Charts !!!!
							parent
							
								
									9c97b1d8a0
								
							
						
					
					
						commit
						ed6a2b6eff
					
				|  | @ -355,27 +355,22 @@ template<typename T> | |||
| struct dimension: public std::integral_constant<int, T::dimension> { | ||||
| }; | ||||
| 
 | ||||
| // TangentVector is Eigen::Matrix type in tangent space, can be Dynamic...
 | ||||
| // Chart is a map from T -> vector, retract is its inverse
 | ||||
| template<typename T> | ||||
| struct TangentVector { | ||||
| struct DefaultChart { | ||||
|   BOOST_STATIC_ASSERT(is_manifold<T>::value); | ||||
|   typedef Eigen::Matrix<double, dimension<T>::value, 1> type; | ||||
| }; | ||||
| 
 | ||||
| // default localCoordinates
 | ||||
| template<typename T> | ||||
| struct LocalCoordinates { | ||||
|   typename TangentVector<T>::type operator()(const T& t1, const T& t2) { | ||||
|     return t1.localCoordinates(t2); | ||||
|   typedef Eigen::Matrix<double, dimension<T>::value, 1> vector; | ||||
|   DefaultChart(const T& t) : | ||||
|       t_(t) { | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| // default retract
 | ||||
| template<typename T> | ||||
| struct Retract { | ||||
|   T operator()(const T& t, const typename TangentVector<T>::type& d) { | ||||
|     return t.retract(d); | ||||
|   vector apply(const T& other) { | ||||
|     return t_.localCoordinates(other); | ||||
|   } | ||||
|   T retract(const vector& d) { | ||||
|     return t_.retract(d); | ||||
|   } | ||||
| private: | ||||
|   T const & t_; | ||||
| }; | ||||
| 
 | ||||
| // Fixed size Eigen::Matrix type
 | ||||
|  | @ -384,28 +379,48 @@ template<int M, int N, int Options> | |||
| struct is_manifold<Eigen::Matrix<double, M, N, Options> > : public true_type { | ||||
| }; | ||||
| 
 | ||||
| // TODO: Could be more sophisticated using Eigen traits and SFINAE?
 | ||||
| 
 | ||||
| template<int Options> | ||||
| struct dimension<Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Options> > : public integral_constant< | ||||
|     size_t, Eigen::Dynamic> { | ||||
| }; | ||||
| 
 | ||||
| template<int M, int Options> | ||||
| struct dimension<Eigen::Matrix<double, M, Eigen::Dynamic, Options> > : public integral_constant< | ||||
|     size_t, Eigen::Dynamic> { | ||||
|   BOOST_STATIC_ASSERT(M!=Eigen::Dynamic); | ||||
| }; | ||||
| 
 | ||||
| template<int N, int Options> | ||||
| struct dimension<Eigen::Matrix<double, Eigen::Dynamic, N, Options> > : public integral_constant< | ||||
|     size_t, Eigen::Dynamic> { | ||||
|   BOOST_STATIC_ASSERT(N!=Eigen::Dynamic); | ||||
| }; | ||||
| 
 | ||||
| template<int M, int N, int Options> | ||||
| struct dimension<Eigen::Matrix<double, M, N, Options> > : public integral_constant< | ||||
|     size_t, M * N> { | ||||
|   BOOST_STATIC_ASSERT(M!=Eigen::Dynamic && N!=Eigen::Dynamic); | ||||
| }; | ||||
| 
 | ||||
| // Chart is a map from T -> vector, retract is its inverse
 | ||||
| template<int M, int N, int Options> | ||||
| struct LocalCoordinates<Eigen::Matrix<double, M, N, Options> > { | ||||
| struct DefaultChart<Eigen::Matrix<double, M, N, Options> > { | ||||
|   typedef Eigen::Matrix<double, M, N, Options> T; | ||||
|   typedef typename TangentVector<T>::type result_type; | ||||
|   result_type operator()(const T& t1, const T& t2) { | ||||
|     T diff = t2 - t1; | ||||
|     return result_type(Eigen::Map<result_type>(diff.data())); | ||||
|   typedef Eigen::Matrix<double, dimension<T>::value, 1> vector; | ||||
|   DefaultChart(const T& t) : | ||||
|       t_(t) { | ||||
|   } | ||||
| }; | ||||
| 
 | ||||
| template<int M, int N, int Options> | ||||
