/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file Rot3M.cpp * @brief Rotation (internal: 3*3 matrix representation*) * @author Alireza Fathi * @author Christian Potthast * @author Frank Dellaert * @author Richard Roberts */ #include // Get GTSAM_USE_QUATERNIONS macro #ifndef GTSAM_USE_QUATERNIONS #include #include #include using namespace std; namespace gtsam { static const Matrix3 I3 = Matrix3::Identity(); /* ************************************************************************* */ Rot3::Rot3() : rot_(Matrix3::Identity()) {} /* ************************************************************************* */ Rot3::Rot3(const Point3& col1, const Point3& col2, const Point3& col3) { rot_.col(0) = col1.vector(); rot_.col(1) = col2.vector(); rot_.col(2) = col3.vector(); } /* ************************************************************************* */ Rot3::Rot3(double R11, double R12, double R13, double R21, double R22, double R23, double R31, double R32, double R33) { rot_ << R11, R12, R13, R21, R22, R23, R31, R32, R33; } /* ************************************************************************* */ Rot3::Rot3(const Matrix3& R) { rot_ = R; } /* ************************************************************************* */ Rot3::Rot3(const Matrix& R) { if (R.rows()!=3 || R.cols()!=3) throw invalid_argument("Rot3 constructor expects 3*3 matrix"); rot_ = R; } /* ************************************************************************* */ Rot3::Rot3(const Quaternion& q) : rot_(q.toRotationMatrix()) { } /* ************************************************************************* */ Rot3 Rot3::Rx(double t) { double st = sin(t), ct = cos(t); return Rot3( 1, 0, 0, 0, ct,-st, 0, st, ct); } /* ************************************************************************* */ Rot3 Rot3::Ry(double t) { double st = sin(t), ct = cos(t); return Rot3( ct, 0, st, 0, 1, 0, -st, 0, ct); } /* ************************************************************************* */ Rot3 Rot3::Rz(double t) { double st = sin(t), ct = cos(t); return Rot3( ct,-st, 0, st, ct, 0, 0, 0, 1); } /* ************************************************************************* */ // Considerably faster than composing matrices above ! Rot3 Rot3::RzRyRx(double x, double y, double z) { double cx=cos(x),sx=sin(x); double cy=cos(y),sy=sin(y); double cz=cos(z),sz=sin(z); double ss_ = sx * sy; double cs_ = cx * sy; double sc_ = sx * cy; double cc_ = cx * cy; double c_s = cx * sz; double s_s = sx * sz; double _cs = cy * sz; double _cc = cy * cz; double s_c = sx * cz; double c_c = cx * cz; double ssc = ss_ * cz, csc = cs_ * cz, sss = ss_ * sz, css = cs_ * sz; return Rot3( _cc,- c_s + ssc, s_s + csc, _cs, c_c + sss, -s_c + css, -sy, sc_, cc_ ); } /* ************************************************************************* */ Rot3 Rot3::rodriguez(const Vector& w, double theta) { // get components of axis \omega double wx = w(0), wy=w(1), wz=w(2); double wwTxx = wx*wx, wwTyy = wy*wy, wwTzz = wz*wz; #ifndef NDEBUG double l_n = wwTxx + wwTyy + wwTzz; if (std::abs(l_n-1.0)>1e-9) throw domain_error("rodriguez: length of n should be 1"); #endif double c = cos(theta), s = sin(theta), c_1 = 1 - c; double swx = wx * s, swy = wy * s, swz = wz * s; double C00 = c_1*wwTxx, C01 = c_1*wx*wy, C02 = c_1*wx*wz; double C11 = c_1*wwTyy, C12 = c_1*wy*wz; double C22 = c_1*wwTzz; return Rot3( c + C00, -swz + C01, swy + C02, swz + C01, c + C11, -swx + C12, -swy + C02, swx + C12, c + C22); } /* ************************************************************************* */ Rot3 Rot3::compose(const Rot3& R2, OptionalJacobian<3, 3> H1, OptionalJacobian<3, 3> H2) const { if (H1) *H1 = R2.transpose(); if (H2) *H2 = I3; return *this * R2; } /* ************************************************************************* */ Rot3 Rot3::operator*(const Rot3& R2) const { return Rot3(Matrix3(rot_*R2.rot_)); } /* ************************************************************************* */ // TODO const Eigen::Transpose Rot3::transpose() const { Matrix3 Rot3::transpose() const { return rot_.transpose(); } /* ************************************************************************* */ Rot3 Rot3::inverse(boost::optional H1) const { if (H1) *H1 = -rot_; return Rot3(Matrix3(transpose())); } /* ************************************************************************* */ Rot3 Rot3::between (const Rot3& R2, boost::optional H1, boost::optional H2) const { if (H1) *H1 = -(R2.transpose()*rot_); if (H2) *H2 = I3; Matrix3 R12 = transpose()*R2.rot_; return Rot3(R12); } /* ************************************************************************* */ Point3 Rot3::rotate(const Point3& p, boost::optional H1, boost::optional H2) const { if (H1 || H2) { if (H1) *H1 = rot_ * skewSymmetric(-p.x(), -p.y(), -p.z()); if (H2) *H2 = rot_; } return Point3(rot_ * p.vector()); } /* ************************************************************************* */ // Log map at identity - return the canonical coordinates of this rotation Vector3 Rot3::Logmap(const Rot3& R) { static const double PI = boost::math::constants::pi(); const Matrix3& rot = R.rot_; // Get trace(R) double tr = rot.trace(); // when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc. // we do something special if (std::abs(tr+1.0) < 1e-10) { if(std::abs(rot(2,2)+1.0) > 1e-10) return (PI / sqrt(2.0+2.0*rot(2,2) )) * Vector3(rot(0,2), rot(1,2), 1.0+rot(2,2)); else if(std::abs(rot(1,1)+1.0) > 1e-10) return (PI / sqrt(2.0+2.0*rot(1,1))) * Vector3(rot(0,1), 1.0+rot(1,1), rot(2,1)); else // if(std::abs(R.r1_.x()+1.0) > 1e-10) This is implicit return (PI / sqrt(2.0+2.0*rot(0,0))) * Vector3(1.0+rot(0,0), rot(1,0), rot(2,0)); } else { double magnitude; double tr_3 = tr-3.0; // always negative if (tr_3<-1e-7) { double theta = acos((tr-1.0)/2.0); magnitude = theta/(2.0*sin(theta)); } else { // when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0) // use Taylor expansion: magnitude \approx 1/2-(t-3)/12 + O((t-3)^2) magnitude = 0.5 - tr_3*tr_3/12.0; } return magnitude*Vector3( rot(2,1)-rot(1,2), rot(0,2)-rot(2,0), rot(1,0)-rot(0,1)); } } /* ************************************************************************* */ Rot3 Rot3::retractCayley(const Vector& omega) const { const double x = omega(0), y = omega(1), z = omega(2); const double x2 = x * x, y2 = y * y, z2 = z * z; const double xy = x * y, xz = x * z, yz = y * z; const double f = 1.0 / (4.0 + x2 + y2 + z2), _2f = 2.0 * f; return (*this) * Rot3((4 + x2 - y2 - z2) * f, (xy - 2 * z) * _2f, (xz + 2 * y) * _2f, (xy + 2 * z) * _2f, (4 - x2 + y2 - z2) * f, (yz - 2 * x) * _2f, (xz - 2 * y) * _2f, (yz + 2 * x) * _2f, (4 - x2 - y2 + z2) * f); } /* ************************************************************************* */ Rot3 Rot3::retract(const Vector& omega, Rot3::CoordinatesMode mode) const { if(mode == Rot3::EXPMAP) { return (*this)*Expmap(omega); } else if(mode == Rot3::CAYLEY) { return retractCayley(omega); } else if(mode == Rot3::SLOW_CAYLEY) { Matrix Omega = skewSymmetric(omega); return (*this)*CayleyFixed<3>(-Omega/2); } else { assert(false); exit(1); } } /* ************************************************************************* */ Vector3 Rot3::localCoordinates(const Rot3& T, Rot3::CoordinatesMode mode) const { if(mode == Rot3::EXPMAP) { return Logmap(between(T)); } else if(mode == Rot3::CAYLEY) { // Create a fixed-size matrix Matrix3 A = rot_.transpose() * T.matrix(); // Mathematica closed form optimization (procrastination?) gone wild: const double a=A(0,0),b=A(0,1),c=A(0,2); const double d=A(1,0),e=A(1,1),f=A(1,2); const double g=A(2,0),h=A(2,1),i=A(2,2); const double di = d*i, ce = c*e, cd = c*d, fg=f*g; const double M = 1 + e - f*h + i + e*i; const double K = - 4.0 / (cd*h + M + a*M -g*(c + ce) - b*(d + di - fg)); const double x = a * f - cd + f; const double y = b * f - ce - c; const double z = fg - di - d; return K * Vector3(x, y, z); } else if(mode == Rot3::SLOW_CAYLEY) { // Create a fixed-size matrix Matrix3 A(between(T).matrix()); // using templated version of Cayley Matrix3 Omega = CayleyFixed<3>(A); return -2*Vector3(Omega(2,1),Omega(0,2),Omega(1,0)); } else { assert(false); exit(1); } } /* ************************************************************************* */ Matrix3 Rot3::matrix() const { return rot_; } /* ************************************************************************* */ Point3 Rot3::r1() const { return Point3(rot_.col(0)); } /* ************************************************************************* */ Point3 Rot3::r2() const { return Point3(rot_.col(1)); } /* ************************************************************************* */ Point3 Rot3::r3() const { return Point3(rot_.col(2)); } /* ************************************************************************* */ Quaternion Rot3::toQuaternion() const { return Quaternion(rot_); } /* ************************************************************************* */ } // namespace gtsam #endif