Merge branch 'develop'
commit
e041b9de6f
|
|
@ -1,3 +1,6 @@
|
|||
/build*
|
||||
/doc*
|
||||
*.pyc
|
||||
*.DS_Store
|
||||
*.DS_Store
|
||||
/examples/Data/dubrovnik-3-7-pre-rewritten.txt
|
||||
/examples/Data/pose2example-rewritten.txt
|
||||
|
|
@ -4,7 +4,7 @@ cmake_minimum_required(VERSION 2.6)
|
|||
|
||||
# Set the version number for the library
|
||||
set (GTSAM_VERSION_MAJOR 3)
|
||||
set (GTSAM_VERSION_MINOR 0)
|
||||
set (GTSAM_VERSION_MINOR 1)
|
||||
set (GTSAM_VERSION_PATCH 0)
|
||||
math (EXPR GTSAM_VERSION_NUMERIC "10000 * ${GTSAM_VERSION_MAJOR} + 100 * ${GTSAM_VERSION_MINOR} + ${GTSAM_VERSION_PATCH}")
|
||||
set (GTSAM_VERSION_STRING "${GTSAM_VERSION_MAJOR}.${GTSAM_VERSION_MINOR}.${GTSAM_VERSION_PATCH}")
|
||||
|
|
@ -34,7 +34,7 @@ if(${CMAKE_SOURCE_DIR} STREQUAL ${CMAKE_BINARY_DIR})
|
|||
message(FATAL_ERROR "In-source builds not allowed. Please make a new directory (called a build directory) and run CMake from there. You may need to remove CMakeCache.txt. ")
|
||||
endif()
|
||||
|
||||
# See whether gtsam_unstable is available (it will be present only if we're using an SVN checkout)
|
||||
# See whether gtsam_unstable is available (it will be present only if we're using a git checkout)
|
||||
if(EXISTS "${PROJECT_SOURCE_DIR}/gtsam_unstable" AND IS_DIRECTORY "${PROJECT_SOURCE_DIR}/gtsam_unstable")
|
||||
set(GTSAM_UNSTABLE_AVAILABLE 1)
|
||||
else()
|
||||
|
|
@ -46,7 +46,6 @@ endif()
|
|||
# Set up options
|
||||
|
||||
# Configurable Options
|
||||
option(GTSAM_BUILD_TIMING "Enable/Disable building of timing scripts" OFF) # These do not currently work
|
||||
if(GTSAM_UNSTABLE_AVAILABLE)
|
||||
option(GTSAM_BUILD_UNSTABLE "Enable/Disable libgtsam_unstable" ON)
|
||||
endif()
|
||||
|
|
@ -91,10 +90,10 @@ set(CPACK_GENERATOR "TGZ" CACHE STRING "CPack Default Binary Generator")
|
|||
# If using Boost shared libs, disable auto linking
|
||||
if(MSVC)
|
||||
# Some libraries, at least Boost Program Options, rely on this to export DLL symbols
|
||||
add_definitions(-DBOOST_ALL_DYN_LINK)
|
||||
# Disable autolinking
|
||||
if(NOT Boost_USE_STATIC_LIBS)
|
||||
add_definitions(-DBOOST_ALL_NO_LIB)
|
||||
add_definitions(-DBOOST_ALL_DYN_LINK)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
|
@ -124,6 +123,11 @@ else()
|
|||
endif()
|
||||
|
||||
|
||||
if(${Boost_VERSION} EQUAL 105600)
|
||||
message("Ignoring Boost restriction on optional lvalue assignment from rvalues")
|
||||
add_definitions(-DBOOST_OPTIONAL_ALLOW_BINDING_TO_RVALUES)
|
||||
endif()
|
||||
|
||||
###############################################################################
|
||||
# Find TBB
|
||||
find_package(TBB)
|
||||
|
|
@ -156,23 +160,23 @@ find_package(GooglePerfTools)
|
|||
|
||||
###############################################################################
|
||||
# Find MKL
|
||||
if(GTSAM_USE_EIGEN_MKL)
|
||||
find_package(MKL)
|
||||
find_package(MKL)
|
||||
|
||||
if(MKL_FOUND AND GTSAM_WITH_EIGEN_MKL)
|
||||
set(GTSAM_USE_EIGEN_MKL 1) # This will go into config.h
|
||||
set(EIGEN_USE_MKL_ALL 1) # This will go into config.h - it makes Eigen use MKL
|
||||
include_directories(${MKL_INCLUDE_DIR})
|
||||
list(APPEND GTSAM_ADDITIONAL_LIBRARIES ${MKL_LIBRARIES})
|
||||
endif()
|
||||
if(MKL_FOUND AND GTSAM_WITH_EIGEN_MKL)
|
||||
set(GTSAM_USE_EIGEN_MKL 1) # This will go into config.h
|
||||
set(EIGEN_USE_MKL_ALL 1) # This will go into config.h - it makes Eigen use MKL
|
||||
include_directories(${MKL_INCLUDE_DIR})
|
||||
list(APPEND GTSAM_ADDITIONAL_LIBRARIES ${MKL_LIBRARIES})
|
||||
else()
|
||||
set(GTSAM_USE_EIGEN_MKL 0)
|
||||
set(EIGEN_USE_MKL_ALL 0)
|
||||
endif()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Find OpenMP (if we're also using MKL)
|
||||
if(GTSAM_USE_EIGEN_MKL AND GTSAM_USE_EIGEN_MKL_OPENMP AND GTSAM_USE_EIGEN_MKL)
|
||||
find_package(OpenMP)
|
||||
find_package(OpenMP) # do this here to generate correct message if disabled
|
||||
|
||||
if(GTSAM_WITH_EIGEN_MKL AND GTSAM_WITH_EIGEN_MKL_OPENMP AND GTSAM_USE_EIGEN_MKL)
|
||||
if(OPENMP_FOUND AND GTSAM_USE_EIGEN_MKL AND GTSAM_WITH_EIGEN_MKL_OPENMP)
|
||||
set(GTSAM_USE_EIGEN_MKL_OPENMP 1) # This will go into config.h
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
|
||||
|
|
@ -273,6 +277,13 @@ if(MSVC)
|
|||
add_definitions(/wd4251 /wd4275 /wd4251 /wd4661 /wd4344) # Disable non-DLL-exported base class and other warnings
|
||||
endif()
|
||||
|
||||
# GCC 4.8+ complains about local typedefs which we use for shared_ptr etc.
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
if (NOT CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.8)
|
||||
add_definitions(-Wno-unused-local-typedefs)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(GTSAM_ENABLE_CONSISTENCY_CHECKS)
|
||||
add_definitions(-DGTSAM_EXTRA_CONSISTENCY_CHECKS)
|
||||
endif()
|
||||
|
|
@ -297,6 +308,9 @@ add_subdirectory(tests)
|
|||
# Build examples
|
||||
add_subdirectory(examples)
|
||||
|
||||
# Build timing
|
||||
add_subdirectory(timing)
|
||||
|
||||
# Matlab toolbox
|
||||
if (GTSAM_INSTALL_MATLAB_TOOLBOX)
|
||||
add_subdirectory(matlab)
|
||||
|
|
@ -354,7 +368,7 @@ message(STATUS "================ Configuration Options ======================"
|
|||
message(STATUS "Build flags ")
|
||||
print_config_flag(${GTSAM_BUILD_TESTS} "Build Tests ")
|
||||
print_config_flag(${GTSAM_BUILD_EXAMPLES_ALWAYS} "Build examples with 'make all' ")
|
||||
print_config_flag(${GTSAM_BUILD_TIMING} "Build Timing scripts ")
|
||||
print_config_flag(${GTSAM_BUILD_TIMING_ALWAYS} "Build timing scripts with 'make all'")
|
||||
if (DOXYGEN_FOUND)
|
||||
print_config_flag(${GTSAM_BUILD_DOCS} "Build Docs ")
|
||||
endif()
|
||||
|
|
|
|||
|
|
@ -0,0 +1,19 @@
|
|||
Information for developers
|
||||
|
||||
Coding Conventions:
|
||||
|
||||
* Classes are Uppercase, methods and functions lowerMixedCase
|
||||
* We use a modified K&R Style, with 2-space tabs, inserting spaces for tabs
|
||||
* Use meaningful variable names, e.g., measurement not msm
|
||||
|
||||
|
||||
Windows:
|
||||
|
||||
On Windows it is necessary to explicitly export all functions from the library
|
||||
which should be externally accessible. To do this, include the macro
|
||||
GTSAM_EXPORT in your class or function definition.
