[REFACTOR] Changed Vector(..).finished for VectorN(...)

release/4.3a0
ivan 2016-01-24 20:18:10 -05:00
parent b2825ca4d0
commit ec1d0201e5
2 changed files with 19 additions and 20 deletions

View File

@ -9,7 +9,6 @@
#include <gtsam_unstable/linear/LPState.h> #include <gtsam_unstable/linear/LPState.h>
#include <gtsam_unstable/linear/LP.h> #include <gtsam_unstable/linear/LP.h>
namespace gtsam { namespace gtsam {
typedef std::map<Key, size_t> KeyDimMap; typedef std::map<Key, size_t> KeyDimMap;
typedef std::vector<std::pair<Key, Matrix> > TermsContainer; typedef std::vector<std::pair<Key, Matrix> > TermsContainer;

View File

@ -47,17 +47,17 @@ using namespace gtsam::symbol_shorthand;
*/ */
LP simpleLP1() { LP simpleLP1() {
LP lp; LP lp;
lp.cost = LinearCost(1, (Vector(2) << -1., -1.).finished()); // min -x1-x2 (max x1+x2) lp.cost = LinearCost(1, Vector2( -1., -1.)); // min -x1-x2 (max x1+x2)
lp.inequalities.push_back( lp.inequalities.push_back(
LinearInequality(1, (Vector(2) << -1, 0).finished(), 0, 1)); // x1 >= 0 LinearInequality(1, Vector2( -1, 0), 0, 1)); // x1 >= 0
lp.inequalities.push_back( lp.inequalities.push_back(
LinearInequality(1, (Vector(2) << 0, -1).finished(), 0, 2)); // x2 >= 0 LinearInequality(1, Vector2( 0, -1), 0, 2)); // x2 >= 0
lp.inequalities.push_back( lp.inequalities.push_back(
LinearInequality(1, (Vector(2) << 1, 2).finished(), 4, 3)); // x1 + 2*x2 <= 4 LinearInequality(1, Vector2( 1, 2), 4, 3)); // x1 + 2*x2 <= 4
lp.inequalities.push_back( lp.inequalities.push_back(
LinearInequality(1, (Vector(2) << 4, 2).finished(), 12, 4)); // 4x1 + 2x2 <= 12 LinearInequality(1, Vector2( 4, 2), 12, 4)); // 4x1 + 2x2 <= 12
lp.inequalities.push_back( lp.inequalities.push_back(
LinearInequality(1, (Vector(2) << -1, 1).finished(), 1, 5)); // -x1 + x2 <= 1 LinearInequality(1, Vector2( -1, 1), 1, 5)); // -x1 + x2 <= 1
return lp; return lp;
} }
@ -83,15 +83,15 @@ TEST(LPInitSolverMatlab, initialization) {
LP expectedInitLP; LP expectedInitLP;
expectedInitLP.cost = LinearCost(yKey, ones(1)); expectedInitLP.cost = LinearCost(yKey, ones(1));
expectedInitLP.inequalities.push_back( expectedInitLP.inequalities.push_back(
LinearInequality(1, (Vector(2) << -1, 0).finished(), 2, Vector::Constant(1, -1), 0, 1)); // -x1 - y <= 0 LinearInequality(1, Vector2( -1, 0), 2, Vector::Constant(1, -1), 0, 1)); // -x1 - y <= 0
expectedInitLP.inequalities.push_back( expectedInitLP.inequalities.push_back(
LinearInequality(1, (Vector(2) << 0, -1).finished(), 2, Vector::Constant(1, -1), 0, 2)); // -x2 - y <= 0 LinearInequality(1, Vector2( 0, -1), 2, Vector::Constant(1, -1), 0, 2)); // -x2 - y <= 0
expectedInitLP.inequalities.push_back( expectedInitLP.inequalities.push_back(
LinearInequality(1, (Vector(2) << 1, 2).finished(), 2, Vector::Constant(1, -1), 4, 3)); // x1 + 2*x2 - y <= 4 LinearInequality(1, Vector2( 1, 2), 2, Vector::Constant(1, -1), 4, 3)); // x1 + 2*x2 - y <= 4
expectedInitLP.inequalities.push_back( expectedInitLP.inequalities.push_back(
LinearInequality(1, (Vector(2) << 4, 2).finished(), 2, Vector::Constant(1, -1), 12, 4)); // 4x1 + 2x2 - y <= 12 LinearInequality(1, Vector2( 4, 2), 2, Vector::Constant(1, -1), 12, 4)); // 4x1 + 2x2 - y <= 12
expectedInitLP.inequalities.push_back( expectedInitLP.inequalities.push_back(
