added timing instrumentation
parent
850c9560d9
commit
e7562ac07f
|
@ -158,10 +158,16 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
const F& f, const VALUES& x0, const Ordering& ordering, const double f_error, const bool verbose) {
|
||||
|
||||
// Compute steepest descent and Newton's method points
|
||||
tic(0, "Steepest Descent");
|
||||
VectorValues dx_u = ComputeSteepestDescentPoint(Rd);
|
||||
toc(0, "Steepest Descent");
|
||||
tic(1, "optimize");
|
||||
VectorValues dx_n = optimize(Rd);
|
||||
toc(1, "optimize");
|
||||
tic(2, "jfg error");
|
||||
const GaussianFactorGraph jfg(Rd);
|
||||
const double M_error = jfg.error(VectorValues::Zero(dx_u));
|
||||
toc(2, "jfg error");
|
||||
|
||||
// Result to return
|
||||
IterationResult result;
|
||||
|
@ -169,19 +175,27 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
bool stay = true;
|
||||
enum { NONE, INCREASED_DELTA, DECREASED_DELTA } lastAction; // Used to prevent alternating between increasing and decreasing in one iteration
|
||||
while(stay) {
|
||||
tic(3, "Dog leg point");
|
||||
// Compute dog leg point
|
||||
result.dx_d = ComputeDoglegPoint(Delta, dx_u, dx_n, verbose);
|
||||
toc(3, "Dog leg point");
|
||||
|
||||
if(verbose) cout << "Delta = " << Delta << ", dx_d_norm = " << result.dx_d.vector().norm() << endl;
|
||||
|
||||
tic(4, "retract");
|
||||
// Compute expmapped solution
|
||||
const VALUES x_d(x0.retract(result.dx_d, ordering));
|
||||
toc(4, "retract");
|
||||
|
||||
tic(5, "decrease in f");
|
||||
// Compute decrease in f
|
||||
result.f_error = f.error(x_d);
|
||||
toc(5, "decrease in f");
|
||||
|
||||
tic(6, "decrease in M");
|
||||
// Compute decrease in M
|
||||
const double new_M_error = jfg.error(result.dx_d);
|
||||
toc(6, "decrease in M");
|
||||
|
||||
if(verbose) cout << "f error: " << f_error << " -> " << result.f_error << endl;
|
||||
if(verbose) cout << "M error: " << M_error << " -> " << new_M_error << endl;
|
||||
|
@ -195,6 +209,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
if(verbose) cout << "rho = " << rho << endl;
|
||||
|
||||
if(rho >= 0.75) {
|
||||
tic(7, "Rho >= 0.75");
|
||||
// M agrees very well with f, so try to increase lambda
|
||||
const double dx_d_norm = result.dx_d.vector().norm();
|
||||
const double newDelta = std::max(Delta, 3.0 * dx_d_norm); // Compute new Delta
|
||||
|
@ -212,12 +227,14 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
assert(false); }
|
||||
|
||||
Delta = newDelta; // Update Delta from new Delta
|
||||
toc(7, "Rho >= 0.75");
|
||||
|
||||
} else if(0.75 > rho && rho >= 0.25) {
|
||||
// M agrees so-so with f, keep the same Delta
|
||||
stay = false;
|
||||
|
||||
} else if(0.25 > rho && rho >= 0.0) {
|
||||
tic(8, "0.25 > Rho >= 0.75");
|
||||
// M does not agree well with f, decrease Delta until it does
|
||||
double newDelta;
|
||||
if(Delta > 1e-5)
|
||||
|
@ -233,9 +250,11 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
assert(false); }
|
||||
|
||||
Delta = newDelta; // Update Delta from new Delta
|
||||
toc(8, "0.25 > Rho >= 0.75");
|
||||
}
|
||||
|
||||
else {
|
||||
tic(9, "Rho < 0");
|
||||
// f actually increased, so keep decreasing Delta until f does not decrease
|
||||
assert(0.0 > rho);
|
||||
if(Delta > 1e-5) {
|
||||
|
@ -246,6 +265,7 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
if(verbose) cout << "Warning: Dog leg stopping because cannot decrease error with minimum Delta" << endl;
|
||||
stay = false;
|
||||
}
|
||||
toc(9, "Rho < 0");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -258,20 +278,28 @@ typename DoglegOptimizerImpl::IterationResult DoglegOptimizerImpl::Iterate(
|
|||
template<class M>
|
||||
VectorValues DoglegOptimizerImpl::ComputeSteepestDescentPoint(const M& Rd) {
|
||||
|
||||
tic(0, "Compute Gradient");
|
||||
// Compute gradient (call gradientAtZero function, which is defined for various linear systems)
|
||||
VectorValues grad = *allocateVectorValues(Rd);
|
||||
gradientAtZero(Rd, grad);
|
||||
double gradientSqNorm = grad.dot(grad);
|
||||
toc(0, "Compute Gradient");
|
||||
|
||||
tic(1, "Compute R*g");
|
||||
// Compute R * g
|
||||
FactorGraph<JacobianFactor> Rd_jfg(Rd);
|
||||
Errors Rg = Rd_jfg * grad;
|
||||
toc(1, "Compute R*g");
|
||||
|
||||
tic(2, "Compute minimizing step size");
|
||||
// Compute minimizing step size
|
||||
double step = -gradientSqNorm / dot(Rg, Rg);
|
||||
toc(2, "Compute minimizing step size");
|
||||
|
||||
tic(3, "Compute point");
|
||||
// Compute steepest descent point
|
||||
scal(step, grad);
|
||||
toc(3, "Compute point");
|
||||
return grad;
|
||||
}
|
||||
|
||||
|
|
|
@ -559,8 +559,10 @@ ISAM2Result ISAM2<CONDITIONAL, VALUES, GRAPH>::update(
|
|||
const ISAM2DoglegParams& doglegParams =
|
||||
boost::get<ISAM2DoglegParams>(params_.optimizationParams);
|
||||
// Do one Dogleg iteration
|
||||
tic(1, "Dogleg Iterate");
|
||||
DoglegOptimizerImpl::IterationResult doglegResult = DoglegOptimizerImpl::Iterate(
|
||||
*doglegDelta_, doglegParams.adaptationMode, *this, nonlinearFactors_, theta_, ordering_, nonlinearFactors_.error(theta_), doglegParams.verbose);
|
||||
toc(1, "Dogleg Iterate");
|
||||
// Update Delta and linear step
|
||||
doglegDelta_ = doglegResult.Delta;
|
||||
delta_.permutation() = Permutation::Identity(delta_.size()); // Dogleg solves for the full delta so there is no permutation
|
||||
|
|
Loading…
Reference in New Issue