/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Pose2.cpp * @brief 2D Pose */ #include #include #include #include #include #include #include using namespace std; namespace gtsam { /** instantiate concept checks */ GTSAM_CONCEPT_POSE_INST(Pose2); static const Rot2 R_PI_2(Rot2::fromCosSin(0., 1.)); /* ************************************************************************* */ Matrix3 Pose2::matrix() const { Matrix2 R = r_.matrix(); Matrix32 R0; R0.block<2,2>(0,0) = R; R0.block<1,2>(2,0).setZero(); Matrix31 T; T << t_.x(), t_.y(), 1.0; Matrix3 RT_; RT_.block<3,2>(0,0) = R0; RT_.block<3,1>(0,2) = T; return RT_; } /* ************************************************************************* */ void Pose2::print(const string& s) const { cout << s << "(" << t_.x() << ", " << t_.y() << ", " << r_.theta() << ")" << endl; } /* ************************************************************************* */ bool Pose2::equals(const Pose2& q, double tol) const { return t_.equals(q.t_, tol) && r_.equals(q.r_, tol); } /* ************************************************************************* */ Pose2 Pose2::Expmap(const Vector& xi) { assert(xi.size() == 3); Point2 v(xi(0),xi(1)); double w = xi(2); if (std::abs(w) < 1e-10) return Pose2(xi[0], xi[1], xi[2]); else { Rot2 R(Rot2::fromAngle(w)); Point2 v_ortho = R_PI_2 * v; // points towards rot center Point2 t = (v_ortho - R.rotate(v_ortho)) / w; return Pose2(R, t); } } /* ************************************************************************* */ Vector3 Pose2::Logmap(const Pose2& p) { const Rot2& R = p.r(); const Point2& t = p.t(); double w = R.theta(); if (std::abs(w) < 1e-10) return Vector3(t.x(), t.y(), w); else { double c_1 = R.c()-1.0, s = R.s(); double det = c_1*c_1 + s*s; Point2 p = R_PI_2 * (R.unrotate(t) - t); Point2 v = (w/det) * p; return Vector3(v.x(), v.y(), w); } } /* ************************************************************************* */ Pose2 Pose2::retract(const Vector& v) const { #ifdef SLOW_BUT_CORRECT_EXPMAP return compose(Expmap(v)); #else assert(v.size() == 3); return compose(Pose2(v[0], v[1], v[2])); #endif } /* ************************************************************************* */ Vector3 Pose2::localCoordinates(const Pose2& p2) const { #ifdef SLOW_BUT_CORRECT_EXPMAP return Logmap(between(p2)); #else Pose2 r = between(p2); return Vector3(r.x(), r.y(), r.theta()); #endif } /// Local 3D coordinates \f$ [T_x,T_y,\theta] \f$ of Pose2 manifold neighborhood around current pose Vector Pose2::localCoordinates(const Pose2& p2, OptionalJacobian<3, 3> Hthis, OptionalJacobian<3, 3> Hother) const { if (Hthis || Hother) throw std::runtime_error( "Pose2::localCoordinates derivatives not implemented"); return localCoordinates(p2); } /* ************************************************************************* */ // Calculate Adjoint map // Ad_pose is 3*3 matrix that when applied to twist xi, returns Ad_pose(xi) Matrix3 Pose2::AdjointMap() const { double c = r_.c(), s = r_.s(), x = t_.x(), y = t_.y(); Matrix3 rvalue; rvalue << c, -s, y, s, c, -x, 0.0, 0.0, 1.0; return rvalue; } /* ************************************************************************* */ Matrix3 Pose2::adjointMap(const Vector& v) { // See Chirikjian12book2, vol.2, pg. 36 Matrix3 ad = zeros(3,3); ad(0,1) = -v[2]; ad(1,0) = v[2]; ad(0,2) = v[1]; ad(1,2) = -v[0]; return ad; } /* ************************************************************************* */ Matrix3 Pose2::dexpL(const Vector3& v) { double alpha = v[2]; if (fabs(alpha) > 1e-5) { // Chirikjian11book2, pg. 36 /* !!!Warning!!! Compare Iserles05an, formula 2.42 and Chirikjian11book2 pg.26 * Iserles' right-trivialization dexpR is actually the left Jacobian J_l in Chirikjian's notation * In fact, Iserles 2.42 can be written as: * \dot{g} g^{-1} = dexpR_{q}\dot{q} * where q = A, and g = exp(A) * and the LHS is in the definition of J_l in Chirikjian11book2, pg. 26. * Hence, to compute dexpL, we have to use the formula of J_r Chirikjian11book2, pg.36 */ double sZalpha = sin(alpha)/alpha, c_1Zalpha = (cos(alpha)-1)/alpha; double v1Zalpha = v[0]/alpha, v2Zalpha = v[1]/alpha; return (Matrix(3,3) << sZalpha, -c_1Zalpha, v1Zalpha + v2Zalpha*c_1Zalpha - v1Zalpha*sZalpha, c_1Zalpha, sZalpha, -v1Zalpha*c_1Zalpha + v2Zalpha - v2Zalpha*sZalpha, 0, 0, 1).finished(); } else { // Thanks to Krunal: Apply L'Hospital rule to several times to // compute the limits when alpha -> 0 return (Matrix(3,3) << 1,0,-0.5*v[1], 0,1, 0.5*v[0], 0,0, 1).finished(); } } /* ************************************************************************* */ Matrix3 Pose2::dexpInvL(const Vector3& v) { double alpha = v[2]; if (fabs(alpha) > 1e-5) { double alphaInv = 1/alpha; double halfCotHalfAlpha = 0.5*sin(alpha)/(1-cos(alpha)); double v1 = v[0], v2 = v[1]; return (Matrix(3,3) << alpha*halfCotHalfAlpha, -0.5*alpha, v1*alphaInv - v1*halfCotHalfAlpha + 0.5*v2, 0.5*alpha, alpha*halfCotHalfAlpha, v2*alphaInv - 0.5*v1 - v2*halfCotHalfAlpha, 0, 0, 1).finished(); } else { return (Matrix(3,3) << 1,0, 0.5*v[1], 0,1, -0.5*v[0], 0,0, 1).finished(); } } /* ************************************************************************* */ Pose2 Pose2::inverse(OptionalJacobian<3,3> H1) const { if (H1) *H1 = -AdjointMap(); return Pose2(r_.inverse(), r_.unrotate(Point2(-t_.x(), -t_.y()))); } /* ************************************************************************* */ // see doc/math.lyx, SE(2) section Point2 Pose2::transform_to(const Point2& point, OptionalJacobian<2, 3> H1, OptionalJacobian<2, 2> H2) const { Point2 d = point - t_; Point2 q = r_.unrotate(d); if (!H1 && !H2) return q; if (H1) *H1 << -1.0, 0.0, q.y(), 0.0, -1.0, -q.x(); if (H2) *H2 << r_.transpose(); return q; } /* ************************************************************************* */ // see doc/math.lyx, SE(2) section Pose2 Pose2::compose(const Pose2& p2, OptionalJacobian<3,3> H1, OptionalJacobian<3,3> H2) const { // TODO: inline and reuse? if(H1) *H1 = p2.inverse().AdjointMap(); if(H2) *H2 = I_3x3; return (*this)*p2; } /* ************************************************************************* */ // see doc/math.lyx, SE(2) section Point2 Pose2::transform_from(const Point2& p, OptionalJacobian<2, 3> H1, OptionalJacobian<2, 2> H2) const { const Point2 q = r_ * p; if (H1 || H2) { const Matrix2 R = r_.matrix(); Matrix21 Drotate1; Drotate1 << -q.y(), q.x(); if (H1) *H1 << R, Drotate1; if (H2) *H2 = R; // R } return q + t_; } /* ************************************************************************* */ Pose2 Pose2::between(const Pose2& p2, OptionalJacobian<3,3> H1, OptionalJacobian<3,3> H2) const { // get cosines and sines from rotation matrices const Rot2& R1 = r_, R2 = p2.r(); double c1=R1.c(), s1=R1.s(), c2=R2.c(), s2=R2.s(); // Assert that R1 and R2 are normalized assert(std::abs(c1*c1 + s1*s1 - 1.0) < 1e-5 && std::abs(c2*c2 + s2*s2 - 1.0) < 1e-5); // Calculate delta rotation = between(R1,R2) double c = c1 * c2 + s1 * s2, s = -s1 * c2 + c1 * s2; Rot2 R(Rot2::atan2(s,c)); // normalizes // Calculate delta translation = unrotate(R1, dt); Point2 dt = p2.t() - t_; double x = dt.x(), y = dt.y(); // t = R1' * (t2-t1) Point2 t(c1 * x + s1 * y, -s1 * x + c1 * y); // FD: This is just -AdjointMap(between(p2,p1)) inlined and re-using above if (H1) { double dt1 = -s2 * x + c2 * y; double dt2 = -c2 * x - s2 * y; *H1 << -c, -s, dt1, s, -c, dt2, 0.0, 0.0,-1.0; } if (H2) *H2 = I_3x3; return Pose2(R,t); } /* ************************************************************************* */ Rot2 Pose2::bearing(const Point2& point, OptionalJacobian<1, 3> H1, OptionalJacobian<1, 2> H2) const { // make temporary matrices Matrix23 D1; Matrix2 D2; Point2 d = transform_to(point, H1 ? &D1 : 0, H2 ? &D2 : 0); // uses pointer version if (!H1 && !H2) return Rot2::relativeBearing(d); Matrix12 D_result_d; Rot2 result = Rot2::relativeBearing(d, D_result_d); if (H1) *H1 = D_result_d * (D1); if (H2) *H2 = D_result_d * (D2); return result; } /* ************************************************************************* */ Rot2 Pose2::bearing(const Pose2& pose, OptionalJacobian<1, 3> H1, OptionalJacobian<1, 3> H2) const { Matrix12 D2; Rot2 result = bearing(pose.t(), H1, H2 ? &D2 : 0); if (H2) { Matrix12 H2_ = D2 * pose.r().matrix(); *H2 << H2_, Z_1x1; } return result; } /* ************************************************************************* */ double Pose2::range(const Point2& point, OptionalJacobian<1,3> H1, OptionalJacobian<1,2> H2) const { Point2 d = point - t_; if (!H1 && !H2) return d.norm(); Matrix12 H; double r = d.norm(H); if (H1) { Matrix23 H1_; H1_ << -r_.c(), r_.s(), 0.0, -r_.s(), -r_.c(), 0.0; *H1 = H * H1_; } if (H2) *H2 = H; return r; } /* ************************************************************************* */ double Pose2::range(const Pose2& pose, OptionalJacobian<1,3> H1, OptionalJacobian<1,3> H2) const { Point2 d = pose.t() - t_; if (!H1 && !H2) return d.norm(); Matrix12 H; double r = d.norm(H); if (H1) { Matrix23 H1_; H1_ << -r_.c(), r_.s(), 0.0, -r_.s(), -r_.c(), 0.0; *H1 = H * H1_; } if (H2) { Matrix23 H2_; H2_ << pose.r_.c(), -pose.r_.s(), 0.0, pose.r_.s(), pose.r_.c(), 0.0; *H2 = H * H2_; } return r; } /* ************************************************************************* * New explanation, from scan.ml * It finds the angle using a linear method: * q = Pose2::transform_from(p) = t + R*p * We need to remove the centroids from the data to find the rotation * using dp=[dpx;dpy] and q=[dqx;dqy] we have * |dqx| |c -s| |dpx| |dpx -dpy| |c| * | | = | | * | | = | | * | | = H_i*cs * |dqy| |s c| |dpy| |dpy dpx| |s| * where the Hi are the 2*2 matrices. Then we will minimize the criterion * J = \sum_i norm(q_i - H_i * cs) * Taking the derivative with respect to cs and setting to zero we have * cs = (\sum_i H_i' * q_i)/(\sum H_i'*H_i) * The hessian is diagonal and just divides by a constant, but this * normalization constant is irrelevant, since we take atan2. * i.e., cos ~ sum(dpx*dqx + dpy*dqy) and sin ~ sum(-dpy*dqx + dpx*dqy) * The translation is then found from the centroids * as they also satisfy cq = t + R*cp, hence t = cq - R*cp */ boost::optional align(const vector& pairs) { size_t n = pairs.size(); if (n<2) return boost::none; // we need at least two pairs // calculate centroids Point2 cp,cq; BOOST_FOREACH(const Point2Pair& pair, pairs) { cp += pair.first; cq += pair.second; } double f = 1.0/n; cp *= f; cq *= f; // calculate cos and sin double c=0,s=0; BOOST_FOREACH(const Point2Pair& pair, pairs) { Point2 dq = pair.first - cp; Point2 dp = pair.second - cq; c += dp.x() * dq.x() + dp.y() * dq.y(); s += dp.y() * dq.x() - dp.x() * dq.y(); // this works but is negative from formula above !! :-( } // calculate angle and translation double theta = atan2(s,c); Rot2 R = Rot2::fromAngle(theta); Point2 t = cq - R*cp; return Pose2(R, t); } /* ************************************************************************* */ } // namespace gtsam