Removed SLAM namespaces from Localization Example

release/4.3a0
Stephen Williams 2012-07-22 16:03:42 +00:00
parent 61b82c9109
commit f865a9e551
1 changed files with 135 additions and 56 deletions

View File

@ -15,87 +15,166 @@
* @author Frank Dellaert * @author Frank Dellaert
*/ */
// pull in the 2D PoseSLAM domain with all typedefs and helper functions defined /**
#include <gtsam/slam/pose2SLAM.h> * A simple 2D pose slam example with "GPS" measurements
* - The robot moves forward 2 meter each iteration
* - The robot initially faces along the X axis (horizontal, to the right in 2D)
* - We have full odometry between pose
* - We have "GPS-like" measurements implemented with a custom factor
*/
// include this for marginals // As this is a planar SLAM example, we will use Pose2 variables (x, y, theta) to represent
// the robot positions
#include <gtsam/geometry/Pose2.h>
// Each variable in the system (poses) must be identified with a unique key.
// We can either use simple integer keys (1, 2, 3, ...) or symbols (X1, X2, L1).
// Here we will use simple integer keys
#include <gtsam/nonlinear/Key.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics/SLAM/Bundle Adjustment problems.
// Here we will use Between factors for the relative motion described by odometry measurements.
// Because we have global measurements in the form of "GPS-like" measurements, we don't
// actually need to provide an initial position prior in this example. We will create our
// custom factor shortly.
#include <gtsam/slam/BetweenFactor.h>
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
// are nonlinear factors, we will need a Nonlinear Factor Graph.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
// nonlinear functions around an initial linearization point, then solve the linear system
// to update the linearization point. This happens repeatedly until the solver converges
// to a consistent set of variable values. This requires us to specify an initial guess
// for each variable, held in a Values container.
#include <gtsam/nonlinear/Values.h>
// Finally, once all of the factors have been added to our factor graph, we will want to
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use the
// standard Levenberg-Marquardt solver
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h> #include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// Once the optimized values have been calculated, we can also calculate the marginal covariance
// of desired variables
#include <gtsam/nonlinear/Marginals.h> #include <gtsam/nonlinear/Marginals.h>
#include <iomanip>
#include <iostream>
using namespace std; using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace gtsam::noiseModel;
/**
* UnaryFactor // Before we begin the example, we must create a custom unary factor to implement a
* Example on how to create a GPS-like factor on position alone. // "GPS-like" functionality. Because standard GPS measurements provide information
*/ // only on the position, and not on the orientation, we cannot use a simple prior to
// properly model this measurement.
//
// The factor will be a unary factor, affect only a single system variable. It will
// also use a standard Gaussian noise model. Hence, we will derive our new factor from
// the NoiseModelFactor1.
#include <gtsam/nonlinear/NonlinearFactor.h>
class UnaryFactor: public NoiseModelFactor1<Pose2> { class UnaryFactor: public NoiseModelFactor1<Pose2> {
double mx_, my_; ///< X and Y measurements
// The factor will hold a measurement consisting of an (X,Y) location
Point2 measurement_;
public: public:
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<UnaryFactor> shared_ptr;
// The constructor requires the variable key, the (X, Y) measurement value, and the noise model
UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model): UnaryFactor(Key j, double x, double y, const SharedNoiseModel& model):
NoiseModelFactor1<Pose2>(model, j), mx_(x), my_(y) {} NoiseModelFactor1<Pose2>(model, j), measurement_(x, y) {}
virtual ~UnaryFactor() {} virtual ~UnaryFactor() {}
Vector evaluateError(const Pose2& q, // By using the NoiseModelFactor base classes, the only two function that must be overridden.
boost::optional<Matrix&> H = boost::none) const // The first is the 'evaluateError' function. This function implements the desired measurement
// function, returning a vector of errors when evaluated at the provided variable value. It
// must also calculate the Jacobians for this measurement function, if requested.
Vector evaluateError(const Pose2& pose, boost::optional<Matrix&> H = boost::none) const
{ {
if (H) (*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0); // The measurement function for a GPS-like measurement is simple:
return Vector_(2, q.x() - mx_, q.y() - my_); // error_x = pose.x - measurement.x
// error_y = pose.y - measurement.y
// Consequently, the Jacobians are:
// [ derror_x/dx derror_x/dy derror_x/dtheta ] = [1 0 0]
