rotate and color 3D covariance ellipses for visual SLAM example with Frank
parent
5d8f287e6e
commit
e6a0663540
|
|
@ -28,17 +28,17 @@ points = {gtsamPoint3([10 10 10]'),...
|
||||||
gtsamPoint3([10 -10 -10]')};
|
gtsamPoint3([10 -10 -10]')};
|
||||||
|
|
||||||
% Camera poses on a circle around the cube, pointing at the world origin
|
% Camera poses on a circle around the cube, pointing at the world origin
|
||||||
nCameras = 8;
|
nCameras = 4;
|
||||||
r = 30;
|
r = 30;
|
||||||
poses = {};
|
poses = {};
|
||||||
for i=1:nCameras
|
for i=1:nCameras
|
||||||
theta = i*2*pi/nCameras;
|
theta = (i-1)*2*pi/nCameras;
|
||||||
posei = gtsamPose3(...
|
pose_i = gtsamPose3(...
|
||||||
gtsamRot3([-sin(theta) 0 -cos(theta);
|
gtsamRot3([-sin(theta) 0 -cos(theta);
|
||||||
cos(theta) 0 -sin(theta);
|
cos(theta) 0 -sin(theta);
|
||||||
0 -1 0]),...
|
0 -1 0]),...
|
||||||
gtsamPoint3([r*cos(theta), r*sin(theta), 0]'));
|
gtsamPoint3([r*cos(theta), r*sin(theta), 0]'));
|
||||||
poses = [poses {posei}];
|
poses = [poses {pose_i}];
|
||||||
end
|
end
|
||||||
|
|
||||||
% 2D visual measurements, simulated with Gaussian noise
|
% 2D visual measurements, simulated with Gaussian noise
|
||||||
|
|
@ -61,8 +61,6 @@ pointNoiseSampler = gtsamSharedDiagonal(pointNoiseSigmas);
|
||||||
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
poseNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1]';
|
||||||
poseNoiseSampler = gtsamSharedDiagonal(poseNoiseSigmas);
|
poseNoiseSampler = gtsamSharedDiagonal(poseNoiseSigmas);
|
||||||
|
|
||||||
hold off;
|
|
||||||
|
|
||||||
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
||||||
graph = visualSLAMGraph;
|
graph = visualSLAMGraph;
|
||||||
|
|
||||||
|
|
@ -74,11 +72,17 @@ for i=1:size(z,1)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
%% Add Gaussian priors for a pose and a landmark to constraint the system
|
%% Add Gaussian priors for a pose and a landmark to constrain the system
|
||||||
posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
|
% posePriorNoise = gtsamSharedNoiseModel_Sigmas(poseNoiseSigmas);
|
||||||
graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
|
% graph.addPosePrior(symbol('x',1), poses{1}, posePriorNoise);
|
||||||
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||||
graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise);
|
graph.addPointPrior(symbol('l',1), points{1}, pointPriorNoise);
|
||||||
|
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||||
|
graph.addPointPrior(symbol('l',8), points{8}, pointPriorNoise);
|
||||||
|
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||||
|
graph.addPointPrior(symbol('l',5), points{5}, pointPriorNoise);
|
||||||
|
pointPriorNoise = gtsamSharedNoiseModel_Sigmas(pointNoiseSigmas);
|
||||||
|
graph.addPointPrior(symbol('l',4), points{4}, pointPriorNoise);
|
||||||
|
|
||||||
%% Print the graph
|
%% Print the graph
|
||||||
graph.print(sprintf('\nFactor graph:\n'));
|
graph.print(sprintf('\nFactor graph:\n'));
|
||||||
|
|
@ -101,6 +105,7 @@ result.print(sprintf('\nFinal result:\n '));
|
||||||
marginals = graph.marginals(result);
|
marginals = graph.marginals(result);
|
||||||
|
|
||||||