| struct Retract<Eigen::Matrix<double, M, N, Options> > { | ||||
|   typedef Eigen::Matrix<double, M, N, Options> T; | ||||
|   T operator()(const T& t, const typename TangentVector<T>::type& d) { | ||||
|     return t + Eigen::Map<const T>(d.data()); | ||||
|   vector apply(const T& other) { | ||||
|     T diff = other - t_; | ||||
|     return Eigen::Map<vector>(diff.data()); | ||||
|   } | ||||
|   T retract(const vector& d) { | ||||
|     return t_ + Eigen::Map<const T>(d.data()); | ||||
|   } | ||||
| private: | ||||
|   T const & t_; | ||||
| }; | ||||
| 
 | ||||
| // Point2
 | ||||
|  | @ -431,16 +446,15 @@ TEST(Expression, dimension) { | |||
|   EXPECT_LONGS_EQUAL(8, dimension<Matrix24>::value); | ||||
| } | ||||
| 
 | ||||
| // localCoordinates
 | ||||
| TEST(Expression, localCoordinates) { | ||||
|   EXPECT(LocalCoordinates<Point2>()(Point2(0,0),Point2(1,0))==Vector2(1,0)); | ||||
|   EXPECT(LocalCoordinates<Vector2>()(Vector2(0,0),Vector2(1,0))==Vector2(1,0)); | ||||
| } | ||||
| // charts
 | ||||
| TEST(Expression, Charts) { | ||||
|   DefaultChart<Point2> chart1(Point2(0, 0)); | ||||
|   EXPECT(chart1.apply(Point2(1,0))==Vector2(1,0)); | ||||
|   EXPECT(chart1.retract(Vector2(1,0))==Point2(1,0)); | ||||
| 
 | ||||
| // retract
 | ||||
| TEST(Expression, retract) { | ||||
|   EXPECT(Retract<Point2>()(Point2(0,0),Vector2(1,0))==Point2(1,0)); | ||||
|   EXPECT(Retract<Vector2>()(Vector2(0,0),Vector2(1,0))==Vector2(1,0)); | ||||
|   DefaultChart<Vector2> chart2(Vector2(0, 0)); | ||||
|   EXPECT(chart2.apply(Vector2(1,0))==Vector2(1,0)); | ||||
|   EXPECT(chart2.retract(Vector2(1,0))==Vector2(1,0)); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************* */ | ||||
|  | @ -451,31 +465,35 @@ Matrix numericalDerivative(boost::function<Y(const X&)> h, const X& x, | |||
| 
 | ||||
|   BOOST_STATIC_ASSERT(is_manifold<Y>::value); | ||||
|   static const size_t M = dimension<Y>::value; | ||||
|   typedef typename TangentVector<Y>::type TangentY; | ||||
|   LocalCoordinates<Y> localCoordinates; | ||||
|   typedef DefaultChart<Y> ChartY; | ||||
|   typedef typename ChartY::vector TangentY; | ||||
| 
 | ||||
|   BOOST_STATIC_ASSERT(is_manifold<X>::value); | ||||
|   static const size_t N = dimension<X>::value; | ||||
|   typedef typename TangentVector<X>::type TangentX; | ||||
|   Retract<X> retract; | ||||
|   typedef DefaultChart<X> ChartX; | ||||
|   typedef typename ChartX::vector TangentX; | ||||
| 
 | ||||
|   // get value at x
 | ||||
|   // get chart at x
 | ||||
|   ChartX chartX(x); | ||||
| 
 | ||||
|   // get value at x, and corresponding chart
 | ||||
|   Y hx = h(x); | ||||
|   ChartY chartY(hx); | ||||
| 
 | ||||
|   // Prepare a tangent vector to perturb x with
 | ||||
|   TangentX d; | ||||
|   d.setZero(); | ||||
|   TangentX dx; | ||||
|   dx.setZero(); | ||||
| 
 | ||||
|   // Fill in Jacobian H
 | ||||
|   Matrix H = zeros(M, N); | ||||
|   double factor = 1.0 / (2.0 * delta); | ||||
|   for (size_t j = 0; j < N; j++) { | ||||
|     d(j) = delta; | ||||
|     TangentY hxplus = localCoordinates(hx, h(retract(x, d))); | ||||
|     d(j) = -delta; | ||||
|     TangentY hxmin = localCoordinates(hx, h(retract(x, d))); | ||||
|     H.block<M, 1>(0, j) << (hxplus - hxmin) * factor; | ||||
|     d(j) = 0; | ||||
|     dx(j) = delta; | ||||
|     TangentY dy1 = chartY.apply(h(chartX.retract(dx))); | ||||
|     dx(j) = -delta; | ||||
|     TangentY dy2 = chartY.apply(h(chartX.retract(dx))); | ||||
|     H.block<M, 1>(0, j) << (dy1 - dy2) * factor; | ||||
|     dx(j) = 0; | ||||
|   } | ||||
|   return H; | ||||
| } | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue