replace errorConstant with negLogConstant

release/4.3a0
Varun Agrawal 2024-09-23 03:37:09 -04:00
parent aae5f9e040
commit e09344c6ba
21 changed files with 46 additions and 46 deletions

View File

@ -467,7 +467,7 @@ double DiscreteConditional::evaluate(const HybridValues& x) const {
}
/* ************************************************************************* */
double DiscreteConditional::errorConstant() const {
double DiscreteConditional::negLogConstant() const {
return 0.0;
}

View File

@ -264,12 +264,12 @@ class GTSAM_EXPORT DiscreteConditional
}
/**
* errorConstant is just zero, such that
* logProbability(x) = log(evaluate(x)) = - error(x)
* and hence error(x) = - log(evaluate(x)) > 0 for all x.
* negLogConstant is just zero, such that
* -logProbability(x) = -log(evaluate(x)) = error(x)
* and hence error(x) > 0 for all x.
* Thus -log(K) for the normalization constant k is 0.
*/
double errorConstant() const override;
double negLogConstant() const override;
/// @}

View File

@ -112,7 +112,7 @@ virtual class DiscreteConditional : gtsam::DecisionTreeFactor {
const std::vector<double>& table);
// Standard interface
double errorConstant() const;
double negLogConstant() const;
double logNormalizationConstant() const;
double logProbability(const gtsam::DiscreteValues& values) const;
double evaluate(const gtsam::DiscreteValues& values) const;

View File

@ -161,18 +161,18 @@ double HybridConditional::logProbability(const HybridValues &values) const {
}
/* ************************************************************************ */
double HybridConditional::errorConstant() const {
double HybridConditional::negLogConstant() const {
if (auto gc = asGaussian()) {
return gc->errorConstant();
return gc->negLogConstant();
}
if (auto gm = asHybrid()) {
return gm->errorConstant(); // 0.0!
return gm->negLogConstant(); // 0.0!
}
if (auto dc = asDiscrete()) {
return dc->errorConstant(); // 0.0!
return dc->negLogConstant(); // 0.0!
}
throw std::runtime_error(
"HybridConditional::errorConstant: conditional type not handled");
"HybridConditional::negLogConstant: conditional type not handled");
}
/* ************************************************************************ */

View File

@ -194,11 +194,11 @@ class GTSAM_EXPORT HybridConditional
/**
* Return the negative log of the normalization constant.
* This shows up in the error as -(error(x) + errorConstant)
* This shows up in the error as -(error(x) + negLogConstant)
* Note this is 0.0 for discrete and hybrid conditionals, but depends
* on the continuous parameters for Gaussian conditionals.
*/
double errorConstant() const override;
double negLogConstant() const override;
/// Return the probability (or density) of the underlying conditional.
double evaluate(const HybridValues& values) const override;

View File

@ -36,7 +36,7 @@ HybridGaussianFactor::FactorValuePairs GetFactorValuePairs(
// Check if conditional is pruned
if (conditional) {
// Assign log(\sqrt(|2πΣ|)) = -log(1 / sqrt(|2πΣ|))
value = conditional->errorConstant();
value = conditional->negLogConstant();
}
return {std::dynamic_pointer_cast<GaussianFactor>(conditional), value};
};
@ -58,7 +58,7 @@ HybridGaussianConditional::HybridGaussianConditional(
[this](const GaussianConditional::shared_ptr &conditional) {
if (conditional) {
this->logConstant_ =
std::min(this->logConstant_, conditional->errorConstant());
std::min(this->logConstant_, conditional->negLogConstant());
}
});
}
@ -84,7 +84,7 @@ GaussianFactorGraphTree HybridGaussianConditional::asGaussianFactorGraphTree()
auto wrap = [this](const GaussianConditional::shared_ptr &gc) {
// First check if conditional has not been pruned
if (gc) {
const double Cgm_Kgcm = gc->errorConstant() - this->logConstant_;
const double Cgm_Kgcm = gc->negLogConstant() - this->logConstant_;
// If there is a difference in the covariances, we need to account for
// that since the error is dependent on the mode.
if (Cgm_Kgcm > 0.0) {
@ -214,7 +214,7 @@ std::shared_ptr<HybridGaussianFactor> HybridGaussianConditional::likelihood(
[&](const GaussianConditional::shared_ptr &conditional)
-> GaussianFactorValuePair {
const auto likelihood_m = conditional->likelihood(given);
const double Cgm_Kgcm = conditional->errorConstant() - logConstant_;
const double Cgm_Kgcm = conditional->negLogConstant() - logConstant_;
if (Cgm_Kgcm == 0.0) {
return {likelihood_m, 0.0};
} else {