|
||||
|
||||
For example:
|
||||
class GTSAM_EXPORT MyClass { ... };
|
||||
|
||||
GTSAM_EXPORT myFunction();
|
||||
9
INSTALL
9
INSTALL
|
|
@ -24,7 +24,7 @@ Optional dependent libraries:
|
|||
may be installed from the Ubuntu repositories, and for other platforms it
|
||||
may be downloaded from https://www.threadingbuildingblocks.org/
|
||||
|
||||
Tested compilers
|
||||
Tested compilers:
|
||||
|
||||
- GCC 4.2-4.7
|
||||
- OSX Clang 2.9-5.0
|
||||
|
|
@ -35,7 +35,12 @@ Tested systems:
|
|||
|
||||
- Ubuntu 11.04 - 13.10
|
||||
- MacOS 10.6 - 10.9
|
||||
- Windows 7, 8
|
||||
- Windows 7, 8, 8.1
|
||||
|
||||
Known issues:
|
||||
|
||||
- MSVC 2013 is not yet supported because it cannot build the serialization module
|
||||
of Boost 1.55 (or earlier).
|
||||
|
||||
2)
|
||||
GTSAM makes extensive use of debug assertions, and we highly recommend you work
|
||||
|
|
|
|||
|
|
@ -58,6 +58,7 @@ FIND_PATH(MKL_ROOT_DIR
|
|||
/opt/intel/mkl/*/
|
||||
/opt/intel/cmkl/
|
||||
/opt/intel/cmkl/*/
|
||||
/opt/intel/*/mkl/
|
||||
/Library/Frameworks/Intel_MKL.framework/Versions/Current/lib/universal
|
||||
"C:/Program Files (x86)/Intel/ComposerXE-2011/mkl"
|
||||
"C:/Program Files (x86)/Intel/Composer XE 2013/mkl"
|
||||
|
|
|
|||
|
|
@ -1,3 +1,4 @@
|
|||
# This config file modifies CMAKE_MODULE_PATH so that the GTSAM-CMakeTools files may be included
|
||||
|
||||
|
||||
set(GTSAM_CMAKE_TOOLS_DIR "${CMAKE_CURRENT_LIST_DIR}")
|
||||
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}")
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ endif()
|
|||
# Clang on Mac uses a template depth that is less than standard and is too small
|
||||
if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang")
|
||||
if(NOT "${CMAKE_CXX_COMPILER_VERSION}" VERSION_LESS "5.0")
|
||||
add_definitions(-ftemplate-depth=1024)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -ftemplate-depth=1024")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
|
|
|||
|
|
@ -28,13 +28,13 @@ endif()
|
|||
# finding the LaTeX mex program (totally unrelated to MATLAB Mex) when LaTeX is
|
||||
# on the system path.
|
||||
list(REVERSE matlab_bin_directories) # Reverse list so the highest version (sorted alphabetically) is preferred
|
||||
find_program(mex_command ${mex_program_name}
|
||||
find_program(MEX_COMMAND ${mex_program_name}
|
||||
PATHS ${matlab_bin_directories} ENV PATH
|
||||
NO_DEFAULT_PATH)
|
||||
mark_as_advanced(FORCE mex_command)
|
||||
mark_as_advanced(FORCE MEX_COMMAND)
|
||||
# Now that we have mex, trace back to find the Matlab installation root
|
||||
get_filename_component(mex_command "${mex_command}" REALPATH)
|
||||
get_filename_component(mex_path "${mex_command}" PATH)
|
||||
get_filename_component(MEX_COMMAND "${MEX_COMMAND}" REALPATH)
|
||||
get_filename_component(mex_path "${MEX_COMMAND}" PATH)
|
||||
get_filename_component(MATLAB_ROOT "${mex_path}/.." ABSOLUTE)
|
||||
set(MATLAB_ROOT "${MATLAB_ROOT}" CACHE PATH "Path to MATLAB installation root (e.g. /usr/local/MATLAB/R2012a)")
|
||||
|
||||
|
|
@ -93,7 +93,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
|
||||
# Paths for generated files
|
||||
set(generated_files_path "${PROJECT_BINARY_DIR}/wrap/${moduleName}")
|
||||
set(generated_cpp_file "${PROJECT_BINARY_DIR}/wrap/${moduleName}/${moduleName}_wrapper.cpp")
|
||||
set(generated_cpp_file "${generated_files_path}/${moduleName}_wrapper.cpp")
|
||||
set(compiled_mex_modules_root "${PROJECT_BINARY_DIR}/wrap/${moduleName}_mex")
|
||||
|
||||
message(STATUS "Building wrap module ${moduleName}")
|
||||
|
|
@ -108,24 +108,87 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
list(GET GTSAM_INCLUDE_DIR 0 installed_includes_path)
|
||||
set(matlab_h_path "${installed_includes_path}/wrap")
|
||||
endif()
|
||||
|
||||
# Add -shared or -static suffix to targets
|
||||
|
||||
# If building a static mex module, add all cmake-linked libraries to the
|
||||
# explicit link libraries list so that the next block of code can unpack
|
||||
# any static libraries
|
||||
set(automaticDependencies "")
|
||||
foreach(lib ${moduleName} ${linkLibraries})
|
||||
#message("MODULE NAME: ${moduleName}")
|
||||
if(TARGET "${lib}")
|
||||
get_target_property(dependentLibraries ${lib} INTERFACE_LINK_LIBRARIES)
|
||||
# message("DEPENDENT LIBRARIES: ${dependentLibraries}")
|
||||
if(dependentLibraries)
|
||||
list(APPEND automaticDependencies ${dependentLibraries})
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
## CHRIS: Temporary fix. On my system the get_target_property above returned Not-found for gtsam module
|
||||
## This needs to be fixed!!
|
||||
if(UNIX AND NOT APPLE)
|
||||
list(APPEND automaticDependencies ${Boost_SERIALIZATION_LIBRARY_RELEASE} ${Boost_FILESYSTEM_LIBRARY_RELEASE}
|
||||
${Boost_SYSTEM_LIBRARY_RELEASE} ${Boost_THREAD_LIBRARY_RELEASE} ${Boost_DATE_TIME_LIBRARY_RELEASE}
|
||||
${Boost_REGEX_LIBRARY_RELEASE})
|
||||
if(Boost_TIMER_LIBRARY_RELEASE AND NOT GTSAM_DISABLE_NEW_TIMERS) # Only present in Boost >= 1.48.0
|
||||
list(APPEND automaticDependencies ${Boost_TIMER_LIBRARY_RELEASE} ${Boost_CHRONO_LIBRARY_RELEASE})
|
||||
if(GTSAM_MEX_BUILD_STATIC_MODULE)
|
||||
#list(APPEND automaticDependencies -Wl,--no-as-needed -lrt)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
#message("AUTOMATIC DEPENDENCIES: ${automaticDependencies}")
|
||||
## CHRIS: End temporary fix
|
||||
|
||||
# Separate dependencies
|
||||
set(correctedOtherLibraries "")
|
||||
set(otherLibraryTargets "")
|
||||
set(otherLibraryNontargets "")
|
||||
foreach(lib ${moduleName} ${linkLibraries})
|
||||
if(TARGET ${lib})
|
||||
list(APPEND correctedOtherLibraries ${lib})
|
||||
list(APPEND otherLibraryTargets ${lib})
|
||||
elseif(TARGET ${lib}-shared) # Prefer the shared library if we have both shared and static)
|
||||
list(APPEND correctedOtherLibraries ${lib}-shared)
|
||||
list(APPEND otherLibraryTargets ${lib}-shared)
|
||||
elseif(TARGET ${lib}-static)
|
||||
list(APPEND correctedOtherLibraries ${lib}-static)
|
||||
list(APPEND otherLibraryTargets ${lib}-static)
|
||||
set(otherSourcesAndObjects "")
|
||||
foreach(lib ${moduleName} ${linkLibraries} ${automaticDependencies})
|
||||
if(TARGET "${lib}")
|
||||
if(GTSAM_MEX_BUILD_STATIC_MODULE)
|
||||
get_target_property(target_sources ${lib} SOURCES)
|
||||
list(APPEND otherSourcesAndObjects ${target_sources})
|
||||
else()
|
||||
list(APPEND correctedOtherLibraries ${lib})
|
||||
list(APPEND otherLibraryTargets ${lib})
|
||||
endif()
|
||||
else()
|
||||
list(APPEND correctedOtherLibraries ${lib})
|
||||
list(APPEND otherLibraryNontargets ${lib})
|
||||
get_filename_component(file_extension "${lib}" EXT)
|
||||
get_filename_component(lib_name "${lib}" NAME_WE)
|
||||
