321 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C++
		
	
	
| /*
 | |
|  * NoiseModel.h
 | |
|  *
 | |
|  *  Created on: Jan 13, 2010
 | |
|  *      Author: Richard Roberts
 | |
|  *      Author: Frank Dellaert
 | |
|  */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <boost/shared_ptr.hpp>
 | |
| #include "Testable.h"
 | |
| #include "Vector.h"
 | |
| #include "Matrix.h"
 | |
| 
 | |
| namespace gtsam {	namespace noiseModel {
 | |
| 
 | |
|   /**
 | |
|    * noiseModel::Base is the abstract base class for all noise models.
 | |
|    *
 | |
|    * Noise models must implement a 'whiten' function to normalize an error vector,
 | |
|    * and an 'unwhiten' function to unnormalize an error vector.
 | |
|    */
 | |
|   class Base : public Testable<Base> {
 | |
| 
 | |
|   protected:
 | |
| 
 | |
|   	size_t dim_;
 | |
| 
 | |
|   public:
 | |
| 
 | |
|   	Base(size_t dim):dim_(dim) {}
 | |
|   	virtual ~Base() {}
 | |
| 
 | |
|     /**
 | |
|      * Whiten an error vector.
 | |
|      */
 | |
|     virtual Vector whiten(const Vector& v) const = 0;
 | |
| 
 | |
|     /**
 | |
|      * Unwhiten an error vector.
 | |
|      */
 | |
|     virtual Vector unwhiten(const Vector& v) const = 0;
 | |
| 
 | |
|     /** in-place whiten, override if can be done more efficiently */
 | |
|     virtual void whitenInPlace(Vector& v) const {
 | |
|     	v = whiten(v);
 | |
|     }
 | |
| 
 | |
|     /** in-place unwhiten, override if can be done more efficiently */
 | |
|     virtual void unwhitenInPlace(Vector& v) const {
 | |
|     	v = unwhiten(v);
 | |
|     }
 | |
| 
 | |
|   };
 | |
| 
 | |
|   /**
 | |
| 	 * Gaussian implements the mathematical model
 | |
| 	 *  |R*x|^2 = |y|^2 with R'*R=inv(Sigma)
 | |
| 	 * where
 | |
| 	 *   y = whiten(x) = R*x
 | |
| 	 *   x = unwhiten(x) = inv(R)*y
 | |
| 	 * as indeed
 | |
| 	 *   |y|^2 = y'*y = x'*R'*R*x
 | |
| 	 * Various derived classes are available that are more efficient.
 | |
| 	 */
 | |
| 	struct Gaussian: public Base {
 | |
| 
 | |
| 	protected:
 | |
| 
 | |
| 		// TODO: store as boost upper-triangular or whatever is passed from above
 | |
| 		/* Matrix square root of information matrix (R) */
 | |
| 		Matrix sqrt_information_;
 | |
| 
 | |
| 		/** protected constructor takes square root information matrix */
 | |
| 		Gaussian(const Matrix& sqrt_information) :
 | |
| 			Base(sqrt_information.size1()), sqrt_information_(sqrt_information) {
 | |
| 		}
 | |
| 
 | |
| 	public:
 | |
| 
 | |
| 		typedef boost::shared_ptr<Gaussian> shared_ptr;
 | |
| 
 | |
|     /**
 | |
|      * A Gaussian noise model created by specifying a square root information matrix.
 | |
|      */
 | |
|     static shared_ptr SqrtInformation(const Matrix& R) {
 | |
|     	return shared_ptr(new Gaussian(R));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * A Gaussian noise model created by specifying a covariance matrix.
 | |
|      */
 | |
|     static shared_ptr Covariance(const Matrix& covariance) {
 | |
|     	return shared_ptr(new Gaussian(inverse_square_root(covariance)));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * A Gaussian noise model created by specifying an information matrix.
 | |
|      */
 | |
|     static shared_ptr Information(const Matrix& Q)  {
 | |
|     	return shared_ptr(new Gaussian(square_root_positive(Q)));
 | |
|     }
 | |
| 
 | |
| 		virtual void print(const std::string& name) const;
 | |
| 		virtual bool equals(const Base& expected, double tol) const;
 | |
|     virtual Vector whiten(const Vector& v) const;
 | |
| 		virtual Vector unwhiten(const Vector& v) const;
 | |
| 
 | |
|     /**
 | |
| 		 * Mahalanobis distance v'*R'*R*v = <R*v,R*v>
 | |
| 		 */
 | |
| 		virtual double Mahalanobis(const Vector& v) const;
 | |
| 
 | |
| 		/**
 | |
| 		 * Multiply a derivative with R (derivative of whiten)
 | |
| 		 * Equivalent to whitening each column of the input matrix.