LinearInequality(1, (Vector(2) << -1, 1).finished(), 2, Vector::Constant(1, -1), 1, 5)); // -x1 + x2 - y <= 1 LinearInequality(1, Vector2( -1, 1), 2, Vector::Constant(1, -1), 1, 5)); // -x1 + x2 - y <= 1
CHECK(assert_equal(expectedInitLP, *initLP, 1e-10)); CHECK(assert_equal(expectedInitLP, *initLP, 1e-10));
LPSolver lpSolveInit(*initLP); LPSolver lpSolveInit(*initLP);
@ -99,7 +99,7 @@ TEST(LPInitSolverMatlab, initialization) {
xy0.insert(yKey, Vector::Constant(1, y0)); xy0.insert(yKey, Vector::Constant(1, y0));
VectorValues xyInit = lpSolveInit.optimize(xy0).first; VectorValues xyInit = lpSolveInit.optimize(xy0).first;
VectorValues expected_init; VectorValues expected_init;
expected_init.insert(1, (Vector(2) << 1, 1).finished()); expected_init.insert(1, Vector2( 1, 1));
expected_init.insert(2, Vector::Constant(1, -1)); expected_init.insert(2, Vector::Constant(1, -1));
CHECK(assert_equal(expected_init, xyInit, 1e-10)); CHECK(assert_equal(expected_init, xyInit, 1e-10));
@ -117,9 +117,9 @@ TEST(LPInitSolverMatlab, initialization) {
*/ */
TEST(LPSolver, overConstrainedLinearSystem) { TEST(LPSolver, overConstrainedLinearSystem) {
GaussianFactorGraph graph; GaussianFactorGraph graph;
Matrix A1 = (Matrix(3,1) <<1,1,1).finished(); Matrix A1 = Vector3(1,1,1);
Matrix A2 = (Matrix(3,1) <<1,-1,2).finished(); Matrix A2 = Vector3(1,-1,2);
Vector b = (Vector(3) << 1, 5, 6).finished(); Vector b = Vector3( 1, 5, 6);
JacobianFactor factor(1, A1, 2, A2, b, noiseModel::Constrained::All(3)); JacobianFactor factor(1, A1, 2, A2, b, noiseModel::Constrained::All(3));
graph.push_back(factor); graph.push_back(factor);
@ -149,13 +149,13 @@ TEST(LPSolver, simpleTest1) {
VectorValues x1 = lpSolver.solveWithCurrentWorkingSet(init, VectorValues x1 = lpSolver.solveWithCurrentWorkingSet(init,
InequalityFactorGraph()); InequalityFactorGraph());
VectorValues expected_x1; VectorValues expected_x1;
expected_x1.insert(1, (Vector(2) << 1, 1).finished()); expected_x1.insert(1, Vector2( 1, 1));
CHECK(assert_equal(expected_x1, x1, 1e-10)); CHECK(assert_equal(expected_x1, x1, 1e-10));
VectorValues result, duals; VectorValues result, duals;
boost::tie(result, duals) = lpSolver.optimize(init); boost::tie(result, duals) = lpSolver.optimize(init);
VectorValues expectedResult; VectorValues expectedResult;
expectedResult.insert(1, (Vector(2)<<8./3., 2./3.).finished()); expectedResult.insert(1, Vector2(8./3., 2./3.));
CHECK(assert_equal(expectedResult, result, 1e-10)); CHECK(assert_equal(expectedResult, result, 1e-10));
} }
@ -167,9 +167,9 @@ TEST(LPSolver, simpleTest1) {
*/ */
/* ************************************************************************* */ /* ************************************************************************* */
TEST(LPSolver, LinearCost) { TEST(LPSolver, LinearCost) {
LinearCost cost(1, (Vector(3) << 2., 4., 6.).finished()); LinearCost cost(1, Vector3( 2., 4., 6.));
VectorValues x; VectorValues x;
x.insert(1, (Vector(3) << 1., 3., 5.).finished()); x.insert(1, Vector3( 1., 3., 5.));
double error = cost.error(x); double error = cost.error(x);
double expectedError = 44.0; double expectedError = 44.0;
DOUBLES_EQUAL(expectedError, error, 1e-100); DOUBLES_EQUAL(expectedError, error, 1e-100);