera camera(poses[i], K);
 | |
|       Point2 measurement = camera.project(points[j]);
 | |
| 
 | |
|       // call add() function to add measurement into a single factor
 | |
|       smartfactor->add(measurement, i);
 | |
|     }
 | |
| 
 | |
|     // insert the smart factor in the graph
 | |
|     graph.push_back(smartfactor);
 | |
|   }
 | |
| 
 | |
|   // Add a prior on pose x0. This indirectly specifies where the origin is.
 | |
|   // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
 | |
|   auto noise = noiseModel::Diagonal::Sigmas(
 | |
|       (Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
 | |
|   graph.addPrior(0, poses[0], noise);
 | |
| 
 | |
|   // Fix the scale ambiguity by adding a prior
 | |
|   graph.addPrior(1, poses[0], noise);
 | |
| 
 | |
|   // Create the initial estimate to the solution
 | |
|   Values initialEstimate;
 | |
|   Pose3 delta(Rot3::Rodrigues(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
 | |
|   for (size_t i = 0; i < poses.size(); ++i)
 | |
|     initialEstimate.insert(i, poses[i].compose(delta));
 | |
| 
 | |
|   // We will use LM in the outer optimization loop, but by specifying
 | |
|   // "Iterative" below We indicate that an iterative linear solver should be
 | |
|   // used. In addition, the *type* of the iterativeParams decides on the type of
 | |
|   // iterative solver, in this case the SPCG (subgraph PCG)
 | |
|   LevenbergMarquardtParams parameters;
 | |
|   parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
 | |
|   parameters.absoluteErrorTol = 1e-10;
 | |
|   parameters.relativeErrorTol = 1e-10;
 | |
|   parameters.maxIterations = 500;
 | |
|   PCGSolverParameters::shared_ptr pcg =
 | |
|       std::make_shared<PCGSolverParameters>();
 | |
|   pcg->preconditioner = std::make_shared<BlockJacobiPreconditionerParameters>();
 | |
|   // Following is crucial:
 | |
|   pcg->epsilon_abs = 1e-10;
 | |
|   pcg->epsilon_rel = 1e-10;
 | |
|   parameters.iterativeParams = pcg;
 | |
| 
 | |
|   LevenbergMarquardtOptimizer optimizer(graph, initialEstimate, parameters);
 | |
|   Values result = optimizer.optimize();
 | |
| 
 | |
|   // Display result as in SFMExample_SmartFactor.run
 | |
|   result.print("Final results:\n");
 | |
|   Values landmark_result;
 | |
|   for (size_t j = 0; j < points.size(); ++j) {
 | |
|     auto smart = std::dynamic_pointer_cast<SmartFactor>(graph[j]);
 | |
|     if (smart) {
 | |
|       std::optional<Point3> point = smart->point(result);
 | |
|       if (point)  // ignore if std::optional return nullptr
 | |
|         landmark_result.insert(j, *point);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   landmark_result.print("Landmark results:\n");
 | |
|   cout << "final error: " << graph.error(result) << endl;
 | |
|   cout << "number of iterations: " << optimizer.iterations() << endl;
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| /* ************************************************************************* */
 | |
| 
 |