 | |
| 		 */
 | |
| 		virtual Matrix Whiten(const Matrix& H) const;
 | |
| 
 | |
| 		/**
 | |
| 		 * In-place version
 | |
| 		 */
 | |
| 		virtual void WhitenInPlace(Matrix& H) const;
 | |
| 
 | |
| 		/**
 | |
| 		 * Return R itself, but note that Whiten(H) is cheaper than R*H
 | |
| 		 */
 | |
| 		const Matrix& R() const {
 | |
| 			return sqrt_information_;
 | |
| 		}
 | |
| 
 | |
| 	}; // Gaussian
 | |
| 
 | |
| 	// FD: does not work, ambiguous overload :-(
 | |
|   // inline Vector operator*(const Gaussian& R, const Vector& v) {return R.whiten(v);}
 | |
| 
 | |
|   /**
 | |
|    * A diagonal noise model implements a diagonal covariance matrix, with the
 | |
|    * elements of the diagonal specified in a Vector.  This class has no public
 | |
|    * constructors, instead, use the static constructor functions Sigmas etc...
 | |
|    */
 | |
|   class Diagonal : public Gaussian {
 | |
|   protected:
 | |
| 
 | |
|   	/** sigmas and reciprocal */
 | |
|     Vector sigmas_, invsigmas_;
 | |
| 
 | |
|     /** protected constructor takes sigmas */
 | |
|     Diagonal(const Vector& sigmas);
 | |
| 
 | |
|   public:
 | |
| 
 | |
| 		typedef boost::shared_ptr<Diagonal> shared_ptr;
 | |
| 
 | |
|     /**
 | |
|      * A diagonal noise model created by specifying a Vector of sigmas, i.e.
 | |
|      * standard devations, the diagonal of the square root covariance matrix.
 | |
|      */
 | |
|     static shared_ptr Sigmas(const Vector& sigmas) {
 | |
|     	return shared_ptr(new Diagonal(sigmas));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * A diagonal noise model created by specifying a Vector of variances, i.e.
 | |
|      * i.e. the diagonal of the covariance matrix.
 | |
|      */
 | |
|     static shared_ptr Variances(const Vector& variances) {
 | |
|     	return shared_ptr(new Diagonal(esqrt(variances)));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * A diagonal noise model created by specifying a Vector of precisions, i.e.
 | |
|      * i.e. the diagonal of the information matrix, i.e., weights
 | |
|      */
 | |
|     static shared_ptr Precisions(const Vector& precisions) {
 | |
|     	return Variances(reciprocal(precisions));
 | |
|     }
 | |
| 
 | |
| 		virtual void print(const std::string& name) const;
 | |
|     virtual Vector whiten(const Vector& v) const;
 | |
|     virtual Vector unwhiten(const Vector& v) const;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * A Constrained constrained model is a specialization of Diagonal which allows
 | |
|    * some or all of the sigmas to be zero, forcing the error to be zero there.
 | |
|    * All other Gaussian models are guaranteed to have a non-singular square-root
 | |
|    * information matrix, but this class is specifically equipped to deal with
 | |
|    * singular noise models, specifically: whiten will return zero on those
 | |
|    * components that have zero sigma *and* zero error, infinity otherwise.
 | |
|    */
 | |
|   class Constrained : public Diagonal {
 | |
|   protected:
 | |
| 
 | |
|     /** protected constructor takes sigmas */
 | |
|   	Constrained(const Vector& sigmas) :Diagonal(sigmas) {}
 | |
| 
 | |
|   public:
 | |
| 
 | |
| 		typedef boost::shared_ptr<Constrained> shared_ptr;
 | |
| 
 | |
|     /**
 | |
|      * A diagonal noise model created by specifying a Vector of
 | |
|      * standard devations, some of which might be zero
 | |
|      */
 | |
|     static shared_ptr Mixed(const Vector& sigmas) {
 | |
|     	return shared_ptr(new Constrained(sigmas));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * Fully constrained. TODO: subclass ?
 | |
|      */
 | |
|     static shared_ptr All(size_t dim) {
 | |
|     	return Mixed(repeat(dim,0));
 | |
|     }
 | |
| 
 | |
| 		virtual void print(const std::string& name) const;
 | |
|     virtual Vector whiten(const Vector& v) const;
 | |
| 
 | |
| 		// Whitening Jacobians does not make sense for possibly constrained
 | |
| 		// noise model and will throw an exception.
