/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Similarity3.cpp * @brief Implementation of Similarity3 transform */ #include #include #include #include namespace gtsam { Similarity3::Similarity3(const Matrix3& R, const Vector3& t, double s) { R_ = R; t_ = t; s_ = s; } /// Return the translation const Vector3 Similarity3::t() const { return t_.vector(); } /// Return the rotation matrix const Matrix3 Similarity3::R() const { return R_.matrix(); } Similarity3::Similarity3() : R_(), t_(), s_(1){ } /// Construct pure scaling Similarity3::Similarity3(double s) { s_ = s; } /// Construct from GTSAM types Similarity3::Similarity3(const Rot3& R, const Point3& t, double s) { R_ = R; t_ = t; s_ = s; } Similarity3 Similarity3::identity() { std::cout << "Identity!" << std::endl; return Similarity3(); } Vector7 Similarity3::Logmap(const Similarity3& s, OptionalJacobian<7, 7> Hm) { std::cout << "Logmap!" << std::endl; return Vector7(); } Similarity3 Similarity3::Expmap(const Vector7& v, OptionalJacobian<7, 7> Hm) { std::cout << "Expmap!" << std::endl; return Similarity3(); } bool Similarity3::operator==(const Similarity3& other) const { return (R_.equals(other.R_)) && (t_ == other.t_) && (s_ == other.s_); } /// Compare with tolerance bool Similarity3::equals(const Similarity3& sim, double tol) const { return rotation().equals(sim.rotation(), tol) && translation().equals(sim.translation(), tol) && scale() < (sim.scale()+tol) && scale() > (sim.scale()-tol); } Point3 Similarity3::transform_from(const Point3& p) const { return R_ * (s_ * p) + t_; } Matrix7 Similarity3::AdjointMap() const{ const Matrix3 R = R_.matrix(); const Vector3 t = t_.vector(); Matrix3 A = s_ * skewSymmetric(t) * R; Matrix7 adj; adj << s_*R, A, -s_*t, Z_3x3, R, Eigen::Matrix::Zero(), Eigen::Matrix::Zero(), 1; return adj; } /** syntactic sugar for transform_from */ inline Point3 Similarity3::operator*(const Point3& p) const { return transform_from(p); } Similarity3 Similarity3::inverse() const { Rot3 Rt = R_.inverse(); Point3 sRt = R_.inverse() * (-s_ * t_); return Similarity3(Rt, sRt, 1.0/s_); } Similarity3 Similarity3::operator*(const Similarity3& T) const { return Similarity3(R_ * T.R_, ((1.0/T.s_)*t_) + R_ * T.t_, s_*T.s_); } void Similarity3::print(const std::string& s) const { std::cout << std::endl; std::cout << s; rotation().print("R:\n"); translation().print("t: "); std::cout << "s: " << scale() << std::endl; } /// Return the rotation matrix Rot3 Similarity3::rotation() const { return R_; } /// Return the translation Point3 Similarity3::translation() const { return t_; } /// Return the scale double Similarity3::scale() const { return s_; } /// Update Similarity transform via 7-dim vector in tangent space Similarity3 Similarity3::ChartAtOrigin::Retract(const Vector7& v, ChartJacobian H) { // Will retracting or localCoordinating R work if R is not a unit rotation? // Also, how do we actually get s out? Seems like we need to store it somewhere. Rot3 r; //Create a zero rotation to do our retraction. return Similarity3( // r.retract(v.head<3>()), // retract rotation using v[0,1,2] Point3(v.segment<3>(3)), // Retract the translation 1.0 + v[6]); //finally, update scale using v[6] } /// 7-dimensional vector v in tangent space that makes other = this->retract(v) Vector7 Similarity3::ChartAtOrigin::Local(const Similarity3& other, ChartJacobian H) { Rot3 r; //Create a zero rotation to do the retraction Vector7 v; v.head<3>() = r.localCoordinates(other.R_); v.segment<3>(3) = other.t_.vector(); //v.segment<3>(3) = translation().localCoordinates(other.translation()); v[6] = other.s_ - 1.0; return v; } }