if(file_extension STREQUAL ".a" AND GTSAM_MEX_BUILD_STATIC_MODULE)
|
||||
# For building a static MEX module, unpack the static library
|
||||
# and compile its object files into our module
|
||||
file(MAKE_DIRECTORY "${generated_files_path}/${lib_name}_objects")
|
||||
execute_process(COMMAND ar -x "${lib}"
|
||||
WORKING_DIRECTORY "${generated_files_path}/${lib_name}_objects"
|
||||
RESULT_VARIABLE ar_result)
|
||||
if(NOT ar_result EQUAL 0)
|
||||
message(FATAL_ERROR "Failed extracting ${lib}")
|
||||
endif()
|
||||
|
||||
# Get list of object files
|
||||
execute_process(COMMAND ar -t "${lib}"
|
||||
OUTPUT_VARIABLE object_files
|
||||
RESULT_VARIABLE ar_result)
|
||||
if(NOT ar_result EQUAL 0)
|
||||
message(FATAL_ERROR "Failed listing ${lib}")
|
||||
endif()
|
||||
|
||||
# Add directory to object files
|
||||
string(REPLACE "\n" ";" object_files_list "${object_files}")
|
||||
foreach(object_file ${object_files_list})
|
||||
get_filename_component(file_extension "${object_file}" EXT)
|
||||
if(file_extension STREQUAL ".o")
|
||||
list(APPEND otherSourcesAndObjects "${generated_files_path}/${lib_name}_objects/${object_file}")
|
||||
endif()
|
||||
endforeach()
|
||||
else()
|
||||
list(APPEND correctedOtherLibraries ${lib})
|
||||
list(APPEND otherLibraryNontargets ${lib})
|
||||
endif()
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
|
|
@ -144,7 +207,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
file(MAKE_DIRECTORY "${generated_files_path}")
|
||||
add_custom_command(
|
||||
OUTPUT ${generated_cpp_file}
|
||||
DEPENDS ${interfaceHeader} wrap ${module_library_target} ${otherLibraryTargets}
|
||||
DEPENDS ${interfaceHeader} wrap ${module_library_target} ${otherLibraryTargets} ${otherSourcesAndObjects}
|
||||
COMMAND
|
||||
wrap
|
||||
${modulePath}
|
||||
|
|
@ -157,7 +220,7 @@ function(wrap_library_internal interfaceHeader linkLibraries extraIncludeDirs ex
|
|||
# Set up building of mex module
|
||||
string(REPLACE ";" " " extraMexFlagsSpaced "${extraMexFlags}")
|
||||
string(REPLACE ";" " " mexFlagsSpaced "${GTSAM_BUILD_MEX_BINARY_FLAGS}")
|
||||
add_library(${moduleName}_wrapper MODULE ${generated_cpp_file} ${interfaceHeader})
|
||||
add_library(${moduleName}_wrapper MODULE ${generated_cpp_file} ${interfaceHeader} ${otherSourcesAndObjects})
|
||||
target_link_libraries(${moduleName}_wrapper ${correctedOtherLibraries})
|
||||
set_target_properties(${moduleName}_wrapper PROPERTIES
|
||||
OUTPUT_NAME "${moduleName}_wrapper"
|
||||
|
|
|
|||
|
|
@ -38,21 +38,46 @@ endmacro()
|
|||
#
|
||||
# Add scripts that will serve as examples of how to use the library. A list of files or
|
||||
# glob patterns is specified, and one executable will be created for each matching .cpp
|
||||
# file. These executables will not be installed. They are build with 'make all' if
|
||||
# file. These executables will not be installed. They are built with 'make all' if
|
||||
# GTSAM_BUILD_EXAMPLES_ALWAYS is enabled. They may also be built with 'make examples'.
|
||||
#
|
||||
# Usage example:
|
||||
# gtsamAddExamplesGlob("*.cpp" "BrokenExample.cpp" "gtsam;GeographicLib")
|
||||
#
|
||||
# Arguments:
|
||||
# globPatterns: The list of files or glob patterns from which to create unit tests, with
|
||||
# one test created for each cpp file. e.g. "*.cpp", or
|
||||
# globPatterns: The list of files or glob patterns from which to create examples, with
|
||||
# one program created for each cpp file. e.g. "*.cpp", or
|
||||
# "A*.cpp;B*.cpp;MyExample.cpp".
|
||||
# excludedFiles: A list of files or globs to exclude, e.g. "C*.cpp;BrokenExample.cpp". Pass
|
||||
# an empty string "" if nothing needs to be excluded.
|
||||
# linkLibraries: The list of libraries to link to.
|
||||
macro(gtsamAddExamplesGlob globPatterns excludedFiles linkLibraries)
|
||||
gtsamAddExamplesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}")
|
||||
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "examples" ${GTSAM_BUILD_EXAMPLES_ALWAYS})
|
||||
endmacro()
|
||||
|
||||
|
||||
###############################################################################
|
||||
# Macro:
|
||||
#
|
||||
# gtsamAddTimingGlob(globPatterns excludedFiles linkLibraries)
|
||||
#
|
||||
# Add scripts that time aspects of the library. A list of files or
|
||||
# glob patterns is specified, and one executable will be created for each matching .cpp
|
||||
# file. These executables will not be installed. They are not built with 'make all',
|
||||
# but they may be built with 'make timing'.
|
||||
#
|
||||
# Usage example:
|
||||
# gtsamAddTimingGlob("*.cpp" "DisabledTimingScript.cpp" "gtsam;GeographicLib")
|
||||
#
|
||||
# Arguments:
|
||||
# globPatterns: The list of files or glob patterns from which to create programs, with
|
||||
# one program created for each cpp file. e.g. "*.cpp", or
|
||||
# "A*.cpp;B*.cpp;MyExample.cpp".
|
||||
# excludedFiles: A list of files or globs to exclude, e.g. "C*.cpp;BrokenExample.cpp". Pass
|
||||
# an empty string "" if nothing needs to be excluded.
|
||||
# linkLibraries: The list of libraries to link to.
|
||||
macro(gtsamAddTimingGlob globPatterns excludedFiles linkLibraries)
|
||||
gtsamAddExesGlob_impl("${globPatterns}" "${excludedFiles}" "${linkLibraries}" "timing" ${GTSAM_BUILD_TIMING_ALWAYS})
|
||||
endmacro()
|
||||
|
||||
|
||||
|
|
@ -63,6 +88,7 @@ enable_testing()
|
|||
|
||||
option(GTSAM_BUILD_TESTS "Enable/Disable building of tests" ON)
|
||||
option(GTSAM_BUILD_EXAMPLES_ALWAYS "Build examples with 'make all' (build with 'make examples' if not)" ON)
|
||||
option(GTSAM_BUILD_TIMING_ALWAYS "Build timing scripts with 'make all' (build with 'make timing' if not" OFF)
|
||||
|
||||
# Add option for combining unit tests
|
||||
if(MSVC OR XCODE_VERSION)
|
||||
|
|
@ -80,6 +106,9 @@ endif()
|
|||
# Add examples target
|
||||
add_custom_target(examples)
|
||||
|
||||
# Add timing target
|
||||
add_custom_target(timing)
|
||||
|
||||
# Include obsolete macros - will be removed in the near future
|
||||
include(GtsamTestingObsolete)
|
||||
|
||||
|
|
@ -180,7 +209,7 @@ macro(gtsamAddTestsGlob_impl groupName globPatterns excludedFiles linkLibraries)
|
|||
endmacro()
|
||||
|
||||
|
||||
macro(gtsamAddExamplesGlob_impl globPatterns excludedFiles linkLibraries)
|
||||
macro(gtsamAddExesGlob_impl globPatterns excludedFiles linkLibraries groupName buildWithAll)
|
||||
# Get all script files
|
||||
file(GLOB script_files ${globPatterns})
|
||||
|
||||
|
|
@ -220,20 +249,22 @@ macro(gtsamAddExamplesGlob_impl globPatterns excludedFiles linkLibraries)
|
|||
target_link_libraries(${script_name} ${linkLibraries})
|
||||
|
||||
# Add target dependencies
|
||||
add_dependencies(examples ${script_name})
|
||||
add_dependencies(${groupName} ${script_name})
