rotate and color 3D covariance ellipses for visual SLAM example with Frank
parent
5d8f287e6e
commit
e6a0663540
|
|
@ -28,17 +28,17 @@ points = {gtsamPoint3([10 10 10]'),...
|
|||
gtsamPoint3([10 -10 -10]')};
|
||||
|
||||
% Camera poses on a circle around the cube, pointing at the world origin
|
||||
nCameras = 8;
|
||||
nCameras = 4;
|
||||
r = 30;
|
||||
poses = {};
|
||||
for i=1:nCameras
|
||||
theta = i*2*pi/nCameras;
|
||||
posei = gtsamPose3(...
|
||||
theta = (i-1)*2*pi/nCameras;
|
||||
pose_i = gtsamPose3(...
|
||||
gtsamRot3([-sin(theta) 0 -cos(theta);
|
||||
cos(theta) 0 -sin(theta);
|
||||
0 -1 0]),...
|
||||
gtsamPoint3([r*cos(theta), r*sin(theta), 0]'));
|
||||
poses = [poses {posei}];
|
||||
poses = [poses {pose_i}];
|
||||
end
|
||||
|
||||
% 2D visual measurements, simulated with Gaussian noise
|
||||
|
|
@ -61,8 +61,6 @@ pointNoiseSampler = gtsamSharedDiagonal(pointNoiseSigmas);
|
|||
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
||||
poseNoiseSampler = gtsamSharedDiagonal(poseNoiseSigmas);
|
||||
|
||||
hold off;
|
||||
|
||||
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
||||
graph = visualSLAMGraph;
|
||||
|
||||
|
|
@ -74,11 +72,17 @@ for i=1:size(z,1)
|
|||
end
|
||||
end
|
||||
|
||||
%% Add Gaussian priors for a pose and a landmark to constraint the system
|
||||
posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
|
||||
graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
|
||||
%% Add Gaussian priors for a pose and a landmark to constrain the system
|
||||
% posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
|
||||
% graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
|
||||
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||
graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise);
|
||||
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||
graph.addPointPrior(symbol('l',8), points{8}, pointPriorNoise);
|
||||
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||
graph.addPointPrior(symbol('l',5), points{5}, pointPriorNoise);
|
||||
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||
graph.addPointPrior(symbol('l',4), points{4}, pointPriorNoise);
|
||||
|
||||
%% Print the graph
|
||||
graph.print(sprintf('\nFactor graph:\n'));
|
||||
|
|
@ -101,6 +105,7 @@ result.print(sprintf('\nFinal result:\n '));
|
|||
marginals = graph.marginals(result);
|
||||
|
||||
%% Plot results with covariance ellipses
|
||||
figure(1);clf
|
||||
hold on;
|
||||
for j=1:size(points,2)
|
||||
P = marginals.marginalCovariance(symbol('l',j));
|
||||
|
|
@ -110,10 +115,9 @@ for j=1:size(points,2)
|
|||
end
|
||||
|
||||
for i=1:size(poses,2)
|
||||
P = marginals.marginalCovariance(symbol('x',i));
|
||||
posei = result.pose(symbol('x',i))
|
||||
plotCamera(posei,10);
|
||||
posei_t = posei.translation()
|
||||
covarianceEllipse3D([posei_t.x;posei_t.y;posei_t.z],P(4:6,4:6));
|
||||
P = marginals.marginalCovariance(symbol('x',i))
|
||||
pose_i = result.pose(symbol('x',i))
|
||||
plotPose3(pose_i,P,10);
|
||||
end
|
||||
axis equal
|
||||
|
||||
|
|
|
|||
|
|
@ -6,7 +6,7 @@ function covarianceEllipse3D(c,P)
|
|||
%
|
||||
% Modified from http://www.mathworks.com/matlabcentral/newsreader/view_thread/42966
|
||||
|
||||
[e,s] = eig(P);
|
||||
[e,s] = svd(P);
|
||||
k = 11.82;
|
||||
radii = k*sqrt(diag(s));
|
||||
|
||||
|
|
@ -16,10 +16,12 @@ radii = k*sqrt(diag(s));
|
|||
% rotate data with orientation matrix U and center M
|
||||
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
|
||||
n = size(data,2);
|
||||
x = data(1:n,:)+c(1); y = data(n+1:2*n,:)+c(2); z = data(2*n+1:end,:)+c(3);
|
||||
x = data(1:n,:)+c(1);
|
||||
y = data(n+1:2*n,:)+c(2);
|
||||
z = data(2*n+1:end,:)+c(3);
|
||||
|
||||
% now plot the rotated ellipse
|
||||
sc = mesh(x,y,z);
|
||||
sc = mesh(x,y,z,abs(xc));
|
||||
shading interp
|
||||
alpha(0.5)
|
||||
axis equal
|
||||
|
|
@ -0,0 +1,29 @@
|
|||
function plotPose3(pose, P, axisLength)
|
||||
% plotPose3: show a Pose, possibly with covariance matrix
|
||||
if nargin<3,axisLength=0.1;end
|
||||
|
||||
% get rotation and translation (center)
|
||||
gRp = pose.rotation().matrix(); % rotation from pose to global
|
||||
C = pose.translation().vector();
|
||||
|
||||
% draw the camera axes
|
||||
xAxis = C+gRp(:,1)*axisLength;
|
||||
L = [C xAxis]';
|
||||
line(L(:,1),L(:,2),L(:,3),'Color','r');
|
||||
|
||||
yAxis = C+gRp(:,2)*axisLength;
|
||||
L = [C yAxis]';
|
||||
line(L(:,1),L(:,2),L(:,3),'Color','g');
|
||||
|
||||
zAxis = C+gRp(:,3)*axisLength;
|
||||
L = [C zAxis]';
|
||||
line(L(:,1),L(:,2),L(:,3),'Color','b');
|
||||
|
||||
% plot the covariance
|
||||
if nargin>2
|
||||
pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
|
||||
gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
|
||||
covarianceEllipse3D(C,gPp);
|
||||
end
|
||||
|
||||
end
|
||||
Loading…
Reference in New Issue