New constants for cross and doubleCross
parent
fa1249bf14
commit
e96d8487e4
|
@ -51,49 +51,51 @@ GTSAM_EXPORT Matrix3 compose(const Matrix3& M, const SO3& R,
|
|||
}
|
||||
|
||||
void ExpmapFunctor::init(bool nearZeroApprox) {
|
||||
WW = W * W;
|
||||
nearZero =
|
||||
nearZeroApprox || (theta2 <= std::numeric_limits<double>::epsilon());
|
||||
if (!nearZero) {
|
||||
sin_theta = std::sin(theta);
|
||||
const double s2 = std::sin(theta / 2.0);
|
||||
one_minus_cos = 2.0 * s2 * s2; // numerically better than [1 - cos(theta)]
|
||||
const double sin_theta = std::sin(theta);
|
||||
A = sin_theta / theta;
|
||||
const double s2 = std::sin(theta / 2.0);
|
||||
const double one_minus_cos =
|
||||
2.0 * s2 * s2; // numerically better than [1 - cos(theta)]
|
||||
B = one_minus_cos / theta2;
|
||||
} else {
|
||||
// Limits as theta -> 0:
|
||||
A = 1.0;
|
||||
B = 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
ExpmapFunctor::ExpmapFunctor(const Vector3& omega, bool nearZeroApprox)
|
||||
: theta2(omega.dot(omega)), theta(std::sqrt(theta2)) {
|
||||
const double wx = omega.x(), wy = omega.y(), wz = omega.z();
|
||||
W << 0.0, -wz, +wy, +wz, 0.0, -wx, -wy, +wx, 0.0;
|
||||
: theta2(omega.dot(omega)),
|
||||
theta(std::sqrt(theta2)),
|
||||
W(skewSymmetric(omega)),
|
||||
WW(W * W) {
|
||||
init(nearZeroApprox);
|
||||
}
|
||||
|
||||
ExpmapFunctor::ExpmapFunctor(const Vector3& axis, double angle,
|
||||
bool nearZeroApprox)
|
||||
: theta2(angle * angle), theta(angle) {
|
||||
const double ax = axis.x(), ay = axis.y(), az = axis.z();
|
||||
W << 0.0, -az, +ay, +az, 0.0, -ax, -ay, +ax, 0.0;
|
||||
W *= angle;
|
||||
: theta2(angle * angle),
|
||||
theta(angle),
|
||||
W(skewSymmetric(axis * angle)),
|
||||
WW(W * W) {
|
||||
init(nearZeroApprox);
|
||||
}
|
||||
|
||||
SO3 ExpmapFunctor::expmap() const {
|
||||
if (nearZero)
|
||||
return SO3(I_3x3 + W + 0.5 * WW);
|
||||
else
|
||||
return SO3(I_3x3 + A * W + B * WW);
|
||||
}
|
||||
SO3 ExpmapFunctor::expmap() const { return SO3(I_3x3 + A * W + B * WW); }
|
||||
|
||||
DexpFunctor::DexpFunctor(const Vector3& omega, bool nearZeroApprox)
|
||||
: ExpmapFunctor(omega, nearZeroApprox), omega(omega) {
|
||||
C = (1 - A) / theta2;
|
||||
C = nearZero ? one_sixth : (1 - A) / theta2;
|
||||
D = nearZero ? _one_twelfth : (A - 2.0 * B) / theta2;
|
||||
E = nearZero ? _one_sixtieth : (B - 3.0 * C) / theta2;
|
||||
}
|
||||
|
||||
Matrix3 DexpFunctor::rightJacobian() const {
|
||||
if (nearZero) {
|
||||
return I_3x3 - 0.5 * W; // + one_sixth * WW;
|
||||
return I_3x3 - B * W; // + C * WW;
|
||||
} else {
|
||||
return I_3x3 - B * W + C * WW;
|
||||
}
|
||||
|
@ -103,10 +105,10 @@ Vector3 DexpFunctor::cross(const Vector3& v, OptionalJacobian<3, 3> H) const {
|
|||
// Wv = omega x * v
|
||||
const Vector3 Wv = gtsam::cross(omega, v);
|
||||
if (H) {
|
||||
// 1x3 Jacobian of B with respect to omega
|
||||
const Matrix13 HB = (A - 2.0 * B) / theta2 * omega.transpose();
|
||||
// Apply product rule:
|
||||
*H = Wv * HB - B * skewSymmetric(v);
|
||||
// D * omega.transpose() is 1x3 Jacobian of B with respect to omega
|
||||
// - skewSymmetric(v) is 3x3 Jacobian of B gtsam::cross(omega, v)
