114 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Matlab
		
	
	
			
		
		
	
	
			114 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			Matlab
		
	
	
| function pts2dTracksMono = points2DTrackMonocular(K, cameraPoses, imageSize, cylinders)
 | |
| % Assess how accurately we can reconstruct points from a particular monocular camera setup. 
 | |
| % After creation of the factor graph for each track, linearize it around ground truth. 
 | |
| % There is no optimization
 | |
| % @author: Zhaoyang Lv
 | |
| 
 | |
| import gtsam.*
 | |
| 
 | |
| %% create graph
 | |
| graph = NonlinearFactorGraph;
 | |
| 
 | |
| %% create the noise factors
 | |
| poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
 | |
| posePriorNoise  = noiseModel.Diagonal.Sigmas(poseNoiseSigmas);
 | |
| measurementNoiseSigma = 1.0;
 | |
| measurementNoise = noiseModel.Isotropic.Sigma(2, measurementNoiseSigma);
 | |
| 
 | |
| cameraPosesNum = length(cameraPoses);
 | |
| 
 | |
| %% add measurements and initial camera & points values
 | |
| pointsNum = 0;
 | |
| cylinderNum = length(cylinders);
 | |
| points3d = cell(0);
 | |
| for i = 1:cylinderNum
 | |
|     cylinderPointsNum = length(cylinders{i}.Points);
 | |
|     pointsNum = pointsNum + cylinderPointsNum; 
 | |
|     for j = 1:cylinderPointsNum
 | |
|         points3d{end+1}.data = cylinders{i}.Points{j};
 | |
|         points3d{end}.Z = cell(0);
 | |
|         points3d{end}.camConstraintIdx = cell(0);
 | |
|         points3d{end}.added = cell(0);
 | |
|         points3d{end}.visiblity = false;
 | |
|         points3d{end}.cov = cell(cameraPosesNum);
 | |
|     end
 | |
| end
 | |
| 
 | |
| graph.add(PriorFactorPose3(symbol('x', 1), cameraPoses{1}, posePriorNoise));
 | |
| 
 | |
| %% initialize graph and values
 | |
| initialEstimate = Values;
 | |
| for i = 1:pointsNum
 | |
|     point_j = points3d{i}.data.retract(0.1*randn(3,1));
 | |
|     initialEstimate.insert(symbol('p', i), point_j); 
 | |
| end
 | |
| 
 | |
| pts3d = cell(cameraPosesNum, 1);
 | |
| cameraPosesCov = cell(cameraPosesNum, 1);
 | |
| marginals = Values;
 | |
| for i = 1:cameraPosesNum     
 | |
|     cameraPose = cameraPoses{i};    
 | |
|     pts3d{i} = cylinderSampleProjection(K, cameraPose, imageSize, cylinders);
 | |
|     
 | |
|     measurementNum = length(pts3d{i}.Z);
 | |
|     for j = 1:measurementNum
 | |
|         index = pts3d{i}.overallIdx{j};
 | |
|         points3d{index}.Z{end+1} = pts3d{i}.Z{j};
 | |
|         points3d{index}.camConstraintIdx{end+1} = i;
 | |
|         points3d{index}.added{end+1} = false;
 | |
|         
 | |
|         if length(points3d{index}.Z) < 2
 | |
|             continue;
 | |
|         else
 | |
|             for k = 1:length(points3d{index}.Z)
 | |
|                 if ~points3d{index}.added{k}                
 | |
|                     graph.add(GenericProjectionFactorCal3_S2(points3d{index}.Z{k}, ...
 | |
|                         measurementNoise, symbol('x', points3d{index}.camConstraintIdx{k}), ...
 | |
|                         symbol('p', index), K) );
 | |
|                     points3d{index}.added{k} = true;
 | |
|                 end
 | |
|             end
 | |
|         end 
 | |
|         
 | |
|         points3d{index}.visiblity = true;    
 | |
|     end
 | |
| 
 | |
|     pose_i = cameraPoses{i}.retract(0.1*randn(6,1));
 | |
|     initialEstimate.insert(symbol('x', i), pose_i);    
 | |
| 
 | |
|     marginals = Marginals(graph, initialEstimate);
 | |
| 
 | |
|     for j = 1:pointsNum
 | |
|         if points3d{j}.visiblity
 | |
|             points3d{j}.cov{i} = marginals.marginalCovariance(symbol('p',j));
 | |
|         end
 | |
|     end
 | |
| 
 | |
|     cameraPosesCov{i} = marginals.marginalCovariance(symbol('x',i));
 | |
| 
 | |
| end
 | |
|   
 | |
| %% Print the graph
 | |
| graph.print(sprintf('\nFactor graph:\n'));
 | |
| 
 | |
| %% Plot the result
 | |
| plotFlyingResults(points3d, cameraPoses, cameraPosesCov, cylinders, options);
 | |
| 
 | |
| %% get all the points track information
 | |
| for i = 1:pointsNum
 | |
|     if ~points3d{i}.visiblity
 | |
|         continue;
 | |
|     end
 | |
|     
 | |
|     pts2dTracksMono.pt3d{end+1} = points3d{i}.data;
 | |
|     pts2dTracksMono.Z{end+1} = points3d{i}.Z;
 | |
| 
 | |
|     if length(points3d{i}.Z) == 1
 | |
|         %pts2dTracksMono.cov{i} singular matrix 
 | |
|     else 
 | |
|         pts2dTracksMono.cov{end+1} = marginals.marginalCovariance(symbol('p', i));    
 | |
|     end
 | |
| end
 | |
| 
 | |
| end
 |