|
||||
if(NOT MSVC AND NOT XCODE_VERSION)
|
||||
add_custom_target(${script_name}.run ${EXECUTABLE_OUTPUT_PATH}${script_name})
|
||||
endif()
|
||||
|
||||
# Add TOPSRCDIR
|
||||
set_property(SOURCE ${script_src} APPEND PROPERTY COMPILE_DEFINITIONS "TOPSRCDIR=\"${PROJECT_SOURCE_DIR}\"")
|
||||
|
||||
if(NOT GTSAM_BUILD_EXAMPLES_ALWAYS)
|
||||
|
||||
# Exclude from all or not - note weird variable assignment because we're in a macro
|
||||
set(buildWithAll_on ${buildWithAll})
|
||||
if(NOT buildWithAll_on)
|
||||
# Exclude from 'make all' and 'make install'
|
||||
set_target_properties(${target_name} PROPERTIES EXCLUDE_FROM_ALL ON)
|
||||
set_target_properties("${script_name}" PROPERTIES EXCLUDE_FROM_ALL ON)
|
||||
endif()
|
||||
|
||||
# Configure target folder (for MSVC and Xcode)
|
||||
set_property(TARGET ${script_name} PROPERTY FOLDER "Examples")
|
||||
set_property(TARGET ${script_name} PROPERTY FOLDER "${groupName}")
|
||||
endforeach()
|
||||
endmacro()
|
||||
|
|
|
|||
|
|
@ -1,173 +1,43 @@
|
|||
# This file should be used as a template for creating new projects using the CMake tools
|
||||
# This project has the following features
|
||||
# - GTSAM linking
|
||||
# - Boost linking
|
||||
# - Unit tests via CppUnitLite
|
||||
# - Automatic detection of sources and headers in subfolders
|
||||
# - Installation of library and headers
|
||||
# - Matlab wrap interface with within-project building
|
||||
# - Use of GTSAM cmake macros
|
||||
# - Scripts
|
||||
# - Automatic MATLAB wrapper generation
|
||||
|
||||
###################################################################################
|
||||
# To create your own project, replace "myproject" with the actual name of your project
|
||||
# To create your own project, replace "example" with the actual name of your project
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
enable_testing()
|
||||
project(myproject CXX C)
|
||||
project(example CXX C)
|
||||
|
||||
# Add the cmake subfolder to the cmake module path - necessary to use macros
|
||||
set(CMAKE_MODULE_PATH "${CMAKE_MODULE_PATH}" "${PROJECT_SOURCE_DIR}/cmake")
|
||||
# Include GTSAM CMake tools
|
||||
find_package(GTSAMCMakeTools)
|
||||
include(GtsamBuildTypes) # Load build type flags and default to Debug mode
|
||||
include(GtsamTesting) # Easy functions for creating unit tests and scripts
|
||||
include(GtsamMatlabWrap) # Automatic MATLAB wrapper generation
|
||||
|
||||
# Ensure that local folder is searched before library folders
|
||||
include_directories(BEFORE "${PROJECT_SOURCE_DIR}")
|
||||
|
||||
# Load build type flags and default to Debug mode
|
||||
include(GtsamBuildTypes)
|
||||
|
||||
###################################################################################
|
||||
# Create a list of library dependencies
|
||||
# These will be linked with executables
|
||||
set(library_deps "")
|
||||
set(linking_mode "static")
|
||||
|
||||
# Find GTSAM components
|
||||
find_package(GTSAM REQUIRED) # Uses installed package
|
||||
list(APPEND library_deps gtsam-${linking_mode} gtsam_unstable-${linking_mode})
|
||||
|
||||
# Include ransac
|
||||
find_package(ransac REQUIRED) # Uses installed package
|
||||
list(APPEND library_deps ransac-${linking_mode})
|
||||
|
||||
# Boost - same requirement as gtsam
|
||||
find_package(Boost 1.43 COMPONENTS
|
||||
serialization
|
||||
system
|
||||
filesystem
|
||||
thread
|
||||
date_time
|
||||
REQUIRED)
|
||||
list(APPEND library_deps
|
||||
${Boost_SERIALIZATION_LIBRARY}
|
||||
${Boost_SYSTEM_LIBRARY}
|
||||
${Boost_FILESYSTEM_LIBRARY}
|
||||
${Boost_THREAD_LIBRARY}
|
||||
${Boost_DATE_TIME_LIBRARY})
|
||||
|
||||
include_directories(${Boost_INCLUDE_DIR} ${GTSAM_INCLUDE_DIR} ${ransac_INCLUDE_DIR})
|
||||
include_directories(${GTSAM_INCLUDE_DIR})
|
||||
|
||||
###################################################################################
|
||||
# List subdirs to process tests/sources
|
||||
# Each of these will be scanned for new files
|
||||
set (myproject_subdirs
|
||||
"." # ensure root folder gets included
|
||||
stuff
|
||||
things
|
||||
)
|
||||
|
||||
# loop through subdirs to install and build up source lists
|
||||
set(myproject_lib_source "")
|
||||
set(myproject_tests_source "")
|
||||
set(myproject_scripts_source "")
|
||||
foreach(subdir ${myproject_subdirs})
|
||||
# Installing headers
|
||||
message(STATUS "Installing ${subdir}")
|
||||
file(GLOB sub_myproject_headers "myproject/${subdir}/*.h")
|
||||
install(FILES ${sub_myproject_headers} DESTINATION include/myproject/${subdir})
|
||||
|
||||
# add sources to main sources list
|
||||
file(GLOB subdir_srcs "myproject/${subdir}/*.cpp")
|
||||
list(APPEND myproject_lib_source ${subdir_srcs})
|
||||
|
||||
# add tests to main tests list
|
||||
file(GLOB subdir_test_srcs "myproject/${subdir}/tests/*.cpp")
|
||||
list(APPEND myproject_tests_source ${subdir_test_srcs})
|
||||
|
||||
# add scripts to main tests list
|
||||
file(GLOB subdir_scripts_srcs "myproject/${subdir}/scripts/*.cpp")
|
||||
list(APPEND myproject_scripts_source ${subdir_scripts_srcs})
|
||||
endforeach(subdir)
|
||||
|
||||
set(myproject_version ${myproject_VERSION_MAJOR}.${myproject_VERSION_MINOR}.${myproject_VERSION_PATCH})
|
||||
set(myproject_soversion ${myproject_VERSION_MAJOR})
|
||||
message(STATUS "GTSAM Version: ${gtsam_version}")
|
||||
message(STATUS "Install prefix: ${CMAKE_INSTALL_PREFIX}")
|
||||
|
||||
# Build library (static and shared versions)
|
||||
# Include installed versions
|
||||
SET(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)
|
||||
add_library(${PROJECT_NAME}-shared SHARED ${myproject_lib_source})
|
||||
set_target_properties(${PROJECT_NAME}-shared PROPERTIES
|
||||
OUTPUT_NAME ${PROJECT_NAME}
|
||||
CLEAN_DIRECT_OUTPUT 1)
|
||||
install(TARGETS myproject-shared EXPORT myproject-exports LIBRARY DESTINATION lib ARCHIVE DESTINATION lib RUNTIME DESTINATION bin)
|
||||
list(APPEND myproject_EXPORTED_TARGETS myproject-shared)
|
||||
|
||||
add_library(${PROJECT_NAME}-static STATIC ${myproject_lib_source})
|
||||
set_target_properties(${PROJECT_NAME}-static PROPERTIES
|
||||
OUTPUT_NAME ${PROJECT_NAME}
|
||||
CLEAN_DIRECT_OUTPUT 1)
|
||||
install(TARGETS myproject-static EXPORT myproject-exports ARCHIVE DESTINATION lib)
|
||||
list(APPEND myproject_EXPORTED_TARGETS myproject-static)
|
||||
|
||||
install(TARGETS ${PROJECT_NAME}-shared LIBRARY DESTINATION lib )
|
||||
install(TARGETS ${PROJECT_NAME}-static ARCHIVE DESTINATION lib )
|
||||
|
||||
# Disabled tests - subtract these from the test files
|
||||
# Note the need for a full path
|
||||
set(disabled_tests
|
||||
"dummy"
|
||||
#"${PROJECT_SOURCE_DIR}/myproject/geometry/tests/testCovarianceEllipse.cpp"