%% Plot results with covariance ellipses
|
%% Plot results with covariance ellipses
|
||||||
|
figure(1);clf
|
||||||
hold on;
|
hold on;
|
||||||
for j=1:size(points,2)
|
for j=1:size(points,2)
|
||||||
P = marginals.marginalCovariance(symbol('l',j));
|
P = marginals.marginalCovariance(symbol('l',j));
|
||||||
|
|
@ -110,10 +115,9 @@ for j=1:size(points,2)
|
||||||
end
|
end
|
||||||
|
|
||||||
for i=1:size(poses,2)
|
for i=1:size(poses,2)
|
||||||
P = marginals.marginalCovariance(symbol('x',i));
|
P = marginals.marginalCovariance(symbol('x',i))
|
||||||
posei = result.pose(symbol('x',i))
|
pose_i = result.pose(symbol('x',i))
|
||||||
plotCamera(posei,10);
|
plotPose3(pose_i,P,10);
|
||||||
posei_t = posei.translation()
|
|
||||||
covarianceEllipse3D([posei_t.x;posei_t.y;posei_t.z],P(4:6,4:6));
|
|
||||||
end
|
end
|
||||||
|
axis equal
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -6,7 +6,7 @@ function covarianceEllipse3D(c,P)
|
||||||
%
|
%
|
||||||
% Modified from http://www.mathworks.com/matlabcentral/newsreader/view_thread/42966
|
% Modified from http://www.mathworks.com/matlabcentral/newsreader/view_thread/42966
|
||||||
|
|
||||||
[e,s] = eig(P);
|
[e,s] = svd(P);
|
||||||
k = 11.82;
|
k = 11.82;
|
||||||
radii = k*sqrt(diag(s));
|
radii = k*sqrt(diag(s));
|
||||||
|
|
||||||
|
|
@ -16,10 +16,12 @@ radii = k*sqrt(diag(s));
|
||||||
% rotate data with orientation matrix U and center M
|
% rotate data with orientation matrix U and center M
|
||||||
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
|
data = kron(e(:,1),xc) + kron(e(:,2),yc) + kron(e(:,3),zc);
|
||||||
n = size(data,2);
|
n = size(data,2);
|
||||||
x = data(1:n,:)+c(1); y = data(n+1:2*n,:)+c(2); z = data(2*n+1:end,:)+c(3);
|
x = data(1:n,:)+c(1);
|
||||||
|
y = data(n+1:2*n,:)+c(2);
|
||||||
|
z = data(2*n+1:end,:)+c(3);
|
||||||
|
|
||||||
% now plot the rotated ellipse
|
% now plot the rotated ellipse
|
||||||
sc = mesh(x,y,z);
|
sc = mesh(x,y,z,abs(xc));
|
||||||
shading interp
|
shading interp
|
||||||
alpha(0.5)
|
alpha(0.5)
|
||||||
axis equal
|
axis equal
|
||||||
|
|
@ -0,0 +1,29 @@
|
||||||
|
function plotPose3(pose, P, axisLength)
|
||||||
|
% plotPose3: show a Pose, possibly with covariance matrix
|
||||||
|
if nargin<3,axisLength=0.1;end
|
||||||
|
|
||||||
|
% get rotation and translation (center)
|
||||||
|
gRp = pose.rotation().matrix(); % rotation from pose to global
|
||||||
|
C = pose.translation().vector();
|
||||||
|
|
||||||
|
% draw the camera axes
|
||||||
|
xAxis = C+gRp(:,1)*axisLength;
|
||||||
|
L = [C xAxis]';
|
||||||
|
line(L(:,1),L(:,2),L(:,3),'Color','r');
|
||||||
|
|
||||||
|
yAxis = C+gRp(:,2)*axisLength;
|
||||||
|
L = [C yAxis]';
|
||||||
|
line(L(:,1),L(:,2),L(:,3),'Color','g');
|
||||||
|
|
||||||
|
zAxis = C+gRp(:,3)*axisLength;
|
||||||
|
L = [C zAxis]';
|
||||||
|
line(L(:,1),L(:,2),L(:,3),'Color','b');
|
||||||
|
|
||||||
|
% plot the covariance
|
||||||
|
if nargin>2
|
||||||
|
pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
|
||||||
|
gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
|
||||||
|
covarianceEllipse3D(C,gPp);
|
||||||
|
end
|
||||||
|
|
||||||
|
end
|
||||||
Loading…
Reference in New Issue