|
||||
*H = Wv * D * omega.transpose() - B * skewSymmetric(v);
|
||||
}
|
||||
return B * Wv;
|
||||
}
|
||||
|
@ -118,10 +120,10 @@ Vector3 DexpFunctor::doubleCross(const Vector3& v,
|
|||
const Vector3 WWv =
|
||||
gtsam::doubleCross(omega, v, H ? &doubleCrossJacobian : nullptr);
|
||||
if (H) {
|
||||
// 1x3 Jacobian of C with respect to omega
|
||||
const Matrix13 HC = (B - 3.0 * C) / theta2 * omega.transpose();
|
||||
// Apply product rule:
|
||||
*H = WWv * HC + C * doubleCrossJacobian;
|
||||
// E * omega.transpose() is 1x3 Jacobian of C with respect to omega
|
||||
// doubleCrossJacobian is 3x3 Jacobian of C gtsam::doubleCross(omega, v)
|
||||
*H = WWv * E * omega.transpose() + C * doubleCrossJacobian;
|
||||
}
|
||||
return C * WWv;
|
||||
}
|
||||
|
@ -134,12 +136,12 @@ Vector3 DexpFunctor::applyDexp(const Vector3& v, OptionalJacobian<3, 3> H1,
|
|||
if (H2) *H2 = I_3x3 - 0.5 * W;
|
||||
return v - 0.5 * gtsam::cross(omega, v);
|
||||
} else {
|
||||
Matrix3 D_BWv_omega, D_CWWv_omega;
|
||||
Matrix3 D_BWv_omega, D_CWWv_omega;
|
||||
const Vector3 BWv = cross(v, D_BWv_omega);
|
||||
const Vector3 CWWv = doubleCross(v, D_CWWv_omega);
|
||||
if (H1) *H1 = - D_BWv_omega + D_CWWv_omega;
|
||||
if (H2) *H2 = rightJacobian();
|
||||
return v - BWv + CWWv;
|
||||
if (H2) *H2 = rightJacobian();
|
||||
return v - BWv + CWWv;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -219,12 +221,7 @@ SO3 SO3::ChordalMean(const std::vector<SO3>& rotations) {
|
|||
template <>
|
||||
GTSAM_EXPORT
|
||||
Matrix3 SO3::Hat(const Vector3& xi) {
|
||||
// skew symmetric matrix X = xi^
|
||||
Matrix3 Y = Z_3x3;
|
||||
Y(0, 1) = -xi(2);
|
||||
Y(0, 2) = +xi(1);
|
||||
Y(1, 2) = -xi(0);
|
||||
return Y - Y.transpose();
|
||||
return skewSymmetric(xi);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
|
@ -134,11 +134,12 @@ GTSAM_EXPORT Matrix99 Dcompose(const SO3& R);
|
|||
/// Functor implementing Exponential map
|
||||
class GTSAM_EXPORT ExpmapFunctor {
|
||||
protected:
|
||||
const double theta2;
|
||||
Matrix3 W, WW;
|
||||
double A, B; // Ethan Eade's constants
|
||||
const double theta2, theta;
|
||||
const Matrix3 W, WW;
|
||||
bool nearZero;
|
||||
double theta, sin_theta, one_minus_cos; // only defined if !nearZero
|
||||
// Ethan Eade's constants:
|
||||
double A; // A = sin(theta) / theta or 1 for theta->0
|
||||
double B; // B = (1 - cos(theta)) / theta^2 or 0.5 for theta->0
|
||||
|
||||
void init(bool nearZeroApprox = false);
|
||||
|
||||
|
@ -156,17 +157,19 @@ class GTSAM_EXPORT ExpmapFunctor {
|
|||
/// Functor that implements Exponential map *and* its derivatives
|
||||
class DexpFunctor : public ExpmapFunctor {
|
||||
protected:
|
||||
static constexpr double one_sixth = 1.0 / 6.0;
|
||||
const Vector3 omega;
|
||||
double C; // Ethan Eade's C constant
|
||||
double C; // Ethan's C constant: (1 - A) / theta^2 or 1/6 for theta->0
|
||||
// Constants used in cross and doubleCross
|
||||
double D; // (A - 2.0 * B) / theta2 or -1/12 for theta->0
|
||||
double E; // (B - 3.0 * C) / theta2 or -1/60 for theta->0
|
||||
|
||||
public:
|
||||
/// Computes B * (omega x v).
