GTSAM Robust Noise Model

Fan Jiang', Yetong Zhang'

February 2020

1 Introduction

In gtsam, we solve the problem of reducing the error of a factor graph. For each factor ¢, we
have observation function h;, and the measurement value z;. Then the measurement error
vector e; is defined as

ei = hi(x;) — 2
Then, our objective of reducing the error of the factor graph becomes

min errgpqpn () = min E erri(e;)
xr X
i

Normally, we are concerned with the least square problem, where the error function for each
factor is defined as

1
err(e) = S el

where 3 si the covaraince matrix associated with the measurement. Then, our objective
becomes:

. 1
mmlnz LICO R zill3,
K3

However, when outliers exist in the measurements, they may have a large influence on our
result. To resolve this issue, we use robust error function instead of the least square error
function

err(e) = p(llel)

where p is robust loss function. Then, our objective turns into
mminZﬂ(Hhi(xi) = Zills;)
7

For simplicity, we use m; to represent the Mahalanobis distance of the measurement error
vector: m; = ||e;||s,, such that each error term becomes p(m;).

Table 1 summarizes the correspondence between the functions used in this document and
the functions in gtsam repository

2 Linear Reweighted Least Squares

In [1], linear robust estimation problems were solved with reweighted least squares. In linear
cases, the objective is formulated as

> ol Aszi — bills,)
i
The objective is minimized by iteratively solving the reweighted least squares problem:
> " w(mg)[|Agwi — bill3,
i
The weight is calculated based on the error’s Mahalanobis distance m of the previous iteration
/
wim) = 2 (m)
m

We can see that in each iteration, a new linear least square problem is created, and solving
the problem will generate the weights w for next iteration.

For the linear case, the current gtsam implementation strictly follows this algorithm (with
Gauss-Newton optimizer):

Algorithm 1 Linear function with robust noise model

set initial value for x
while not converge do

calculate weight for each factor w(m;) = %

solve the weighted linear LS problem min, Y $w(m;)||Hz; — zz||221 with Cholesky or QR
i
factorization

update x with the optimization result
end

3 Nonlinear Reweighted Least Squares

When we turn the robust noise problem from linear to nonlinear, our objective function
becomes

Zp(Hhi(@“i) — zills;) (1)

One way to solve the problem is: Every iteration, we change the objective into weighted
nonlinear least square form, and call the nonlinear solver (LM, Dogleg, etc) to solve the
problem.

In the current implementation of GTSAM, a faster approach is used. In every iteration,
we perform both reweighting and linearization, as in Algorithm 2.

Note, we use A;, b; to represent the linearization result of h;(z;) — z; at the linearization
point zg such that for small A:

hi(zo + Ai) — zi =AA; — b; (2)

Algorithm 2 trust-region method for nonlinear-robust noise problem

set initial value for z
while not converge do

calculate Mahalanobis distance of the error for each factor m; = ||h;(x;) — zil|s,
calculate weight for each factor w; = %n:i)

create a weighted nonlinear LS problem - $w; | hi(z;) — ZZHQEZ
i

linearize the problem to > Jw(m;)||4;A; — bill3,

solve the linearized LS prz)blem
maintain trust region

update z with LM /Dogleg rule
end

Note that in every iteration, we only needs to solve a linear least square problem by
minimizing
1
Z§||\/w(mi)AiAi — Vw(mi)bil* (3)
i
An interpretation for Algorithm 2 is: we use the weighted linearized least square function

(3) as an approximation to our original objective function (1). In the next section, we’ll
inspect how well the approximation is.

Table 1: function correspondence.

Symbol in Doc Class in gtsam Function in gtsam
T = ervgraph () NonlinearFactorGraph error
x; — err(ei(z;)) NonlinearFactor error
x; > ei(x;) NonlinearFactor unwhitenedError
e — m(e) noiseModel::Gaussian | mahalanobisDistance
e err(e) noiseModel::Base error
1
2
Eqn2: Ai = E_i 1 As noiseModel::Gaussian whiten
b; — Ei 2b;
1
: A SEY P
Ai = w(mz)E_l- 1 As noiseModel::Robust whiten
m — p(m) mEstimator::Base loss
m — w(m) mEstimator::Base weight
Egn3: {Ai = wimi)4i mEstimator::Base reweight

4 Properties of the Weighted Linearized Function

4.1 Function Value

At the linearization point xg, the value for the original objective function is

p(m(zo))
while the value for the reweighted linearized function is

%w(m)m(ﬂio)2 = %P'(m(xo))m(m)

3

Note: they are not necessarily the same as shown in the example in Section 5.

4.2 Jacobian Value

Interestingly, the Jacobian of the reweighted function agree with the Jacobian of the original
function.
Let us define A, b, to be the linearization result of h(z) — z at xy by Taylor expansion.

e.g.
hz) —z=h(zo+ A) — 2z~ h(zg) — 2+ AuA = A,A — b,
and we define A, b, to be the whitened A,, by,
A, = Y73 A,
by = 72,
At the linearization point, the Jacobian for the original function is

dp Opor
dxr Orox
_Op Or or?
“Or(r2) oz
_p'(m) or?
- r Ox
=w(m)ALb,

whereas the Jacobian of the reweighted linearized function is
w(m)ALbp,,

Thus, if we add a constant offset term to the reweighted linearized function to make it
align with the original objective function, it is a local approximation, with the accuracy of
first order derivative.

5 Example

We use a simple linear 1d function as our example, in this case the robust error function is
huber loss with k£ = 2:
2 .
m*/2 ifte <k
p(m) = :
k(lm| —k/2) ifx >k

The measurement error function is defined as
h(z)—z=x—2
Then, our objective function becomes

p(z —2)

When linearizing the objective function at point zg = 5.

The corresponding error plot is shown in Figure 1. Note that the reweighted least square
function (blue curve) is not aligned with the original objective function (black curve) at the
linearization point x = 5. After we add the offset to the reweighted least square function,
we get a good local approximation at the linearization point (orange curve).

4

m— original
—— weighted
g4 « weighted with offset
6 -
S
T
4 -
2 -
0 -
B 5 ; :
x
Figure 1: 1D Linear weighted least squares
References

[1] Paul W. Holland and Roy E. Welsch. Robust regression using iteratively reweighted
least-squares. Communications in Statistics - Theory and Methods, 6(9):813-827, 1977.

