rotate and color 3D covariance ellipses for visual SLAM example with Frank

release/4.3a0
Duy-Nguyen Ta 2012-06-05 23:51:12 +00:00
parent 5d8f287e6e
commit e6a0663540
3 changed files with 52 additions and 17 deletions

View File

@ -28,17 +28,17 @@ points = {gtsamPoint3([10 10 10]'),...
gtsamPoint3([10 -10 -10]')}; gtsamPoint3([10 -10 -10]')};
% Camera poses on a circle around the cube, pointing at the world origin % Camera poses on a circle around the cube, pointing at the world origin
nCameras = 8; nCameras = 4;
r = 30; r = 30;
poses = {}; poses = {};
for i=1:nCameras for i=1:nCameras
theta = i*2*pi/nCameras; theta = (i-1)*2*pi/nCameras;
posei = gtsamPose3(... pose_i = gtsamPose3(...
gtsamRot3([-sin(theta) 0 -cos(theta); gtsamRot3([-sin(theta) 0 -cos(theta);
cos(theta) 0 -sin(theta); cos(theta) 0 -sin(theta);
0 -1 0]),... 0 -1 0]),...
gtsamPoint3([r*cos(theta), r*sin(theta), 0]')); gtsamPoint3([r*cos(theta), r*sin(theta), 0]'));
poses = [poses {posei}]; poses = [poses {pose_i}];
end end
% 2D visual measurements, simulated with Gaussian noise % 2D visual measurements, simulated with Gaussian noise
@ -61,8 +61,6 @@ pointNoiseSampler = gtsamSharedDiagonal(pointNoiseSigmas);
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]'; poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
poseNoiseSampler = gtsamSharedDiagonal(poseNoiseSigmas); poseNoiseSampler = gtsamSharedDiagonal(poseNoiseSigmas);
hold off;
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph) %% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
graph = visualSLAMGraph; graph = visualSLAMGraph;
@ -74,11 +72,17 @@ for i=1:size(z,1)
end end
end end
%% Add Gaussian priors for a pose and a landmark to constraint the system %% Add Gaussian priors for a pose and a landmark to constrain the system
posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas); % posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise); % graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas); pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise); graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise);
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
graph.addPointPrior(symbol('l',8), points{8}, pointPriorNoise);
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
graph.addPointPrior(symbol('l',5), points{5}, pointPriorNoise);
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
graph.addPointPrior(symbol('l',4), points{4}, pointPriorNoise);
%% Print the graph %% Print the graph
graph.print(sprintf('\nFactor graph:\n')); graph.print(sprintf('\nFactor graph:\n'));
@ -101,6 +105,7 @@ result.print(sprintf('\nFinal result:\n '));
marginals = graph.marginals(result); marginals = graph.marginals(result);
%% Plot results with covariance ellipses %% Plot results with covariance ellipses
figure(1);clf
hold on; hold on;
for j=1:size(points,2) for j=1:size(points,2)
P = marginals.marginalCovariance(symbol('l',j)); P = marginals.marginalCovariance(symbol('l',j));
@ -110,10 +115,9 @@ for j=1:size(points,2)
end end
for i=1:size(poses,2) for i=1:size(poses,2)
P = marginals.marginalCovariance(symbol('x',i)); P = marginals.marginalCovariance(symbol('x',i))
posei = result.pose(symbol('x',i)) pose_i = result.pose(symbol('x',i))
plotCamera(posei,10); plotPose3(pose_i,P,10);
posei_t = posei.translation()
covarianceEllipse3D([posei_t.x;posei_t.y;posei_t.z],P(4:6,4:6));
end end
axis equal

View File

@ -6,7 +6,7 @@ function covarianceEllipse3D(c,P)
% %
% Modified from http://www.mathworks.com/matlabcentral/newsreader/view_thread/42966 % Modified from http://www.mathworks.com/matlabcentral/newsreader/view_thread/42966
[e,s] = eig(P); [e,s] = svd(P);
k = 11.82; k = 11.82;
radii = k*sqrt(diag(s)); radii = k*sqrt(diag(s));
@ -16,10 +16,12 @@ radii = k*sqrt(diag(s));
% rotate data with orientation matrix U and center M % rotate data with orientation matrix U and center M
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc); data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
n = size(data,2); n = size(data,2);
x = data(1:n,:)+c(1); y = data(n+1:2*n,:)+c(2); z = data(2*n+1:end,:)+c(3); x = data(1:n,:)+c(1);
y = data(n+1:2*n,:)+c(2);
z = data(2*n+1:end,:)+c(3);
% now plot the rotated ellipse % now plot the rotated ellipse
sc = mesh(x,y,z); sc = mesh(x,y,z,abs(xc));
shading interp shading interp
alpha(0.5) alpha(0.5)
axis equal axis equal

View File

@ -0,0 +1,29 @@
function plotPose3(pose, P, axisLength)
% plotPose3: show a Pose, possibly with covariance matrix
if nargin<3,axisLength=0.1;end
% get rotation and translation (center)
gRp = pose.rotation().matrix(); % rotation from pose to global
C = pose.translation().vector();
% draw the camera axes
xAxis = C+gRp(:,1)*axisLength;
L = [C xAxis]';
line(L(:,1),L(:,2),L(:,3),'Color','r');
yAxis = C+gRp(:,2)*axisLength;
L = [C yAxis]';
line(L(:,1),L(:,2),L(:,3),'Color','g');
zAxis = C+gRp(:,3)*axisLength;
L = [C zAxis]';
line(L(:,1),L(:,2),L(:,3),'Color','b');
% plot the covariance
if nargin>2
pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
covarianceEllipse3D(C,gPp);
end
end