|
||||
Vector3 cross(const Vector3& v, OptionalJacobian<3, 3> H = {}) const;
|
||||
|
||||
/// Computes C * (omega x (omega x v)).
|
||||
Vector3 doubleCross(const Vector3& v, OptionalJacobian<3, 3> H = {}) const;
|
||||
|
||||
public:
|
||||
/// Constructor with element of Lie algebra so(3)
|
||||
GTSAM_EXPORT explicit DexpFunctor(const Vector3& omega,
|
||||
bool nearZeroApprox = false);
|
||||
|
@ -199,6 +202,11 @@ class DexpFunctor : public ExpmapFunctor {
|
|||
GTSAM_EXPORT Vector3 applyLeftJacobian(const Vector3& v,
|
||||
OptionalJacobian<3, 3> H1 = {},
|
||||
OptionalJacobian<3, 3> H2 = {}) const;
|
||||
|
||||
protected:
|
||||
static constexpr double one_sixth = 1.0 / 6.0;
|
||||
static constexpr double _one_twelfth = -1.0 / 12.0;
|
||||
static constexpr double _one_sixtieth = -1.0 / 60.0;
|
||||
};
|
||||
} // namespace so3
|
||||
|
||||
|
|
|
@ -303,19 +303,63 @@ TEST(SO3, JacobianLogmap) {
|
|||
EXPECT(assert_equal(Jexpected, Jactual));
|
||||
}
|
||||
|
||||
namespace test_cases {
|
||||
std::vector<Vector3> nearZeros{
|
||||
{0, 0, 0}, {1e-5, 0, 0}, {0, 1e-5, 0}, {0, 0, 1e-5}};
|
||||
std::vector<Vector3> omegas{
|
||||
{0, 0, 0}, {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.1, 0.2, 0.3}};
|
||||
std::vector<Vector3> vs{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}, {0.4, 0.3, 0.2}};
|
||||
} // namespace test_cases
|
||||
|
||||
//******************************************************************************
|
||||
TEST(SO3, Cross) {
|
||||
Matrix aH1;
|
||||
for (bool nearZero : {true, false}) {
|
||||
std::function<Vector3(const Vector3&, const Vector3&)> f =
|
||||
[=](const Vector3& omega, const Vector3& v) {
|
||||
return so3::DexpFunctor(omega, nearZero).cross(v);
|
||||
};
|
||||
const auto& omegas = nearZero ? test_cases::nearZeros : test_cases::omegas;
|
||||
for (Vector3 omega : omegas) {
|
||||
so3::DexpFunctor local(omega, nearZero);
|
||||
for (Vector3 v : test_cases::vs) {
|
||||
local.cross(v, aH1);
|
||||
EXPECT(assert_equal(numericalDerivative21(f, omega, v), aH1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(SO3, DoubleCross) {
|
||||
Matrix aH1;
|
||||
for (bool nearZero : {true, false}) {
|
||||
std::function<Vector3(const Vector3&, const Vector3&)> f =
|
||||
[=](const Vector3& omega, const Vector3& v) {
|
||||
return so3::DexpFunctor(omega, nearZero).doubleCross(v);
|
||||
};
|
||||
const auto& omegas = nearZero ? test_cases::nearZeros : test_cases::omegas;
|
||||
for (Vector3 omega : omegas) {
|
||||
so3::DexpFunctor local(omega, nearZero);
|
||||
for (Vector3 v : test_cases::vs) {
|
||||
local.doubleCross(v, aH1);
|
||||
EXPECT(assert_equal(numericalDerivative21(f, omega, v), aH1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(SO3, ApplyDexp) {
|
||||
Matrix aH1, aH2;
|
||||
for (bool nearZeroApprox : {true, false}) {
|
||||
for (bool nearZero : {true, false}) {
|
||||
std::function<Vector3(const Vector3&, const Vector3&)> f =
|
||||
[=](const Vector3& omega, const Vector3& v) {
|
||||
return so3::DexpFunctor(omega, nearZeroApprox).applyDexp(v);
|
||||
return so3::DexpFunctor(omega, nearZero).applyDexp(v);
|
||||
};
|
||||
for (Vector3 omega : {Vector3(0, 0, 0), Vector3(1, 0, 0), Vector3(0, 1, 0),