View File

@ -158,7 +158,7 @@ class GTSAM_EXPORT HybridGaussianConditional
*
* @return double
*/
inline double errorConstant() const override { return logConstant_; }
inline double negLogConstant() const override { return logConstant_; }
/**
* Create a likelihood factor for a hybrid Gaussian conditional,

View File

@ -329,9 +329,9 @@ static std::shared_ptr<Factor> createDiscreteFactor(
// Logspace version of:
// exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
// errorConstant gives `-log(k)`
// negLogConstant gives `-log(k)`
// which is `-log(k) = log(1/k) = log(\sqrt{|2πΣ|})`.
return -factor->error(kEmpty) + conditional->errorConstant();
return -factor->error(kEmpty) + conditional->negLogConstant();
};
AlgebraicDecisionTree<Key> logProbabilities(
@ -357,7 +357,7 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
// Add 2.0 term since the constant term will be premultiplied by 0.5
// as per the Hessian definition,
// and negative since we want log(k)
hf->constantTerm() += -2.0 * conditional->errorConstant();
hf->constantTerm() += -2.0 * conditional->negLogConstant();
}
return {factor, 0.0};
};

View File

@ -61,7 +61,7 @@ virtual class HybridConditional {
size_t nrParents() const;
// Standard interface:
double errorConstant() const;
double negLogConstant() const;
double logNormalizationConstant() const;
double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const;

View File

@ -180,16 +180,16 @@ TEST(HybridGaussianConditional, Error2) {
// Check result.
DiscreteKeys discrete_keys{mode};
double errorConstant0 = conditionals[0]->errorConstant();
double errorConstant1 = conditionals[1]->errorConstant();
double minErrorConstant = std::min(errorConstant0, errorConstant1);
double negLogConstant0 = conditionals[0]->negLogConstant();
double negLogConstant1 = conditionals[1]->negLogConstant();
double minErrorConstant = std::min(negLogConstant0, negLogConstant1);
// Expected error is e(X) + log(sqrt(|2πΣ|)).
// We normalize log(sqrt(|2πΣ|)) with min(errorConstant)
// We normalize log(sqrt(|2πΣ|)) with min(negLogConstant)
// so it is non-negative.
std::vector<double> leaves = {
conditionals[0]->error(vv) + errorConstant0 - minErrorConstant,
conditionals[1]->error(vv) + errorConstant1 - minErrorConstant};
conditionals[0]->error(vv) + negLogConstant0 - minErrorConstant,
conditionals[1]->error(vv) + negLogConstant1 - minErrorConstant};
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
EXPECT(assert_equal(expected, actual, 1e-6));
@ -198,7 +198,7 @@ TEST(HybridGaussianConditional, Error2) {
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
EXPECT_DOUBLES_EQUAL(conditionals[mode]->error(vv) +
conditionals[mode]->errorConstant() -
conditionals[mode]->negLogConstant() -
minErrorConstant,
hybrid_conditional.error(hv), 1e-8);
}

View File

@ -780,8 +780,8 @@ static HybridGaussianFactorGraph CreateFactorGraph(
// Create HybridGaussianFactor
// We take negative since we want
// the underlying scalar to be log(\sqrt(|2πΣ|))
std::vector<GaussianFactorValuePair> factors{{f0, model0->errorConstant()},
{f1, model1->errorConstant()}};
std::vector<GaussianFactorValuePair> factors{{f0, model0->negLogConstant()},
{f1, model1->negLogConstant()}};
HybridGaussianFactor motionFactor({X(0), X(1)}, m1, factors);
HybridGaussianFactorGraph hfg;

View File

@ -902,8 +902,8 @@ static HybridNonlinearFactorGraph CreateFactorGraph(
// Create HybridNonlinearFactor
// We take negative since we want
// the underlying scalar to be log(\sqrt(|2πΣ|))
std::vector<NonlinearFactorValuePair> factors{{f0, model0->errorConstant()},
{f1, model1->errorConstant()}};
std::vector<NonlinearFactorValuePair> factors{{f0, model0->negLogConstant()},
{f1, model1->negLogConstant()}};
HybridNonlinearFactor mixtureFactor({X(0), X(1)}, m1, factors);

