[unfinished] prototyping inequality SQP with Luca.
parent
ecc87bdb2b
commit
fd461a1c15
|
@ -44,12 +44,23 @@ public:
|
|||
Base(), active_(true) {
|
||||
}
|
||||
|
||||
/** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
|
||||
/** Conversion from HessianFactor */
|
||||
explicit LinearInequality(const HessianFactor& hf) {
|
||||
throw std::runtime_error(
|
||||
"Cannot convert HessianFactor to LinearInequality");
|
||||
}
|
||||
|
||||
/** Conversion from JacobianFactor */
|
||||
explicit LinearInequality(const JacobianFactor& jf) : Base(jf), dualKey_(dualKey), active_(true) {
|
||||
if (!jf.isConstrained()) {
|
||||
throw std::runtime_error("Cannot convert an unconstrained JacobianFactor to LinearEquality");
|
||||
}
|
||||
|
||||
if (jf.get_model()->dim() != 1) {
|
||||
throw std::runtime_error("Only support single-valued inequality factor!");
|
||||
}
|
||||
}
|
||||
|
||||
/** Construct unary factor */
|
||||
LinearInequality(Key i1, const RowVector& A1, double b, Key dualKey) :
|
||||
Base(i1, A1, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(
|
||||
|
|
|
@ -13,11 +13,12 @@
|
|||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
//#include "DualKeyGenerator.h"
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
class NonlinearConstraint {
|
||||
|
||||
protected:
|
||||
Key dualKey_;
|
||||
|
||||
public:
|
||||
|
|
|
@ -0,0 +1,93 @@
|
|||
/**
|
||||
* @file NonlinearConstraint.h
|
||||
* @brief
|
||||
* @author Duy-Nguyen Ta
|
||||
* @date Sep 30, 2013
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam_unstable/nonlinear/NonlinearConstraint.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
class NonlinearInequality : public NonlinearConstraint {
|
||||
bool active_;
|
||||
|
||||
typedef NonlinearConstraint Base;
|
||||
|
||||
public:
|
||||
typedef boost::shared_ptr<NonlinearInequality> shared_ptr;
|
||||
|
||||
public:
|
||||
/// Construct with dual key
|
||||
NonlinearInequality(Key dualKey) : Base(dualKey), active_(true) {}
|
||||
|
||||
/**
|
||||
* compute the HessianFactor of the (-dual * constraintHessian) for the qp subproblem's objective function
|
||||
*/
|
||||
virtual GaussianFactor::shared_ptr multipliedHessian(const Values& x,
|
||||
const VectorValues& duals) const = 0;
|
||||
};
|
||||
|
||||
/* ************************************************************************* */
|
||||
/** A convenient base class for creating a nonlinear equality constraint with 1
|
||||
* variables. To derive from this class, implement evaluateError(). */
|
||||
template<class VALUE>
|
||||
class NonlinearInequality1: public NonlinearConstraint1<VALUE>, public NonlinearInequality {
|
||||
|
||||
public:
|
||||
|
||||
// typedefs for value types pulled from keys
|
||||
typedef VALUE X;
|
||||
|
||||
protected:
|
||||
|
||||
typedef NonlinearConstraint1<VALUE> Base;
|
||||
typedef NonlinearInequality1<VALUE> This;
|
||||
|
||||
private:
|
||||
static const int X1Dim = traits::dimension<VALUE>::value;
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Default Constructor for I/O
|
||||
*/
|
||||
NonlinearInequality1() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param j key of the variable
|
||||
* @param constraintDim number of dimensions of the constraint error function
|
||||
*/
|
||||
NonlinearInequality1(Key key, Key dualKey, size_t constraintDim = 1) :
|
||||
Base(noiseModel::Constrained::All(constraintDim), key), NonlinearConstraint(dualKey) {
|
||||
}
|
||||
|
||||
virtual ~NonlinearInequality1() {
|
||||
}
|
||||
|
||||
/**
|
||||
* Override this method to finish implementing a binary factor.
|
||||
* If any of the optional Matrix reference arguments are specified, it should compute
|
||||
* both the function evaluation and its derivative(s) in X1 (and/or X2).
|
||||
*/
|
||||
virtual Vector
|
||||
evaluateError(const X&, boost::optional<Matrix&> H1 = boost::none) const {
|
||||
return (Vector(1) << computeError(X, H1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Override this method to finish implementing a binary factor.
|
||||
* If any of the optional Matrix reference arguments are specified, it should compute
|
||||
* both the function evaluation and its derivative(s) in X1 (and/or X2).
|
||||
*/
|
||||
virtual double
|
||||
computeError(const X&, boost::optional<Matrix&> H1 = boost::none) const = 0;
|
||||
|
||||
};
|
||||
// \class NonlinearConstraint1
|
||||
|
||||
} /* namespace gtsam */
|
|
@ -80,11 +80,76 @@ public:
|
|||
}
|
||||
};
|
||||
|
||||
class NonlinearInequalityFactorGraph : public FactorGraph<NonlinearFactor> {
|
||||
|
||||
public:
|
||||
/// default constructor
|
||||
NonlinearInequalityFactorGraph() {
|
||||
}
|
||||
|
||||
/// linearize to a LinearEqualityFactorGraph
|
||||
LinearInequalityFactorGraph::shared_ptr linearize(
|
||||
const Values& linearizationPoint) const {
|
||||
LinearInequalityFactorGraph::shared_ptr linearGraph(
|
||||
new LinearInequalityFactorGraph());
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
|
||||
factor->linearize(linearizationPoint));
|
||||
NonlinearConstraint::shared_ptr constraint = boost::dynamic_pointer_cast<NonlinearConstraint>(factor);
|
||||
linearGraph->add(LinearInequality(*jacobian, constraint->dualKey()));
|
||||
}
|
||||
return linearGraph;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the error is <= 0.0
|
||||
*/
|
||||
bool checkFeasibility(const Values& values, double tol) const {
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
NoiseModelFactor::shared_ptr noiseModelFactor = boost::dynamic_pointer_cast<NoiseModelFactor>(
|
||||
factor);
|
||||
Vector error = noiseModelFactor->unwhitenedError(values);
|
||||
// TODO: Do we need to check if it's active or not?