|
||||
)
|
||||
list(REMOVE_ITEM myproject_tests_source ${disabled_tests})
|
||||
# Build static library from common sources
|
||||
set(CONVENIENCE_LIB_NAME ${PROJECT_NAME})
|
||||
add_library(${CONVENIENCE_LIB_NAME} STATIC example/PrintExamples.h example/PrintExamples.cpp)
|
||||
target_link_libraries(${CONVENIENCE_LIB_NAME} gtsam)
|
||||
|
||||
###################################################################################
|
||||
# Build tests
|
||||
add_custom_target(check COMMAND ${CMAKE_CTEST_COMMAND})
|
||||
foreach(test_src_file ${myproject_tests_source})
|
||||
get_filename_component(test_base ${test_src_file} NAME_WE)
|
||||
message(STATUS "Adding test ${test_src_file} with base name ${test_base}" )
|
||||
add_executable(${test_base} ${test_src_file})
|
||||
target_link_libraries(${test_base} ${PROJECT_NAME}-${linking_mode} ${library_deps} CppUnitLite)
|
||||
add_test(${test_base} ${EXECUTABLE_OUTPUT_PATH}/${test_base})
|
||||
add_custom_target(${test_base}.run ${test_base} ${ARGN})
|
||||
add_dependencies(check ${test_base})
|
||||
endforeach(test_src_file)
|
||||
|
||||
# Build scripts
|
||||
foreach(script_src_file ${myproject_scripts_source})
|
||||
get_filename_component(script_base ${script_src_file} NAME_WE)
|
||||
message(STATUS "Adding script ${script_src_file} with base name ${script_base}" )
|
||||
add_executable(${script_base} ${script_src_file})
|
||||
target_link_libraries(${script_base} ${PROJECT_NAME}-${linking_mode} ${library_deps} CppUnitLite)
|
||||
add_custom_target(${script_base}.run ${script_base} ${ARGN})
|
||||
endforeach(script_src_file)
|
||||
# Build tests (CMake tracks the dependecy to link with GTSAM through our project's static library)
|
||||
gtsamAddTestsGlob("example" "tests/test*.cpp" "" "${CONVENIENCE_LIB_NAME}")
|
||||
|
||||
###################################################################################
|
||||
# Matlab wrapping
|
||||
include(GtsamMatlabWrap)
|
||||
set(MEX_COMMAND "mex" CACHE STRING "Command to use for executing mex (if on path, 'mex' will work)")
|
||||
set(GTSAM_BUILD_MEX_BINARY_FLAGS "" CACHE STRING "Extra flags for running Matlab MEX compilation")
|
||||
set(MYPROJECT_TOOLBOX_DIR "../matlab/myproject" CACHE PATH "Install folder for matlab toolbox - defaults to inside project")
|
||||
set(WRAP_HEADER_PATH "${GTSAM_DIR}/../../../include")
|
||||
set(MYPROJECT_TOOLBOX_FLAGS
|
||||
${GTSAM_BUILD_MEX_BINARY_FLAGS} -I${PROJECT_SOURCE_DIR} -I${PROJECT_SOURCE_DIR}/myproject -I${Boost_INCLUDE_DIR} -I${MEX_INCLUDE_ROOT} -I${GTSAM_INCLUDE_DIR} -I${WRAP_HEADER_PATH} -Wl,-rpath,${CMAKE_BINARY_DIR}:${CMAKE_INSTALL_PREFIX}/lib)
|
||||
set(MYPROJECT_LIBRARY_DEPS gtsam gtsam_unstable ransac myproject)
|
||||
set(GTSAM_BUILD_MEX_BIN ON)
|
||||
|
||||
# Function to setup codegen, building and installation of the wrap toolbox
|
||||
# This wrap setup function assumes that the toolbox will be installed directly,
|
||||
# with predictable matlab.h sourcing
|
||||
# params:
|
||||
# moduleName : the name of the module, interface file must be called moduleName.h
|
||||
# mexFlags : Compilation flags to be passed to the mex compiler
|
||||
# modulePath : relative path to module markup header file (called moduleName.h)
|
||||
# otherLibraries : list of library targets this should depend on
|
||||
# toolboxPath : the directory in which to generate/build wrappers
|
||||
# wrap_header_path : path to the installed wrap header
|
||||
wrap_library_generic(myproject "${MYPROJECT_TOOLBOX_FLAGS}" "" "${MYPROJECT_LIBRARY_DEPS}" "${MYPROJECT_TOOLBOX_DIR}" "${WRAP_HEADER_PATH}")
|
||||
# Build scripts (CMake tracks the dependecy to link with GTSAM through our project's static library)
|
||||
gtsamAddExamplesGlob("*.cpp" "" "${CONVENIENCE_LIB_NAME}")
|
||||
|
||||
###################################################################################
|
||||
# Create Install config and export files
|
||||
# This config file takes the place of FindXXX.cmake scripts
|
||||
include(GtsamMakeConfigFile)
|
||||
GtsamMakeConfigFile(myproject)
|
||||
export(TARGETS ${myproject_EXPORTED_TARGETS} FILE myproject-exports.cmake)
|
||||
# Build MATLAB wrapper (CMake tracks the dependecy to link with GTSAM through our project's static library)
|
||||
wrap_and_install_library("example.h" "${CONVENIENCE_LIB_NAME}" "" "")
|
||||
|
|
|
|||
|
|
@ -0,0 +1,23 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SayGoodbye.cpp
|
||||
* @brief Example script for example project
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <example/PrintExamples.h>
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
example::PrintExamples().sayGoodbye();
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SayHello.cpp
|
||||
* @brief Example script for example project
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <example/PrintExamples.h>
|
||||
|
||||
int main(int argc, char *argv[]) {
|
||||
example::PrintExamples().sayHello();
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,28 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file example.h
|
||||
* @brief Example wrapper interface file
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
// This is an interface file for automatic MATLAB wrapper generation. See
|
||||
// gtsam.h for full documentation and more examples.
|
||||
|
||||
namespace example {
|
||||
|
||||
class PrintExamples {
|
||||
void sayHello() const;
|
||||
void sayGoodbye() const;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
@ -0,0 +1,44 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file print_examples.cpp
|
||||
* @brief Example library file
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include <example/PrintExamples.h>
|
||||
|
||||
namespace example {
|
||||
|
||||
void PrintExamples::sayHello() const {
|
||||
std::cout << internal::getHelloString() << std::endl;
|
||||
}
|
||||
|
||||
void PrintExamples::sayGoodbye() const {
|
||||
std::cout << internal::getGoodbyeString() << std::endl;
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
|
||||
std::string getHelloString() {
|
||||
return "Hello!";
|
||||
}
|
||||
|
||||
std::string getGoodbyeString() {
|
||||
return "See you soon!";
|
||||
}
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace example
|
||||
|
|
@ -0,0 +1,41 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file print_examples.h
|
||||
* @brief Example library file
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace example {
|
||||
|
||||
class PrintExamples {
|
||||
public:
|
||||
/// Print a greeting
|
||||
void sayHello() const;
|
||||
|
||||
/// Print a farewell
|
||||
void sayGoodbye() const;
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
std::string getHelloString();
|
||||
|
||||
