[unfinished] prototyping inequality SQP with Luca.

release/4.3a0
krunalchande 2014-12-22 14:41:22 -05:00 committed by thduynguyen
parent ecc87bdb2b
commit fd461a1c15
4 changed files with 225 additions and 5 deletions

View File

@ -44,12 +44,23 @@ public:
Base(), active_(true) {
}
/** Conversion from HessianFactor (does Cholesky to obtain Jacobian matrix) */
/** Conversion from HessianFactor */
explicit LinearInequality(const HessianFactor& hf) {
throw std::runtime_error(
"Cannot convert HessianFactor to LinearInequality");
}
/** Conversion from JacobianFactor */
explicit LinearInequality(const JacobianFactor& jf) : Base(jf), dualKey_(dualKey), active_(true) {
if (!jf.isConstrained()) {
throw std::runtime_error("Cannot convert an unconstrained JacobianFactor to LinearEquality");
}
if (jf.get_model()->dim() != 1) {
throw std::runtime_error("Only support single-valued inequality factor!");
}
}
/** Construct unary factor */
LinearInequality(Key i1, const RowVector& A1, double b, Key dualKey) :
Base(i1, A1, (Vector(1) << b).finished(), noiseModel::Constrained::All(1)), dualKey_(

View File

@ -13,11 +13,12 @@
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
//#include "DualKeyGenerator.h"
namespace gtsam {
class NonlinearConstraint {
protected:
Key dualKey_;
public:

View File

@ -0,0 +1,93 @@
/**
* @file NonlinearConstraint.h
* @brief
* @author Duy-Nguyen Ta
* @date Sep 30, 2013
*/
#pragma once
#include <gtsam_unstable/nonlinear/NonlinearConstraint.h>
namespace gtsam {
class NonlinearInequality : public NonlinearConstraint {
bool active_;
typedef NonlinearConstraint Base;
public:
typedef boost::shared_ptr<NonlinearInequality> shared_ptr;
public:
/// Construct with dual key
NonlinearInequality(Key dualKey) : Base(dualKey), active_(true) {}
/**
* compute the HessianFactor of the (-dual * constraintHessian) for the qp subproblem's objective function
*/
virtual GaussianFactor::shared_ptr multipliedHessian(const Values& x,
const VectorValues& duals) const = 0;
};
/* ************************************************************************* */
/** A convenient base class for creating a nonlinear equality constraint with 1
* variables. To derive from this class, implement evaluateError(). */
template<class VALUE>
class NonlinearInequality1: public NonlinearConstraint1<VALUE>, public NonlinearInequality {
public:
// typedefs for value types pulled from keys
typedef VALUE X;
protected:
typedef NonlinearConstraint1<VALUE> Base;
typedef NonlinearInequality1<VALUE> This;
private:
static const int X1Dim = traits::dimension<VALUE>::value;
public:
/**
* Default Constructor for I/O
*/
NonlinearInequality1() {
}
/**
* Constructor
* @param j key of the variable
* @param constraintDim number of dimensions of the constraint error function
*/
NonlinearInequality1(Key key, Key dualKey, size_t constraintDim = 1) :
Base(noiseModel::Constrained::All(constraintDim), key), NonlinearConstraint(dualKey) {
}
virtual ~NonlinearInequality1() {
}
/**
* Override this method to finish implementing a binary factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2).
*/
virtual Vector
evaluateError(const X&, boost::optional<Matrix&> H1 = boost::none) const {
return (Vector(1) << computeError(X, H1));
}
/**
* Override this method to finish implementing a binary factor.
* If any of the optional Matrix reference arguments are specified, it should compute
* both the function evaluation and its derivative(s) in X1 (and/or X2).
*/
virtual double
computeError(const X&, boost::optional<Matrix&> H1 = boost::none) const = 0;
};
// \class NonlinearConstraint1
} /* namespace gtsam */