View File

@ -59,17 +59,17 @@ double Conditional<FACTOR, DERIVEDCONDITIONAL>::evaluate(
/* ************************************************************************* */
template <class FACTOR, class DERIVEDCONDITIONAL>
double Conditional<FACTOR, DERIVEDCONDITIONAL>::errorConstant()
double Conditional<FACTOR, DERIVEDCONDITIONAL>::negLogConstant()
const {
throw std::runtime_error(
"Conditional::errorConstant is not implemented");
"Conditional::negLogConstant is not implemented");
}
/* ************************************************************************* */
template <class FACTOR, class DERIVEDCONDITIONAL>
double Conditional<FACTOR, DERIVEDCONDITIONAL>::logNormalizationConstant()
const {
return -errorConstant();
return -negLogConstant();
}
/* ************************************************************************* */
@ -96,7 +96,7 @@ bool Conditional<FACTOR, DERIVEDCONDITIONAL>::CheckInvariants(
// normalization constant
const double error = conditional.error(values);
if (error < 0.0) return false; // prob_or_density is negative.
const double expected = -(conditional.errorConstant() + error);
const double expected = -(conditional.negLogConstant() + error);
if (std::abs(logProb - expected) > 1e-9)
return false; // logProb is not consistent with error
return true;

View File

@ -169,7 +169,7 @@ namespace gtsam {
*
* @return double
*/
virtual double errorConstant() const;
virtual double negLogConstant() const;
/**
* All conditional types need to implement a log normalization constant to

View File

@ -182,7 +182,7 @@ namespace gtsam {
/* ************************************************************************* */
// normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma))
// neg-log = 0.5 * n*log(2*pi) + 0.5 * log det(Sigma)
double GaussianConditional::errorConstant() const {
double GaussianConditional::negLogConstant() const {
constexpr double log2pi = 1.8378770664093454835606594728112;
size_t n = d().size();
// Sigma = (R'R)^{-1}, det(Sigma) = det((R'R)^{-1}) = det(R'R)^{-1}

View File

@ -140,7 +140,7 @@ namespace gtsam {
*
* @return double
*/
double errorConstant() const override;
double negLogConstant() const override;
/**
* Calculate log-probability log(evaluate(x)) for given values `x`:

View File

@ -255,7 +255,7 @@ double Gaussian::logDeterminant() const {
}
/* *******************************************************************************/
double Gaussian::errorConstant() const {
double Gaussian::negLogConstant() const {
// log(det(Sigma)) = -2.0 * logDetR
// which gives neg-log = 0.5*n*log(2*pi) + 0.5*(-2.0 * logDetR())
// = 0.5*n*log(2*pi) - (0.5*2.0 * logDetR())
@ -268,7 +268,7 @@ double Gaussian::errorConstant() const {
/* *******************************************************************************/
double Gaussian::logNormalizationConstant() const {
return -errorConstant();
return -negLogConstant();
}
/* ************************************************************************* */

View File

@ -277,7 +277,7 @@ namespace gtsam {
*
* @return double
*/
double errorConstant() const;
double negLogConstant() const;
/**
* @brief Method to compute the normalization constant

View File

@ -548,7 +548,7 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
bool equals(const gtsam::GaussianConditional& cg, double tol) const;
// Standard Interface
double errorConstant() const;
double negLogConstant() const;
double logNormalizationConstant() const;
double logProbability(const gtsam::VectorValues& x) const;
double evaluate(const gtsam::VectorValues& x) const;

View File

@ -55,7 +55,7 @@ TEST(GaussianDensity, FromMeanAndStddev) {
double expected1 = 0.5 * e.dot(e);
EXPECT_DOUBLES_EQUAL(expected1, density.error(values), 1e-9);
double expected2 = -(density.errorConstant() + 0.5 * e.dot(e));
double expected2 = -(density.negLogConstant() + 0.5 * e.dot(e));
EXPECT_DOUBLES_EQUAL(expected2, density.logProbability(values), 1e-9);
}

View File

@ -90,7 +90,7 @@ class TestHybridBayesNet(GtsamTestCase):
self.assertTrue(probability >= 0.0)
logProb = conditional.logProbability(values)
self.assertAlmostEqual(probability, np.exp(logProb))
expected = -(conditional.errorConstant() + conditional.error(values))
expected = -(conditional.negLogConstant() + conditional.error(values))
self.assertAlmostEqual(logProb, expected)