std::string getGoodbyeString();
|
||||
|
||||
} // namespace internal
|
||||
|
||||
} // namespace example
|
||||
|
|
@ -0,0 +1,43 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testExample.cpp
|
||||
* @brief Unit tests for example
|
||||
* @author Richard Roberts
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
|
||||
#include <example/PrintExamples.h>
|
||||
|
||||
using namespace gtsam;
|
||||
|
||||
TEST(Example, HelloString) {
|
||||
const std::string expectedString = "Hello!";
|
||||
EXPECT(assert_equal(expectedString, example::internal::getHelloString()));
|
||||
}
|
||||
|
||||
TEST(Example, GoodbyeString) {
|
||||
const std::string expectedString = "See you soon!";
|
||||
EXPECT(assert_equal(expectedString, example::internal::getGoodbyeString()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
||||
|
|
@ -1,38 +0,0 @@
|
|||
# This file should be used as a template for creating new projects using the CMake tools
|
||||
# This project has the following features
|
||||
# - GTSAM linking
|
||||
# - Unit tests via CppUnitLite
|
||||
# - Scripts
|
||||
|
||||
###################################################################################
|
||||
# To create your own project, replace "myproject" with the actual name of your project
|
||||
cmake_minimum_required(VERSION 2.6)
|
||||
enable_testing()
|
||||
project(myproject CXX C)
|
||||
|
||||
# Add the cmake subfolder to the cmake module path - necessary to use macros
|
||||
list(APPEND CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
|
||||
# Ensure that local folder is searched before library folders
|
||||
include_directories(BEFORE "${PROJECT_SOURCE_DIR}")
|
||||
|
||||
# Load build type flags and default to Debug mode
|
||||
include(GtsamBuildTypes)
|
||||
|
||||
###################################################################################
|
||||
# Find GTSAM components
|
||||
find_package(GTSAM REQUIRED) # Uses installed package
|
||||
include_directories(${GTSAM_INCLUDE_DIR})
|
||||
|
||||
###################################################################################
|
||||
# Build static library from common sources
|
||||
add_library(${PROJECT_NAME} STATIC ${PROJECT_NAME}/MySourceFiles.cpp)
|
||||
target_link_libraries(${PROJECT_NAME} gtsam-shared)
|
||||
|
||||
###################################################################################
|
||||
# Build tests (CMake tracks the dependecy to link with GTSAM through our project's static library)
|
||||
gtsam_add_subdir_tests(${PROJECT_NAME} "${PROJECT_NAME}" "${PROJECT_NAME}" "")
|
||||
|
||||
###################################################################################
|
||||
# Build scripts (CMake tracks the dependecy to link with GTSAM through our project's static library)
|
||||
gtsam_add_executables("${PROJECT_NAME}/myScripts.cpp" "${PROJECT_NAME}" "${PROJECT_NAME}" "")
|
||||
|
|
@ -0,0 +1 @@
|
|||
718.856 718.856 0.0 607.1928 185.2157 0.5371657189
|
||||
|
|
@ -0,0 +1 @@
|
|||
718.856 718.856 0.0 607.1928 185.2157 0.5371657189
|
||||
|
|
@ -0,0 +1,135 @@
|
|||
0 1 0 0 0 0 1 0 0 -0 0 1 0 0 0 0 1
|
||||
1 0.99999 -0.00268679 -0.00354618 6.43221e-05 0.00267957 0.999994 -0.00204036 -0.0073023 0.00355164 0.00203084 0.999992 0.676456 0 0 0 1
|
||||
2 0.999969 -0.00120771 -0.00772489 -0.0100328 0.00117985 0.999993 -0.003611 -0.0111185 0.00772919 0.00360178 0.999964 1.37125 0 0 0 1
|
||||
3 0.999931 -0.00128098 -0.0117006 -0.0237327 0.00122052 0.999986 -0.00517227 -0.0136538 0.0117071 0.00515763 0.999918 2.08563 0 0 0 1
|
||||
4 0.99986 5.79321e-05 -0.0167106 -0.0402272 -0.000155312 0.999983 -0.00582618 -0.0194327 0.01671 0.00582796 0.999843 2.81528 0 0 0 1
|
||||
5 0.999772 -0.00118366 -0.0213077 -0.0572378 0.0010545 0.999981 -0.00607208 -0.0278191 0.0213145 0.00604822 0.999755 3.56204 0 0 0 1
|
||||
6 0.999662 0.000544425 -0.0259946 -0.081545 -0.000735472 0.999973 -0.00734051 -0.0358844 0.0259899 0.00735714 0.999635 4.32265 0 0 0 1
|
||||
7 0.999513 0.0032602 -0.0310324 -0.112137 -0.0035101 0.999962 -0.00800188 -0.0447209 0.0310051 0.00810691 0.999486 5.09668 0 0 0 1
|
||||
8 0.999361 0.00349173 -0.0355658 -0.143594 -0.00372162 0.999973 -0.00639979 -0.0532611 0.0355425 0.00652807 0.999347 5.88701 0 0 0 1
|
||||
9 0.999185 0.00268131 -0.040271 -0.176401 -0.0028332 0.999989 -0.00371493 -0.0632884 0.0402606 0.003826 0.999182 6.6897 0 0 0 1
|
||||
10 0.99903 0.00226305 -0.0439747 -0.211687 -0.00231163 0.999997 -0.00105382 -0.072362 0.0439722 0.00115445 0.999032 7.50361 0 0 0 1
|
||||
11 0.998896 0.00366482 -0.0468376 -0.254125 -0.00374515 0.999992 -0.00162734 -0.0820263 0.0468312 0.00180096 0.998901 8.32333 0 0 0 1
|
||||
12 0.998775 0.00304285 -0.0493866 -0.295424 -0.00313866 0.999993 -0.00186268 -0.0885739 0.0493806 0.00201541 0.998778 9.15211 0 0 0 1
|
||||
13 0.998682 7.09894e-05 -0.0513155 -0.334647 -0.000203775 0.999997 -0.00258241 -0.0938889 0.0513152 0.00258946 0.998679 9.98839 0 0 0 1
|
||||
14 0.998565 -8.82523e-05 -0.0535542 -0.380835 -9.36659e-06 0.999998 -0.00182255 -0.10173 0.0535542 0.00182044 0.998563 10.832 0 0 0 1
|
||||
15 0.998481 -0.00146793 -0.0550718 -0.429135 0.0013525 0.999997 -0.00213307 -0.111427 0.0550748 0.00205535 0.99848 11.687 0 0 0 1
|
||||
16 0.998373 0.000738731 -0.0570218 -0.483426 -0.000993083 0.99999 -0.00443241 -0.122139 0.0570179 0.00448183 0.998363 12.5483 0 0 0 1
|
||||
17 0.998285 0.00120595 -0.0585258 -0.540056 -0.00162301 0.999974 -0.00707907 -0.132598 0.0585158 0.00716191 0.998261 13.4179 0 0 0 1
|
||||
18 0.998165 0.00516151 -0.060337 -0.6023 -0.00570195 0.999945 -0.00878826 -0.143753 0.0602883 0.00911617 0.998139 14.2952 0 0 0 1
|
||||
19 0.998101 0.00610094 -0.0612993 -0.66308 -0.00663017 0.999942 -0.00843386 -0.157854 0.0612443 0.00882427 0.998084 15.1802 0 0 0 1
|
||||
20 0.998014 0.0052997 -0.0627662 -0.722045 -0.00574767 0.999959 -0.0069587 -0.172847 0.0627268 0.00730564 0.998004 16.074 0 0 0 1
|
||||
21 0.99792 0.00591748 -0.0641975 -0.78346 -0.00627924 0.999966 -0.00543487 -0.186221 0.0641631 0.00582667 0.997922 16.9738 0 0 0 1
|
||||
22 0.997857 0.00547694 -0.0651993 -0.845347 -0.00584101 0.999968 -0.00539455 -0.199741 0.0651677 0.00576382 0.997858 17.8786 0 0 0 1
|
||||
23 0.997737 0.00536917 -0.0670282 -0.908218 -0.00579979 0.999964 -0.0062316 -0.212775 0.0669924 0.00660624 0.997732 18.7877 0 0 0 1
|
||||
24 0.997663 0.00386695 -0.0682185 -0.971291 -0.00435203 0.999966 -0.00696344 -0.226442 0.0681893 0.00724406 0.997646 19.7046 0 0 0 1
|
||||
25 0.997629 0.00410637 -0.0687004 -1.03663 -0.00448288 0.999976 -0.00532714 -0.239555 0.0686769 0.00562249 0.997623 20.6257 0 0 0 1
|
||||
26 0.997617 0.00588773 -0.0687501 -1.10557 -0.0060349 0.99998 -0.00193325 -0.254273 0.0687373 0.00234355 0.997632 21.55 0 0 0 1
|
||||