|
||||
if (error[0] > tol) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the max absolute error all factors is less than a tolerance
|
||||
*/
|
||||
bool checkDualFeasibility(const VectorValues& duals, double tol) const {
|
||||
BOOST_FOREACH(const Vector& dual, duals){
|
||||
if (dual[0] < 0.0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Return true if the max absolute error all factors is less than a tolerance
|
||||
*/
|
||||
bool checkComplimentaryCondition(const Values& values, const VectorValues& duals, double tol) const {
|
||||
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
|
||||
NoiseModelFactor::shared_ptr noiseModelFactor = boost::dynamic_pointer_cast<NoiseModelFactor>(
|
||||
factor);
|
||||
Vector error = noiseModelFactor->unwhitenedError(values);
|
||||
if (error[0] > 0.0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
struct NLP {
|
||||
NonlinearFactorGraph cost;
|
||||
NonlinearEqualityFactorGraph linearEqualities;
|
||||
NonlinearEqualityFactorGraph nonlinearEqualities;
|
||||
NonlinearInequalityFactorGraph linearInequalities;
|
||||
};
|
||||
|
||||
struct SQPSimpleState {
|
||||
|
@ -117,14 +182,16 @@ public:
|
|||
|
||||
/// Check if \nabla f(x) - \lambda * \nabla c(x) == 0
|
||||
bool isDualFeasible(const VectorValues& delta) const {
|
||||
return delta.vector().lpNorm<Eigen::Infinity>() < errorTol;
|
||||
return delta.vector().lpNorm<Eigen::Infinity>() < errorTol
|
||||
&& nlp_.linearInequalities.checkDualFeasibility(errorTol);
|
||||
// return false;
|
||||
}
|
||||
|
||||
/// Check if c(x) == 0
|
||||
bool isPrimalFeasible(const SQPSimpleState& state) const {
|
||||
return nlp_.linearEqualities.checkFeasibility(state.values, errorTol)
|
||||
&& nlp_.nonlinearEqualities.checkFeasibility(state.values, errorTol);
|
||||
&& nlp_.nonlinearEqualities.checkFeasibility(state.values, errorTol)
|
||||
&& nlp_.linearInequalities.checkFeasibility(state.values, errorTol);
|
||||
}
|
||||
|
||||
/// Check convergence
|
||||
|
@ -147,6 +214,8 @@ public:
|
|||
qp.equalities.add(*nlp_.linearEqualities.linearize(state.values));
|
||||
qp.equalities.add(*nlp_.nonlinearEqualities.linearize(state.values));
|
||||
|
||||
qp.inequalities.add(*nlp_.linearInequalities.linearize(state.values));
|
||||
|
||||
if (debug)
|
||||
qp.print("QP subproblem:");
|
||||
|
||||
|
@ -206,6 +275,7 @@ public:
|
|||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <gtsam_unstable/nonlinear/NonlinearInequality.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam::symbol_shorthand;
|
||||
|
@ -353,7 +423,8 @@ public:
|
|||
return (Vector(1) << pose.x()).finished();
|
||||
}
|
||||
};
|
||||
TEST_UNSAFE(testSQPSimple, poseOnALine) {
|
||||
|
||||
TEST(testSQPSimple, poseOnALine) {
|
||||
const Key dualKey = 0;
|
||||
|
||||
|
||||
|
@ -380,6 +451,50 @@ TEST_UNSAFE(testSQPSimple, poseOnALine) {
|
|||
cout << "hessian: \n" << hessian << endl;
|
||||
}
|
||||
|
||||
|
||||
//******************************************************************************
|
||||
/**
|
||||
* Inequality boundary constraint
|
||||
* x <= bound
|
||||
*/
|
||||
class UpperBoundX : public NonlinearInequality1<Pose3> {
|
||||
typedef NonlinearInequality1<Pose3> Base;
|
||||
double bound_;
|
||||
public:
|
||||
UpperBoundX(Key key, double bound, Key dualKey) : Base(key, dualKey, 1), bound_(bound) {
|
||||
}
|
||||
|
||||
double computeError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const {
|
||||
if (H)
|
||||
*H = (Matrix(1,6) << zeros(1,3), pose.rotation().matrix().row(0)).finished();
|
||||
return pose.x() - bound_;
|
||||
}
|
||||
};
|
||||
|
||||
TEST(testSQPSimple, poseOnALine) {
|
||||
const Key dualKey = 0;
|
||||
|
||||
|
||||
//Instantiate NLP
|
||||
NLP nlp;
|
||||
nlp.cost.add(PriorFactor<Pose3>(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(-1, 0, 0)), noiseModel::Unit::Create(6)));
|
||||
UpperBoundX constraint(X(1), 0, dualKey);
|
||||
nlp.nonlinearInequalities.add(constraint);
|
||||
|
||||
Values initialValues;
|
||||
initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(-1,0,0)));
|
||||
|
||||
Values expectedSolution;
|
||||
expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3()));
|
||||
|
||||
// Instantiate SQP
|
||||
SQPSimple sqpSimple(nlp);
|
||||
Values actualSolution = sqpSimple.optimize(initialValues).first;
|
||||
|
||||
CHECK(assert_equal(expectedSolution, actualSolution, 1e-10));
|
||||
actualSolution.print("actualSolution: ");
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
Loading…
Reference in New Issue