/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactor.h * @brief Basic bearing factor from 2D measurement * @author Chris Beall * @author Richard Roberts * @author Frank Dellaert * @author Alex Cunningham */ #pragma once #include #include #include #include #include #include namespace gtsam { /** * Non-linear factor for a constraint derived from a 2D measurement. The calibration is known here. * i.e. the main building block for visual SLAM. * @addtogroup SLAM */ template class SmartProjectionFactor: public NonlinearFactor { protected: // Keep a copy of measurement and calibration for I/O std::vector measured_; ///< 2D measurement for each of the n views ///< (important that the order is the same as the keys that we use to create the factor) boost::shared_ptr K_; ///< shared pointer to calibration object const SharedNoiseModel noise_; ///< noise model used boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NonlinearFactor Base; /// shorthand for this class typedef SmartProjectionFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// Default constructor SmartProjectionFactor() : throwCheirality_(false), verboseCheirality_(false) {} /** * Constructor * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2n dimensional location of the n points in the n views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(const std::vector measured, const SharedNoiseModel& model, std::vector poseKeys, const boost::shared_ptr& K, boost::optional body_P_sensor = boost::none) : measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor), throwCheirality_(false), verboseCheirality_(false) { keys_.assign(poseKeys.begin(), poseKeys.end()); } /** * Constructor with exception-handling flags * TODO: Mark argument order standard (keys, measurement, parameters) * @param measured is the 2 dimensional location of point in image (the measurement) * @param model is the standard deviation * @param poseKey is the index of the camera * @param K shared pointer to the constant calibration * @param throwCheirality determines whether Cheirality exceptions are rethrown * @param verboseCheirality determines whether exceptions are printed for Cheirality * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionFactor(const std::vector measured, const SharedNoiseModel& model, std::vector poseKeys, const boost::shared_ptr& K, bool throwCheirality, bool verboseCheirality, boost::optional body_P_sensor = boost::none) : measured_(measured), K_(K), noise_(model), body_P_sensor_(body_P_sensor), throwCheirality_(throwCheirality), verboseCheirality_(verboseCheirality) {} /** Virtual destructor */ virtual ~SmartProjectionFactor() {} /// @return a deep copy of this factor // virtual gtsam::NonlinearFactor::shared_ptr clone() const { // return boost::static_pointer_cast( // gtsam::NonlinearFactor::shared_ptr(new This(*this))); } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "SmartProjectionFactor, z = "; BOOST_FOREACH(const Point2& p, measured_) { std::cout << "measurement, p = "<< p << std::endl; } if(this->body_P_sensor_) this->body_P_sensor_->print(" sensor pose in body frame: "); Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); bool areMeasurementsEqual = true; for(size_t i = 0; i < measured_.size(); i++) { if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false) areMeasurementsEqual = false; break; } return e && Base::equals(p, tol) && areMeasurementsEqual && this->K_->equals(*e->K_, tol) && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// Evaluate error h(x)-z and optionally derivatives Vector unwhitenedError(const Values& x, boost::optional&> H = boost::none) const{ Vector a; return a; // Point3 point = x.at(*keys_.end()); // // std::vector::iterator vit; // for (vit = keys_.begin(); vit != keys_.end()-1; vit++) { // Key key = (*vit); // Pose3 pose = x.at(key); // // if(body_P_sensor_) { // if(H1) { // gtsam::Matrix H0; // PinholeCamera camera(pose.compose(*body_P_sensor_, H0), *K_); // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); // *H1 = *H1 * H0; // return reprojectionError.vector(); // } else { // PinholeCamera camera(pose.compose(*body_P_sensor_), *K_); // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); // return reprojectionError.vector(); // } // } else { // PinholeCamera camera(pose, *K_); // Point2 reprojectionError(camera.project(point, H1, H2) - measured_); // return reprojectionError.vector(); // } // } } /// get the dimension of the factor (number of rows on linearization) virtual size_t dim() const { return 6*keys_.size(); } /// linearize returns a Hessianfactor that is an approximation of error(p) virtual boost::shared_ptr linearize(const Values& x, const Ordering& ordering) const { // fill in the keys std::vector js; BOOST_FOREACH(const Key& k, keys_) { js += ordering[k]; } std::vector Gs; std::vector gs; // Shur complement trick // double e = u + b - z , e2 = e * e; // double c = 2 * logSqrt2PI - log(p) + e2 * p; // Vector g1 = Vector_(1, -e * p); // Vector g2 = Vector_(1, 0.5 / p - 0.5 * e2); // Vector g3 = Vector_(1, -e * p); // Matrix G11 = Matrix_(1, 1, p); // Matrix G12 = Matrix_(1, 1, e); // Matrix G13 = Matrix_(1, 1, p); // Matrix G22 = Matrix_(1, 1, 0.5 / (p * p)); // Matrix G23 = Matrix_(1, 1, e); // Matrix G33 = Matrix_(1, 1, p); double f = 0; return HessianFactor::shared_ptr(new HessianFactor(js, Gs, gs, f)); } /** * Calculate the error of the factor. * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. */ virtual double error(const Values& values) const { if (this->active(values)) { double overallError=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { if(body_P_sensor_) cameraPoses.push_back(values.at(k).compose(*body_P_sensor_)); else cameraPoses.push_back(values.at(k)); } // We triangulate the 3D position of the landmark boost::optional point = triangulatePoint3(cameraPoses, measured_, *K_); if(point) { // triangulation produced a good estimate of landmark position std::cout << "point " << *point << std::endl; for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_); std::cout << "pose.compose(*body_P_sensor_) " << pose << std::endl; Point2 reprojectionError(camera.project(*point) - measured_.at(i)); std::cout << "reprojectionError " << reprojectionError << std::endl; overallError += noise_->distance( reprojectionError.vector() ); std::cout << "noise_->distance( reprojectionError.vector() ) " << noise_->distance( reprojectionError.vector() ) << std::endl; } return sqrt(overallError); }else{ // triangulation failed: we deactivate the factor, then the error should not contribute to the overall error return 0.0; } } else { return 0.0; } } /** return the measurements */ const Vector& measured() const { return measured_; } /** return the calibration object */ inline const boost::shared_ptr calibration() const { return K_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(K_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } }; } // \ namespace gtsam