27 0.997662 0.00693766 -0.0679906 -1.17297 -0.00682806 0.999975 0.0018442 -0.26563 0.0680017 -0.00137565 0.997684 22.4875 0 0 0 1
|
||||
28 0.997774 0.00579785 -0.0664343 -1.23728 -0.00550265 0.999974 0.00462554 -0.271962 0.0664594 -0.00424968 0.99778 23.4285 0 0 0 1
|
||||
29 0.997872 0.00589563 -0.0649408 -1.30214 -0.00556012 0.99997 0.00534586 -0.277922 0.0649704 -0.0049734 0.997875 24.3732 0 0 0 1
|
||||
30 0.997958 0.00627024 -0.0635595 -1.36462 -0.00612984 0.999978 0.00240374 -0.285335 0.0635732 -0.00200922 0.997975 25.314 0 0 0 1
|
||||
31 0.998004 0.00714074 -0.0627411 -1.42783 -0.00731158 0.99997 -0.00249375 -0.293171 0.0627215 0.00294751 0.998027 26.2605 0 0 0 1
|
||||
32 0.99808 0.0063692 -0.0616159 -1.48954 -0.00671918 0.999962 -0.00547459 -0.302321 0.0615787 0.00587809 0.998085 27.2168 0 0 0 1
|
||||
33 0.99813 0.00376787 -0.0610159 -1.54654 -0.00404632 0.999982 -0.0044408 -0.313516 0.0609981 0.00467938 0.998127 28.1829 0 0 0 1
|
||||
34 0.998113 0.00193972 -0.0613743 -1.60668 -0.00191171 0.999998 0.000515183 -0.324411 0.0613752 -0.000396881 0.998115 29.1626 0 0 0 1
|
||||
35 0.99806 -0.0017885 -0.062228 -1.66532 0.00203402 0.99999 0.00388232 -0.335656 0.0622204 -0.00400136 0.998054 30.1428 0 0 0 1
|
||||
36 0.997945 -0.00917543 -0.0634115 -1.72059 0.00939451 0.999951 0.00315749 -0.343316 0.0633794 -0.00374672 0.997982 31.1244 0 0 0 1
|
||||
37 0.997825 -0.0112684 -0.0649459 -1.78049 0.011242 0.999937 -0.000771312 -0.350864 0.0649504 3.95099e-05 0.997888 32.1064 0 0 0 1
|
||||
38 0.997739 -0.0110126 -0.0662983 -1.85007 0.0107254 0.999932 -0.00468596 -0.361068 0.0663454 0.00396429 0.997789 33.0886 0 0 0 1
|
||||
39 0.997597 -0.00959503 -0.0686163 -1.92119 0.00924037 0.999942 -0.00548426 -0.373466 0.0686649 0.00483704 0.997628 34.0774 0 0 0 1
|
||||
40 0.99755 -0.0095802 -0.0693031 -1.99331 0.00931271 0.999948 -0.00418184 -0.387047 0.0693396 0.00352619 0.997587 35.0736 0 0 0 1
|
||||
41 0.997473 -0.00634387 -0.0707596 -2.0707 0.00626661 0.99998 -0.0013139 -0.403858 0.0707665 0.00086716 0.997493 36.0721 0 0 0 1
|
||||
42 0.99739 -0.00624366 -0.0719343 -2.14553 0.00625582 0.99998 -5.62375e-05 -0.416888 0.0719332 -0.000393917 0.997409 37.0728 0 0 0 1
|
||||
43 0.997312 -0.00473093 -0.0731254 -2.21909 0.00492848 0.999985 0.00252135 -0.428625 0.0731123 -0.00287497 0.99732 38.0643 0 0 0 1
|
||||
44 0.997318 -0.00467696 -0.0730348 -2.29215 0.00509473 0.999972 0.00553481 -0.440023 0.0730068 -0.00589206 0.997314 39.0618 0 0 0 1
|
||||
45 0.997274 0.00138304 -0.0737801 -2.37574 -0.000811217 0.999969 0.00777971 -0.447869 0.0737886 -0.00769865 0.997244 40.0548 0 0 0 1
|
||||
46 0.997262 0.00149131 -0.0739326 -2.45529 -0.000969511 0.999974 0.00709318 -0.454763 0.0739413 -0.00700208 0.997238 41.0557 0 0 0 1
|
||||
47 0.997266 0.00175929 -0.0738699 -2.53081 -0.00136899 0.999985 0.00533379 -0.460519 0.0738782 -0.00521809 0.997254 42.0518 0 0 0 1
|
||||
48 0.997253 0.00408494 -0.0739555 -2.61212 -0.00386552 0.999988 0.00310988 -0.469863 0.0739673 -0.00281546 0.997257 43.0493 0 0 0 1
|
||||
49 0.997185 0.00365371 -0.0748884 -2.68799 -0.00342799 0.999989 0.00314243 -0.47951 0.0748991 -0.00287687 0.997187 44.0473 0 0 0 1
|
||||
50 0.997077 0.00181435 -0.0763845 -2.76071 -0.00149292 0.99999 0.00426495 -0.487845 0.0763915 -0.00413845 0.997069 45.0403 0 0 0 1
|
||||
51 0.997018 0.00246727 -0.0771352 -2.84117 -0.00206285 0.999984 0.00532227 -0.499132 0.0771471 -0.00514727 0.997006 46.0244 0 0 0 1
|
||||
52 0.996991 0.00504805 -0.0773507 -2.92304 -0.00493379 0.999986 0.00166824 -0.510863 0.0773581 -0.00128158 0.997003 46.994 0 0 0 1
|
||||
53 0.996911 0.00581773 -0.0783264 -3.00373 -0.00604061 0.999978 -0.00260888 -0.521193 0.0783095 0.00307396 0.996924 47.9551 0 0 0 1
|
||||
54 0.996846 0.00678413 -0.0790757 -3.08343 -0.00711636 0.999967 -0.00392044 -0.534186 0.0790465 0.00447081 0.996861 48.9236 0 0 0 1
|
||||
55 0.996843 0.00557268 -0.0792034 -3.16262 -0.00562268 0.999984 -0.000408328 -0.54901 0.0791999 0.000852374 0.996858 49.9005 0 0 0 1
|
||||
56 0.996831 0.00375007 -0.0794568 -3.23868 -0.00354655 0.99999 0.00270227 -0.563036 0.0794661 -0.0024119 0.996835 50.8752 0 0 0 1
|
||||
57 0.996805 0.00190455 -0.0798474 -3.31582 -0.00164885 0.999993 0.00326822 -0.574113 0.0798531 -0.00312612 0.996802 51.8394 0 0 0 1
|
||||
58 0.996782 -0.00124932 -0.0801505 -3.39153 0.00141878 0.999997 0.0020573 -0.586659 0.0801477 -0.00216439 0.996781 52.8005 0 0 0 1
|
||||
59 0.996745 -0.0038025 -0.0805262 -3.4676 0.0038689 0.999992 0.000668539 -0.59892 0.080523 -0.00097791 0.996752 53.7575 0 0 0 1
|
||||
60 0.996643 -0.00519016 -0.0817059 -3.54489 0.00535256 0.999984 0.00176869 -0.60864 0.0816955 -0.00220009 0.996655 54.708 0 0 0 1
|
||||
61 0.996534 -0.0079249 -0.0828082 -3.62139 0.00842977 0.999948 0.00574894 -0.618858 0.0827583 -0.00642707 0.996549 55.6588 0 0 0 1
|
||||
62 0.996473 -0.00854289 -0.0834829 -3.69959 0.00945654 0.9999 0.0105549 -0.624401 0.0833844 -0.0113071 0.996453 56.6119 0 0 0 1
|
||||
63 0.996447 -0.00664747 -0.083957 -3.78502 0.00773966 0.99989 0.0126902 -0.629769 0.0838633 -0.0132949 0.996389 57.5607 0 0 0 1
|
||||
64 0.996335 -0.00522633 -0.0853755 -3.8689 0.00597793 0.999946 0.00855017 -0.636709 0.0853262 -0.0090292 0.996312 58.4941 0 0 0 1
|
||||
65 0.996221 -0.00343661 -0.0867892 -3.95276 0.00350579 0.999994 0.000644619 -0.644008 0.0867865 -0.000946448 0.996226 59.4131 0 0 0 1
|
||||
66 0.996144 -0.00149623 -0.0877201 -4.03806 0.00112725 0.99999 -0.00425562 -0.655271 0.0877256 0.00414033 0.996136 60.3236 0 0 0 1
|
||||
67 0.996055 0.00375138 -0.0886573 -4.12895 -0.00406723 0.999986 -0.00338223 -0.671324 0.0886434 0.00372948 0.996056 61.2274 0 0 0 1
|
||||
68 0.995922 0.00719305 -0.0899263 -4.21985 -0.0073202 0.999973 -0.00108421 -0.691307 0.089916 0.00173807 0.995948 62.125 0 0 0 1
|
||||
69 0.99582 0.00967277 -0.0908194 -4.30702 -0.00966905 0.999953 0.000481019 -0.708494 0.0908198 0.000399128 0.995867 63.0134 0 0 0 1
|
||||
70 0.995713 0.0102896 -0.0919182 -4.39131 -0.0103098 0.999947 0.000255248 -0.721276 0.091916 0.000693502 0.995767 63.8776 0 0 0 1
|
||||
71 0.99554 0.0119225 -0.0935844 -4.477 -0.0118725 0.999929 0.00109156 -0.734766 0.0935908 2.43836e-05 0.995611 64.7307 0 0 0 1
|
||||
72 0.995397 0.0126524 -0.0950024 -4.56121 -0.0125521 0.99992 0.00165348 -0.749039 0.0950157 -0.000453392 0.995476 65.5703 0 0 0 1
|
||||
73 0.995256 0.0126635 -0.0964665 -4.64297 -0.0125254 0.999919 0.00203772 -0.761909 0.0964846 -0.00081977 0.995334 66.3938 0 0 0 1
|
||||
74 0.995133 0.0127023 -0.0977168 -4.72623 -0.0124698 0.999918 0.00298947 -0.7711 0.0977468 -0.00175641 0.99521 67.2017 0 0 0 1
|
||||
75 0.994948 0.015548 -0.0991814 -4.81287 -0.0150604 0.999871 0.00566291 -0.780301 0.0992566 -0.0041406 0.995053 67.9995 0 0 0 1
