/** * @file GaussianISAM2 * @brief Full non-linear ISAM * @author Michael Kaess */ #include using namespace std; using namespace gtsam; // Explicitly instantiate so we don't have to include everywhere #include template class ISAM2; template class ISAM2; namespace gtsam { /* ************************************************************************* */ void optimize2(const GaussianISAM2::sharedClique& clique, double threshold, VectorConfig& result) { bool process_children = false; // parents are assumed to already be solved and available in result GaussianISAM2::Clique::const_reverse_iterator it; for (it = clique->rbegin(); it!=clique->rend(); it++) { GaussianConditional::shared_ptr cg = *it; Vector x = cg->solve(result); // Solve for that variable if (max(abs(x)) >= threshold) { process_children = true; } result.insert(cg->key(), x); // store result in partial solution } if (process_children) { BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) { optimize2(child, threshold, result); } } } /* ************************************************************************* */ VectorConfig optimize2(const GaussianISAM2& bayesTree, double threshold) { VectorConfig result; // starting from the root, call optimize on each conditional optimize2(bayesTree.root(), threshold, result); return result; } /* ************************************************************************* */ VectorConfig optimize2(const GaussianISAM2_P& bayesTree, double threshold) { VectorConfig result; // starting from the root, call optimize on each conditional optimize2(bayesTree.root(), threshold, result); return result; } /* ************************************************************************* */ void nnz_internal(const GaussianISAM2::sharedClique& clique, int& result) { // go through the conditionals of this clique GaussianISAM2::Clique::const_reverse_iterator it; for (it = clique->rbegin(); it!=clique->rend(); it++) { GaussianConditional::shared_ptr cg = *it; int dimSep = 0; for (GaussianConditional::const_iterator matrix_it = cg->parentsBegin(); matrix_it != cg->parentsEnd(); matrix_it++) { dimSep += matrix_it->second.size2(); } int dimR = cg->dim(); result += (dimR+1)*dimR/2 + dimSep*dimR; } // traverse the children BOOST_FOREACH(const GaussianISAM2::sharedClique& child, clique->children_) { nnz_internal(child, result); } } /* ************************************************************************* */ int calculate_nnz(const GaussianISAM2::sharedClique& clique) { int result = 0; // starting from the root, add up entries of frontal and conditional matrices of each conditional nnz_internal(clique, result); return result; } } /// namespace gtsam