View File

@ -80,11 +80,76 @@ public:
}
};
class NonlinearInequalityFactorGraph : public FactorGraph<NonlinearFactor> {
public:
/// default constructor
NonlinearInequalityFactorGraph() {
}
/// linearize to a LinearEqualityFactorGraph
LinearInequalityFactorGraph::shared_ptr linearize(
const Values& linearizationPoint) const {
LinearInequalityFactorGraph::shared_ptr linearGraph(
new LinearInequalityFactorGraph());
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
JacobianFactor::shared_ptr jacobian = boost::dynamic_pointer_cast<JacobianFactor>(
factor->linearize(linearizationPoint));
NonlinearConstraint::shared_ptr constraint = boost::dynamic_pointer_cast<NonlinearConstraint>(factor);
linearGraph->add(LinearInequality(*jacobian, constraint->dualKey()));
}
return linearGraph;
}
/**
* Return true if the error is <= 0.0
*/
bool checkFeasibility(const Values& values, double tol) const {
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
NoiseModelFactor::shared_ptr noiseModelFactor = boost::dynamic_pointer_cast<NoiseModelFactor>(
factor);
Vector error = noiseModelFactor->unwhitenedError(values);
// TODO: Do we need to check if it's active or not?
if (error[0] > tol) {
return false;
}
}
return true;
}
/**
* Return true if the max absolute error all factors is less than a tolerance
*/
bool checkDualFeasibility(const VectorValues& duals, double tol) const {
BOOST_FOREACH(const Vector& dual, duals){
if (dual[0] < 0.0) {
return false;
}
}
return true;
}
/**
* Return true if the max absolute error all factors is less than a tolerance
*/
bool checkComplimentaryCondition(const Values& values, const VectorValues& duals, double tol) const {
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, *this){
NoiseModelFactor::shared_ptr noiseModelFactor = boost::dynamic_pointer_cast<NoiseModelFactor>(
factor);
Vector error = noiseModelFactor->unwhitenedError(values);
if (error[0] > 0.0) {
return false;
}
}
return true;
}
};
struct NLP {
NonlinearFactorGraph cost;
NonlinearEqualityFactorGraph linearEqualities;
NonlinearEqualityFactorGraph nonlinearEqualities;
NonlinearInequalityFactorGraph linearInequalities;
};
struct SQPSimpleState {
@ -117,14 +182,16 @@ public:
/// Check if \nabla f(x) - \lambda * \nabla c(x) == 0
bool isDualFeasible(const VectorValues& delta) const {
return delta.vector().lpNorm<Eigen::Infinity>() < errorTol;
return delta.vector().lpNorm<Eigen::Infinity>() < errorTol
&& nlp_.linearInequalities.checkDualFeasibility(errorTol);
// return false;
}
/// Check if c(x) == 0
bool isPrimalFeasible(const SQPSimpleState& state) const {
return nlp_.linearEqualities.checkFeasibility(state.values, errorTol)
&& nlp_.nonlinearEqualities.checkFeasibility(state.values, errorTol);
&& nlp_.nonlinearEqualities.checkFeasibility(state.values, errorTol)
&& nlp_.linearInequalities.checkFeasibility(state.values, errorTol);
}
/// Check convergence
@ -147,6 +214,8 @@ public:
qp.equalities.add(*nlp_.linearEqualities.linearize(state.values));
qp.equalities.add(*nlp_.nonlinearEqualities.linearize(state.values));
qp.inequalities.add(*nlp_.linearInequalities.linearize(state.values));
if (debug)
qp.print("QP subproblem:");
@ -206,6 +275,7 @@ public:
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam_unstable/nonlinear/NonlinearInequality.h>
using namespace std;
using namespace gtsam::symbol_shorthand;
@ -353,7 +423,8 @@ public:
return (Vector(1) << pose.x()).finished();
}
};
TEST_UNSAFE(testSQPSimple, poseOnALine) {
TEST(testSQPSimple, poseOnALine) {
const Key dualKey = 0;
@ -380,6 +451,50 @@ TEST_UNSAFE(testSQPSimple, poseOnALine) {
cout << "hessian: \n" << hessian << endl;
}
//******************************************************************************
/**
* Inequality boundary constraint
* x <= bound
*/
class UpperBoundX : public NonlinearInequality1<Pose3> {
typedef NonlinearInequality1<Pose3> Base;
double bound_;
public:
UpperBoundX(Key key, double bound, Key dualKey) : Base(key, dualKey, 1), bound_(bound) {
}
double computeError(const Pose3& pose, boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = (Matrix(1,6) << zeros(1,3), pose.rotation().matrix().row(0)).finished();
return pose.x() - bound_;
}
};
TEST(testSQPSimple, poseOnALine) {
const Key dualKey = 0;
//Instantiate NLP
NLP nlp;
nlp.cost.add(PriorFactor<Pose3>(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3(-1, 0, 0)), noiseModel::Unit::Create(6)));
UpperBoundX constraint(X(1), 0, dualKey);
nlp.nonlinearInequalities.add(constraint);
Values initialValues;
initialValues.insert(X(1), Pose3(Rot3::ypr(0.3, 0.2, 0.3), Point3(-1,0,0)));
Values expectedSolution;
expectedSolution.insert(X(1), Pose3(Rot3::ypr(0.1, 0.2, 0.3), Point3()));
// Instantiate SQP
SQPSimple sqpSimple(nlp);
Values actualSolution = sqpSimple.optimize(initialValues).first;
CHECK(assert_equal(expectedSolution, actualSolution, 1e-10));
actualSolution.print("actualSolution: ");
}
//******************************************************************************
int main() {
TestResult tr;