// [ derror_y/dx derror_y/dy derror_y/dtheta ] = [0 1 0]
if (H)
(*H) = Matrix_(2,3, 1.0,0.0,0.0, 0.0,1.0,0.0);
return Vector_(2, pose.x() - measurement_.x(), pose.y() - measurement_.y());
} }
// The second is a 'clone' function that allows the factor to be copied. Under most
// circumstances, the following code that employs the default copy constructor should
// work fine.
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new UnaryFactor(*this))); }
// Additionally, custom factors should really provide specific implementations of
// 'equals' to ensure proper operation will all GTSAM functionality, and a custom
// 'print' function, if desired.
virtual bool equals(const NonlinearFactor& expected, double tol=1e-9) const {
const UnaryFactor* e = dynamic_cast<const UnaryFactor*> (&expected);
return e != NULL && NoiseModelFactor1::equals(*e, tol) && this->measurement_.equals(e->measurement_, tol);
}
virtual void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "UnaryFactor(" << keyFormatter(this->key()) << ")\n";
measurement_.print(" measurement: ");
this->noiseModel_->print(" noise model: ");
}
}; };
/**
* Example of a more complex 2D localization example
* - Robot poses are facing along the X axis (horizontal, to the right in 2D)
* - The robot moves 2 meters each step
* - We have full odometry between poses
* - We have unary measurement factors at eacht time step
*/
int main(int argc, char** argv) { int main(int argc, char** argv) {
// create the graph (defined in pose2SLAM.h, derived from NonlinearFactorGraph) // 1. Create a factor graph container and add factors to it
pose2SLAM::Graph graph; NonlinearFactorGraph graph;
// add two odometry factors // 2a. Add odometry factors
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) // For simplicity, we will use the same noise model for each odometry factor
SharedDiagonal odometryNoise = Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1));
graph.addRelativePose(1, 2, odometry, odometryNoise); // Create odometry (Between) factors between consecutive poses
graph.addRelativePose(2, 3, odometry, odometryNoise); graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
// add unary measurement factors, like GPS, on all three poses // 2b. Add "GPS-like" measurements
SharedDiagonal noiseModel = Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // 10cm std on x,y // We will use our custom UnaryFactor for this.
graph.push_back(boost::make_shared<UnaryFactor>(1, 0, 0, noiseModel)); noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas(Vector_(2, 0.1, 0.1)); // 10cm std on x,y
graph.push_back(boost::make_shared<UnaryFactor>(2, 2, 0, noiseModel)); graph.add(UnaryFactor(1, 0.0, 0.0, unaryNoise));
graph.push_back(boost::make_shared<UnaryFactor>(3, 4, 0, noiseModel)); graph.add(UnaryFactor(3, 4.0, 0.0, unaryNoise));
graph.print("\nFactor Graph:\n"); // print
// print // 3. Create the data structure to hold the initialEstimate estimate to the solution
graph.print("\nFactor graph:\n"); // For illustrative purposes, these have been deliberately set to incorrect values
Values initialEstimate;
initialEstimate.insert(1, Pose2(0.5, 0.0, 0.2));
initialEstimate.insert(2, Pose2(2.3, 0.1, -0.2));
initialEstimate.insert(3, Pose2(4.1, 0.1, 0.1));
initialEstimate.print("\nInitial Estimate:\n"); // print
// create (deliberatly inaccurate) initial estimate // 4. Optimize using Levenberg-Marquardt optimization. The optimizer
pose2SLAM::Values initialEstimate; // accepts an optional set of configuration parameters, controlling
initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2)); // things like convergence criteria, the type of linear system solver
initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2)); // to use, and the amount of information displayed during optimization.
initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1)); // Here we will use the default set of parameters. See the
initialEstimate.print("\nInitial estimate:\n "); // documentation for the full set of parameters.
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate);
Values result = optimizer.optimize();
result.print("Final Result:\n");
// use an explicit Optimizer object // 5. Calculate and print marginal covariances for all variables
LevenbergMarquardtOptimizer optimizer(graph, initialEstimate); Marginals marginals(graph, result);
pose2SLAM::Values result = optimizer.optimize(); cout << "Pose 1 covariance:\n" << marginals.marginalCovariance(1) << endl;
result.print("\nFinal result:\n "); cout << "Pose 2 covariance:\n" << marginals.marginalCovariance(2) << endl;
cout << "Pose 3 covariance:\n" << marginals.marginalCovariance(3) << endl;
// Query the marginals return 0;
Marginals marginals(graph, result);
cout.precision(2);
cout << "\nP1:\n" << marginals.marginalCovariance(1) << endl;
cout << "\nP2:\n" << marginals.marginalCovariance(2) << endl;
cout << "\nP3:\n" << marginals.marginalCovariance(3) << endl;
return 0;
} }