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1 Introduction

In gtsam, we solve the problem of reducing the error of a factor graph. For each factor i, we
have observation function hi, and the measurement value zi. Then the measurement error
vector ei is defined as

ei = hi(xi)− zi

Then, our objective of reducing the error of the factor graph becomes

min
x
errgraph(x) = min

x

∑
i

erri(ei)

Normally, we are concerned with the least square problem, where the error function for each
factor is defined as

err(e) =
1

2
‖e‖2Σ

where Σ si the covaraince matrix associated with the measurement. Then, our objective
becomes:

min
x

∑
i

1

2
‖hi(xi)− zi‖2Σi

However, when outliers exist in the measurements, they may have a large influence on our
result. To resolve this issue, we use robust error function instead of the least square error
function

err(e) = ρ(‖e‖Σ)

where ρ is robust loss function. Then, our objective turns into

min
x

∑
i

ρ(‖hi(xi)− zi‖Σi)

For simplicity, we use mi to represent the Mahalanobis distance of the measurement error
vector: mi

.
= ‖ei‖Σi , such that each error term becomes ρ(mi).

Table 1 summarizes the correspondence between the functions used in this document and
the functions in gtsam repository

1



2 Linear Reweighted Least Squares

In [1], linear robust estimation problems were solved with reweighted least squares. In linear
cases, the objective is formulated as∑

i

ρ(‖Aixi − bi‖Σi)

The objective is minimized by iteratively solving the reweighted least squares problem:∑
i

w(mi)‖Aixi − bi‖2Σi

The weight is calculated based on the error’s Mahalanobis distancem of the previous iteration

w(m) =
ρ′(m)

m

We can see that in each iteration, a new linear least square problem is created, and solving
the problem will generate the weights w for next iteration.

For the linear case, the current gtsam implementation strictly follows this algorithm (with
Gauss-Newton optimizer):

Algorithm 1 Linear function with robust noise model

set initial value for x
while not converge do

calculate weight for each factor w(mi) = ρ′(mi(xi))
mi(xi)

solve the weighted linear LS problem minx
∑
i

1
2w(mi)‖Hixi− zi‖2Σi

with Cholesky or QR

factorization
update x with the optimization result

end

3 Nonlinear Reweighted Least Squares

When we turn the robust noise problem from linear to nonlinear, our objective function
becomes ∑

i

ρ(‖hi(xi)− zi‖Σi) (1)

One way to solve the problem is: Every iteration, we change the objective into weighted
nonlinear least square form, and call the nonlinear solver (LM, Dogleg, etc) to solve the
problem.

In the current implementation of GTSAM, a faster approach is used. In every iteration,
we perform both reweighting and linearization, as in Algorithm 2.

Note, we use Ai, bi to represent the linearization result of hi(xi)− zi at the linearization
point x0 such that for small ∆i

hi(x0 + ∆i)− zi ≈Ai∆i − bi (2)
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Algorithm 2 trust-region method for nonlinear-robust noise problem

set initial value for x
while not converge do

calculate Mahalanobis distance of the error for each factor mi = ‖hi(xi)− zi‖Σi

calculate weight for each factor wi = ρ′(mi)
mi

create a weighted nonlinear LS problem
∑
i

1
2wi‖hi(xi)− zi‖

2
Σi

linearize the problem to
∑
i

1
2w(mi)‖Ai∆i − bi‖2Σi

solve the linearized LS problem
maintain trust region
update x with LM/Dogleg rule

end

Note that in every iteration, we only needs to solve a linear least square problem by
minimizing ∑

i

1

2
‖
√
w(mi)Ai∆i −

√
w(mi)bi‖2 (3)

An interpretation for Algorithm 2 is: we use the weighted linearized least square function
(3) as an approximation to our original objective function (1). In the next section, we’ll
inspect how well the approximation is.

Table 1: function correspondence.
Symbol in Doc Class in gtsam Function in gtsam

x 7→ errgraph(x) NonlinearFactorGraph error
xi 7→ err(ei(xi)) NonlinearFactor error
xi 7→ ei(xi) NonlinearFactor unwhitenedError
e 7→ m(e) noiseModel::Gaussian mahalanobisDistance
e 7→ err(e) noiseModel::Base error

Eqn2 :

Ai 7→ Σ
− 1

2
i Ai

bi 7→ Σ
− 1

2
i bi

noiseModel::Gaussian whitenAi 7→ w(mi)Σ
− 1

2
i Ai

bi 7→ w(mi)Σ
− 1

2
i bi

noiseModel::Robust whiten

m 7→ ρ(m) mEstimator::Base loss
m 7→ w(m) mEstimator::Base weight

Eqn3 :

{
Ai 7→ w(mi)Ai

bi 7→ w(mi)bi
mEstimator::Base reweight

4 Properties of the Weighted Linearized Function

4.1 Function Value

At the linearization point x0, the value for the original objective function is

ρ(m(x0))

while the value for the reweighted linearized function is

1

2
w(m)m(x0)2 =

1

2
ρ′(m(x0))m(x0)
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Note: they are not necessarily the same as shown in the example in Section 5.

4.2 Jacobian Value

Interestingly, the Jacobian of the reweighted function agree with the Jacobian of the original
function.

Let us define Au, bu to be the linearization result of h(x)− z at x0 by Taylor expansion.
e.g.

h(x)− z = h(x0 + ∆)− z ≈ h(x0)− z +Au∆ = Au∆− bu

and we define Aw, bw to be the whitened Au, bu

Aw = Σ−
1
2Au

bw = Σ−
1
2 bu

At the linearization point, the Jacobian for the original function is

∂ρ

∂x
=
∂ρ

∂r

∂r

∂x

=
∂ρ

∂r

∂r

∂(r2)

∂r2

∂x

=
ρ′(m)

r

∂r2

∂x

=w(m)ATwbw

whereas the Jacobian of the reweighted linearized function is

w(m)ATwbw

Thus, if we add a constant offset term to the reweighted linearized function to make it
align with the original objective function, it is a local approximation, with the accuracy of
first order derivative.

5 Example

We use a simple linear 1d function as our example, in this case the robust error function is
huber loss with k = 2:

ρ(m) =

{
m2/2 if x ≤ k
k(|m| − k/2) if x > k

The measurement error function is defined as

h(x)− z = x− 2

Then, our objective function becomes

ρ(x− 2)

When linearizing the objective function at point x0 = 5.
The corresponding error plot is shown in Figure 1. Note that the reweighted least square

function (blue curve) is not aligned with the original objective function (black curve) at the
linearization point x = 5. After we add the offset to the reweighted least square function,
we get a good local approximation at the linearization point (orange curve).
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Figure 1: 1D Linear weighted least squares
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