 | |
| 
 | |
| 		virtual Matrix Whiten(const Matrix& H) const;
 | |
| 		virtual void WhitenInPlace(Matrix& H) const;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * An isotropic noise model corresponds to a scaled diagonal covariance
 | |
|    * To construct, use one of the static methods
 | |
|    */
 | |
|   class Isotropic : public Diagonal {
 | |
|   protected:
 | |
|     double sigma_, invsigma_;
 | |
| 
 | |
|     /** protected constructor takes sigma */
 | |
|     Isotropic(size_t dim, double sigma) :
 | |
| 			Diagonal(repeat(dim, sigma)),sigma_(sigma),invsigma_(1.0/sigma) {}
 | |
| 
 | |
|   public:
 | |
| 
 | |
| 		typedef boost::shared_ptr<Isotropic> shared_ptr;
 | |
| 
 | |
|     /**
 | |
|      * An isotropic noise model created by specifying a standard devation sigma
 | |
|      */
 | |
|     static shared_ptr Sigma(size_t dim, double sigma) {
 | |
|     	return shared_ptr(new Isotropic(dim, sigma));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * An isotropic noise model created by specifying a variance = sigma^2.
 | |
|      */
 | |
|     static shared_ptr Variance(size_t dim, double variance)  {
 | |
|     	return shared_ptr(new Isotropic(dim, sqrt(variance)));
 | |
|     }
 | |
| 
 | |
|     /**
 | |
|      * An isotropic noise model created by specifying a precision
 | |
|      */
 | |
|     static shared_ptr Precision(size_t dim, double precision)  {
 | |
|     	return Variance(dim, 1.0/precision);
 | |
|     }
 | |
| 
 | |
| 		virtual void print(const std::string& name) const;
 | |
| 		virtual double Mahalanobis(const Vector& v) const;
 | |
|     virtual Vector whiten(const Vector& v) const;
 | |
|     virtual Vector unwhiten(const Vector& v) const;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Unit: i.i.d. unit-variance noise on all m dimensions.
 | |
|    */
 | |
|   class Unit : public Isotropic {
 | |
|   protected:
 | |
| 
 | |
|     Unit(size_t dim): Isotropic(dim,1.0) {}
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     typedef boost::shared_ptr<Unit> shared_ptr;
 | |
| 
 | |
|     /**
 | |
|      * Create a unit covariance noise model
 | |
|      */
 | |
|     static shared_ptr Create(size_t dim) {
 | |
|     	return shared_ptr(new Unit(dim));
 | |
|     }
 | |
| 
 | |
| 		virtual void print(const std::string& name) const;
 | |
| 		virtual double Mahalanobis(const Vector& v) const {return inner_prod(v,v); }
 | |
|     virtual Vector whiten(const Vector& v) const { return v; }
 | |
|     virtual Vector unwhiten(const Vector& v) const { return v; }
 | |
|     virtual Matrix Whiten(const Matrix& H) const { return H; }
 | |
| 	  virtual void WhitenInPlace(Matrix& H) const {}
 | |
|   };
 | |
| 
 | |
| 	} // namespace noiseModel
 | |
| 
 | |
| 	using namespace noiseModel;
 | |
| 
 | |
| 	// A useful convenience class to refer to a shared Gaussian model
 | |
| 	// Define GTSAM_MAGIC_GAUSSIAN to desired dimension to have access to slightly
 | |
| 	// dangerous and non-shared (inefficient, wasteful) noise models. Only in tests!
 | |
| 	struct sharedGaussian : public Gaussian::shared_ptr {
 | |
| 		sharedGaussian() {}
 | |
| 		sharedGaussian(const    Gaussian::shared_ptr& p):Gaussian::shared_ptr(p) {}
 | |
| 		sharedGaussian(const    Diagonal::shared_ptr& p):Gaussian::shared_ptr(p) {}
 | |
| 		sharedGaussian(const Constrained::shared_ptr& p):Gaussian::shared_ptr(p) {}
 | |
| 		sharedGaussian(const   Isotropic::shared_ptr& p):Gaussian::shared_ptr(p) {}
 | |
| 		sharedGaussian(const        Unit::shared_ptr& p):Gaussian::shared_ptr(p) {}
 | |
| #ifdef GTSAM_MAGIC_GAUSSIAN
 | |
| 		sharedGaussian(const Matrix& covariance):Gaussian::shared_ptr(Gaussian::Covariance(covariance)) {}
 | |
| 		sharedGaussian(const Vector& sigmas):Gaussian::shared_ptr(Diagonal::Sigmas(sigmas)) {}
 | |
| 		sharedGaussian(const double& s):Gaussian::shared_ptr(Isotropic::Sigma(GTSAM_MAGIC_GAUSSIAN,s)) {}
 | |
| #endif
 | |
| 		};
 | |
| 
 | |
| 
 | |
| } // namespace gtsam
 |