import unittest import gtsam import gtsam_unstable import numpy as np def _timestamp_key_value(key, value): return gtsam_unstable.FixedLagSmootherKeyTimestampMapValue( key, value ) class TestFixedLagSmootherExample(unittest.TestCase): ''' Tests the fixed lag smoother wrapper ''' def test_FixedLagSmootherExample(self): ''' Simple test that checks for equality between C++ example file and the Python implementation. See gtsam_unstable/examples/FixedLagSmootherExample.cpp ''' # Define a batch fixed lag smoother, which uses # Levenberg-Marquardt to perform the nonlinear optimization lag = 2.0 smoother_batch = gtsam_unstable.BatchFixedLagSmoother(lag) # Create containers to store the factors and linearization points # that will be sent to the smoothers new_factors = gtsam.NonlinearFactorGraph() new_values = gtsam.Values() new_timestamps = gtsam_unstable.FixedLagSmootherKeyTimestampMap() # Create a prior on the first pose, placing it at the origin prior_mean = gtsam.Pose2(0, 0, 0) prior_noise = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.3, 0.3, 0.1])) X1 = 0 new_factors.push_back(gtsam.PriorFactorPose2(X1, prior_mean, prior_noise)) new_values.insert(X1, prior_mean) new_timestamps.insert(_timestamp_key_value(X1, 0.0)) delta_time = 0.25 time = 0.25 i = 0 ground_truth = [ gtsam.Pose2(0.49792, 0.007802, 0.015), gtsam.Pose2(0.99547, 0.023019, 0.03), gtsam.Pose2(1.4928, 0.045725, 0.045), gtsam.Pose2(1.9898, 0.075888, 0.06), gtsam.Pose2(2.4863, 0.1135, 0.075), gtsam.Pose2(2.9821, 0.15856, 0.09), gtsam.Pose2(3.4772, 0.21105, 0.105), gtsam.Pose2(3.9715, 0.27096, 0.12), gtsam.Pose2(4.4648, 0.33827, 0.135), gtsam.Pose2(4.957, 0.41298, 0.15), gtsam.Pose2(5.4481, 0.49506, 0.165), gtsam.Pose2(5.9379, 0.5845, 0.18), ] # Iterates from 0.25s to 3.0s, adding 0.25s each loop # In each iteration, the agent moves at a constant speed # and its two odometers measure the change. The smoothed # result is then compared to the ground truth while time <= 3.0: previous_key = 1000 * (time - delta_time) current_key = 1000 * time # assign current key to the current timestamp new_timestamps.insert(_timestamp_key_value(current_key, time)) # Add a guess for this pose to the new values # Assume that the robot moves at 2 m/s. Position is time[s] * 2[m/s] current_pose = gtsam.Pose2(time * 2, 0, 0) new_values.insert(current_key, current_pose) # Add odometry factors from two different sources with different error stats odometry_measurement_1 = gtsam.Pose2(0.61, -0.08, 0.02) odometry_noise_1 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.1, 0.1, 0.05])) new_factors.push_back(gtsam.BetweenFactorPose2( previous_key, current_key, odometry_measurement_1, odometry_noise_1 )) odometry_measurement_2 = gtsam.Pose2(0.47, 0.03, 0.01) odometry_noise_2 = gtsam.noiseModel_Diagonal.Sigmas(np.array([0.05, 0.05, 0.05])) new_factors.push_back(gtsam.BetweenFactorPose2( previous_key, current_key, odometry_measurement_2, odometry_noise_2 )) # Update the smoothers with the new factors smoother_batch.update(new_factors, new_values, new_timestamps) estimate = smoother_batch.calculateEstimatePose2(current_key) self.assertTrue(estimate.equals(ground_truth[i], 1e-4)) new_timestamps.clear() new_values.clear() new_factors.resize(0) time += delta_time i += 1 if __name__ == "__main__": unittest.main()