%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % GTSAM Copyright 2010, Georgia Tech Research Corporation, % Atlanta, Georgia 30332-0415 % All Rights Reserved % Authors: Frank Dellaert, et al. (see THANKS for the full author list) % % See LICENSE for the license information % % @brief A simple visual SLAM example for structure from motion % @author Duy-Nguyen Ta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if 0 %% Create a triangle target, just 3 points on a plane nPoints = 3; r = 10; points = {}; for j=1:nPoints theta = (j-1)*2*pi/nPoints; points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]'); end else %% Generate simulated data % 3D landmarks as vertices of a cube nPoints = 8; points = {gtsamPoint3([10 10 10]'),... gtsamPoint3([-10 10 10]'),... gtsamPoint3([-10 -10 10]'),... gtsamPoint3([10 -10 10]'),... gtsamPoint3([10 10 -10]'),... gtsamPoint3([-10 10 -10]'),... gtsamPoint3([-10 -10 -10]'),... gtsamPoint3([10 -10 -10]')}; end %% Create camera cameras on a circle around the triangle nCameras = 10; height = 0; r = 30; cameras = {}; K = gtsamCal3_S2(500,500,0,640/2,480/2); for i=1:nCameras theta = (i-1)*2*pi/nCameras; t = gtsamPoint3([r*cos(theta), r*sin(theta), height]'); cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K); end odometry = cameras{1}.pose.between(cameras{2}.pose); poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1); measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0); %% Initialize iSAM isam = visualSLAMISAM(2); newFactors = visualSLAMGraph; initialEstimates = visualSLAMValues; if 1 % add hard constraint newFactors.addPoseConstraint(symbol('x',1),cameras{1}.pose); else newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise); end initialEstimates.insertPose(symbol('x',1), cameras{1}.pose); % Add visual measurement factors from first pose for j=1:nPoints if 0 % add point priors newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise); end zij = cameras{i}.project(points{j}); newFactors.addMeasurement(zij, measurementNoise, symbol('x',1), symbol('l',j), K); initialEstimates.insertPoint(symbol('l',j), points{j}); end %% Run iSAM Loop for i=2:nCameras %% Add odometry newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise); %% Add visual measurement factors for j=1:nPoints zij = cameras{i}.project(points{j}); newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K); end %% Initial estimates for the new pose. Also initialize points while in the first frame. %TODO: this might be suboptimal since "result" is not the fully optimized result if (i==2), prevPose = cameras{1}.pose; else, prevPose = result.pose(symbol('x',i-1)); end initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry)); %% Update ISAM isam.update(newFactors, initialEstimates); result = isam.estimate(); if 0 % re-linearize isam.reorder_relinearize(); end %% Plot results P1 = isam.marginalCovariance(symbol('x',1)); sqrt(diag(P1)) h=figure(1);clf hold on; for j=1:size(points,2) P = isam.marginalCovariance(symbol('l',j)); point_j = result.point(symbol('l',j)); plot3(point_j.x, point_j.y, point_j.z,'marker','o'); covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P); end for ii=1:i P = isam.marginalCovariance(symbol('x',ii)); pose_ii = result.pose(symbol('x',ii)); plotPose3(pose_ii,P,10); if 1 % show ground truth plotPose3(cameras{ii}.pose,0.001*eye(6),10); end end axis([-40 40 -40 40 -10 20]);axis equal view(2) colormap('hot') %print(h,'-dpng',sprintf('VisualISAM_%03d.png',i)); %% Reset newFactors and initialEstimates to prepare for the next update newFactors = visualSLAMGraph; initialEstimates = visualSLAMValues; end