|
||||
Vector3(0, 0, 1), Vector3(0.1, 0.2, 0.3)}) {
|
||||
so3::DexpFunctor local(omega, nearZeroApprox);
|
||||
for (Vector3 v : {Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1),
|
||||
Vector3(0.4, 0.3, 0.2)}) {
|
||||
for (Vector3 omega : test_cases::omegas) {
|
||||
so3::DexpFunctor local(omega, nearZero);
|
||||
for (Vector3 v : test_cases::vs) {
|
||||
EXPECT(assert_equal(Vector3(local.dexp() * v),
|
||||
local.applyDexp(v, aH1, aH2)));
|
||||
EXPECT(assert_equal(numericalDerivative21(f, omega, v), aH1));
|
||||
|
@ -329,18 +373,16 @@ TEST(SO3, ApplyDexp) {
|
|||
//******************************************************************************
|
||||
TEST(SO3, ApplyLeftJacobian) {
|
||||
Matrix aH1, aH2;
|
||||
for (bool nearZeroApprox : {false, true}) {
|
||||
for (bool nearZero : {true, false}) {
|
||||
std::function<Vector3(const Vector3&, const Vector3&)> f =
|
||||
[=](const Vector3& omega, const Vector3& v) {
|
||||
return so3::DexpFunctor(omega, nearZeroApprox).applyLeftJacobian(v);
|
||||
return so3::DexpFunctor(omega, nearZero).applyLeftJacobian(v);
|
||||
};
|
||||
for (Vector3 omega : {Vector3(0, 0, 0), Vector3(1, 0, 0), Vector3(0, 1, 0),
|
||||
Vector3(0, 0, 1), Vector3(0.1, 0.2, 0.3)}) {
|
||||
so3::DexpFunctor local(omega, nearZeroApprox);
|
||||
for (Vector3 v : {Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1),
|
||||
Vector3(0.4, 0.3, 0.2)}) {
|
||||
for (Vector3 omega : test_cases::omegas) {
|
||||
so3::DexpFunctor local(omega, nearZero);
|
||||
for (Vector3 v : test_cases::vs) {
|
||||
CHECK(assert_equal(Vector3(local.leftJacobian() * v),
|
||||
local.applyLeftJacobian(v, aH1, aH2)));
|
||||
local.applyLeftJacobian(v, aH1, aH2)));
|
||||
CHECK(assert_equal(numericalDerivative21(f, omega, v), aH1));
|
||||
CHECK(assert_equal(numericalDerivative22(f, omega, v), aH2));
|
||||
CHECK(assert_equal(local.leftJacobian(), aH2));
|
||||
|
@ -352,17 +394,15 @@ TEST(SO3, ApplyLeftJacobian) {
|
|||
//******************************************************************************
|
||||
TEST(SO3, ApplyInvDexp) {
|
||||
Matrix aH1, aH2;
|
||||
for (bool nearZeroApprox : {true, false}) {
|
||||
for (bool nearZero : {true, false}) {
|
||||
std::function<Vector3(const Vector3&, const Vector3&)> f =
|
||||
[=](const Vector3& omega, const Vector3& v) {
|
||||
return so3::DexpFunctor(omega, nearZeroApprox).applyInvDexp(v);
|
||||
return so3::DexpFunctor(omega, nearZero).applyInvDexp(v);
|
||||
};
|
||||
for (Vector3 omega : {Vector3(0, 0, 0), Vector3(1, 0, 0), Vector3(0, 1, 0),
|
||||
Vector3(0, 0, 1), Vector3(0.1, 0.2, 0.3)}) {
|
||||
so3::DexpFunctor local(omega, nearZeroApprox);
|
||||
for (Vector3 omega : test_cases::omegas) {
|
||||
so3::DexpFunctor local(omega, nearZero);
|
||||
Matrix invDexp = local.dexp().inverse();
|
||||
for (Vector3 v : {Vector3(1, 0, 0), Vector3(0, 1, 0), Vector3(0, 0, 1),
|
||||
Vector3(0.4, 0.3, 0.2)}) {
|
||||
for (Vector3 v : test_cases::vs) {
|
||||
EXPECT(assert_equal(Vector3(invDexp * v),
|
||||
local.applyInvDexp(v, aH1, aH2)));
|
||||
EXPECT(assert_equal(numericalDerivative21(f, omega, v), aH1));
|
||||
|
|
Loading…
Reference in New Issue