|
||||
76 0.994794 0.0171065 -0.100462 -4.90076 -0.0162095 0.999821 0.009738 -0.788037 0.100611 -0.00805885 0.994893 68.7922 0 0 0 1
|
||||
77 0.994568 0.0201446 -0.102122 -4.98771 -0.0190681 0.999752 0.0115061 -0.794955 0.102328 -0.00949629 0.994705 69.5653 0 0 0 1
|
||||
78 0.99437 0.0229894 -0.10344 -5.07707 -0.0223435 0.999723 0.00739861 -0.804841 0.103581 -0.00504575 0.994608 70.3178 0 0 0 1
|
||||
79 0.99423 0.0228747 -0.1048 -5.16223 -0.0229899 0.999736 0.000108822 -0.81531 0.104774 0.00230114 0.994493 71.0475 0 0 0 1
|
||||
80 0.994077 0.0219938 -0.106431 -5.24094 -0.0227304 0.999725 -0.00571252 -0.825441 0.106276 0.00809789 0.994304 71.7584 0 0 0 1
|
||||
81 0.994023 0.0228054 -0.106762 -5.32437 -0.0236929 0.999694 -0.00705161 -0.831667 0.106569 0.00953897 0.99426 72.4548 0 0 0 1
|
||||
82 0.99386 0.0255543 -0.107653 -5.40648 -0.0260808 0.999654 -0.00348505 -0.846106 0.107527 0.00627133 0.994182 73.1337 0 0 0 1
|
||||
83 0.993702 0.0257681 -0.109048 -5.48436 -0.02605 0.99966 -0.00116096 -0.865059 0.108981 0.00399435 0.994036 73.7942 0 0 0 1
|
||||
84 0.99367 0.0225468 -0.110051 -5.5561 -0.0231761 0.999722 -0.00444219 -0.879535 0.10992 0.00696462 0.993916 74.4324 0 0 0 1
|
||||
85 0.993802 0.0143509 -0.110234 -5.61528 -0.0155198 0.999832 -0.00975281 -0.89282 0.110075 0.0114032 0.993858 75.0504 0 0 0 1
|
||||
86 0.993949 0.0102 -0.10937 -5.67796 -0.0118817 0.999821 -0.0147354 -0.904058 0.1092 0.0159457 0.993892 75.6535 0 0 0 1
|
||||
87 0.994244 0.0126451 -0.106395 -5.74524 -0.014328 0.999784 -0.0150673 -0.916949 0.106181 0.016505 0.99421 76.2455 0 0 0 1
|
||||
88 0.994592 0.0175824 -0.102356 -5.81375 -0.0189231 0.999747 -0.0121417 -0.930972 0.102117 0.0140129 0.994674 76.8222 0 0 0 1
|
||||
89 0.995077 0.0159295 -0.0978149 -5.86699 -0.0169123 0.999814 -0.00922648 -0.942909 0.0976498 0.0108353 0.995162 77.3862 0 0 0 1
|
||||
90 0.995665 0.0122046 -0.0922106 -5.90659 -0.0127358 0.999906 -0.00517412 -0.954487 0.0921387 0.00632606 0.995726 77.9355 0 0 0 1
|
||||
91 0.996426 0.00781104 -0.084105 -5.94257 -0.00798227 0.999967 -0.0016998 -0.970792 0.0840889 0.00236507 0.996455 78.4692 0 0 0 1
|
||||
92 0.997233 0.0114593 -0.0734453 -5.98049 -0.0116369 0.99993 -0.00198965 -0.981019 0.0734174 0.00283882 0.997297 78.9883 0 0 0 1
|
||||
93 0.998165 0.0165636 -0.0582361 -6.0154 -0.0167456 0.999856 -0.0026387 -0.99003 0.058184 0.00360906 0.998299 79.4952 0 0 0 1
|
||||
95 0.999635 0.0200255 -0.0181151 -6.02981 -0.0200623 0.999797 -0.00185529 -1.00502 0.0180742 0.00221804 0.999834 80.4727 0 0 0 1
|
||||
97 0.999162 0.015548 0.037857 -5.96801 -0.0155684 0.999879 0.000243918 -1.02389 -0.0378486 -0.000833085 0.999283 81.4025 0 0 0 1
|
||||
99 0.993959 0.0151454 0.108698 -5.84553 -0.0154328 0.999879 0.0018028 -1.04109 -0.108657 -0.00346942 0.994073 82.2952 0 0 0 1
|
||||
101 0.980499 0.0151504 0.195937 -5.64466 -0.0157106 0.999876 0.00130478 -1.05761 -0.195893 -0.00435763 0.980616 83.1489 0 0 0 1
|
||||
103 0.954186 0.0182833 0.298656 -5.36588 -0.0179595 0.999831 -0.00382887 -1.08348 -0.298675 -0.00171027 0.954353 83.9397 0 0 0 1
|
||||
105 0.910736 0.0194893 0.412529 -4.99648 -0.0175815 0.99981 -0.00842014 -1.10057 -0.412615 0.000415655 0.910905 84.6633 0 0 0 1
|
||||
107 0.848724 0.0183908 0.528517 -4.54701 -0.0135972 0.999824 -0.0129557 -1.12003 -0.528662 0.00380946 0.848824 85.2983 0 0 0 1
|
||||
109 0.772259 0.0170098 0.63508 -4.0183 -0.0106749 0.999848 -0.0137989 -1.14244 -0.635218 0.00387688 0.772323 85.8601 0 0 0 1
|
||||
111 0.684256 0.0156411 0.729074 -3.42903 -0.0102231 0.999877 -0.0118561 -1.16079 -0.72917 0.000659179 0.684332 86.3474 0 0 0 1
|
||||
113 0.590745 0.011826 0.806772 -2.77931 -0.000173089 0.999894 -0.0145301 -1.17886 -0.806858 0.00844396 0.590684 86.7443 0 0 0 1
|
||||
115 0.496173 0.0169181 0.868059 -2.10955 -0.00504039 0.999849 -0.0166057 -1.20339 -0.868209 0.00386392 0.496183 87.0847 0 0 0 1
|
||||
117 0.408192 0.0165355 0.912746 -1.40862 0.00231553 0.999814 -0.0191484 -1.2249 -0.912893 0.00992974 0.408078 87.3396 0 0 0 1
|
||||
119 0.333443 0.00543386 0.942754 -0.671521 0.0223493 0.999657 -0.0136666 -1.23662 -0.942505 0.025627 0.333208 87.522 0 0 0 1
|
||||
121 0.269054 0.0173163 0.962969 0.0638526 0.00961829 0.99974 -0.0206648 -1.26307 -0.963077 0.0148221 0.268818 87.7199 0 0 0 1
|
||||
123 0.214897 0.0233915 0.976357 0.843046 0.00677025 0.999653 -0.0254398 -1.30009 -0.976613 0.0120771 0.214664 87.8763 0 0 0 1
|
||||
125 0.171479 0.031054 0.984698 1.66216 0.0212619 0.999154 -0.0352125 -1.3179 -0.984958 0.0269747 0.170674 87.9743 0 0 0 1
|
||||
127 0.134011 0.0386308 0.990227 2.52547 0.0207141 0.998912 -0.041773 -1.34147 -0.990763 0.0261097 0.133065 88.0809 0 0 0 1
|
||||
129 0.10418 0.0310179 0.994075 3.44652 0.0195614 0.999256 -0.0332297 -1.39013 -0.994366 0.0229074 0.103496 88.1692 0 0 0 1
|
||||
131 0.0794366 0.027788 0.996453 4.42556 0.0261822 0.999208 -0.0299521 -1.42776 -0.996496 0.0284686 0.0786462 88.2295 0 0 0 1
|
||||
132 0.0693462 0.028443 0.997187 4.93885 0.0294969 0.999098 -0.0305488 -1.44582 -0.997156 0.0315324 0.0684447 88.2553 0 0 0 1
|
||||
133 0.0615414 0.0290168 0.997683 5.46907 0.0316982 0.999016 -0.0310108 -1.46406 -0.997601 0.0335332 0.0605611 88.2814 0 0 0 1
|
||||
134 0.0559347 0.029371 0.998002 6.0151 0.0334765 0.99895 -0.0312751 -1.48373 -0.997873 0.035159 0.0548927 88.307 0 0 0 1
|
||||
135 0.0504312 0.0304374 0.998264 6.58025 0.0349281 0.99887 -0.0322204 -1.50267 -0.998117 0.0364923 0.0493112 88.3306 0 0 0 1
|
||||
136 0.0445067 0.0311103 0.998525 7.16082 0.0355578 0.998832 -0.0327048 -1.52353 -0.998376 0.0369609 0.0433485 88.3531 0 0 0 1
|
||||
137 0.040243 0.0311989 0.998703 7.76375 0.0381603 0.998735 -0.0327376 -1.54487 -0.998461 0.0394283 0.0390016 88.3716 0 0 0 1
|
||||
138 0.0373982 0.0312027 0.998813 8.38568 0.0397152 0.998676 -0.0326855 -1.56772 -0.998511 0.0408905 0.0361095 88.3901 0 0 0 1
|
||||
139 0.0343726 0.0307634 0.998936 9.02449 0.0406913 0.998654 -0.0321549 -1.59059 -0.99858 0.0417533 0.0330745 88.4092 0 0 0 1
|
||||
140 0.0320861 0.0302694 0.999027 9.68038 0.0427798 0.998584 -0.03163 -1.61442 -0.998569 0.043753 0.0307457 88.4263 0 0 0 1
|
||||
141 0.0316452 0.0299561 0.99905 10.3542 0.0473602 0.998383 -0.0314363 -1.63856 -0.998376 0.04831 0.0301753 88.4381 0 0 0 1
|
||||
142 0.0327723 0.029714 0.999021 11.0457 0.0507142 0.998221 -0.0313539 -1.66282 -0.998175 0.0516921 0.031207 88.4556 0 0 0 1
|
||||
143 0.0353027 0.0297602 0.998933 11.7546 0.0522842 0.998133 -0.0315841 -1.68678 -0.998008 0.0533435 0.0336808 88.4781 0 0 0 1
|
||||
144 0.0392372 0.0297502 0.998787 12.4771 0.0547241 0.997993 -0.0318763 -1.71289 -0.99773 0.0559084 0.0375304 88.5062 0 0 0 1
|
||||
145 0.0437096 0.0293188 0.998614 13.219 0.0550685 0.997979 -0.0317105 -1.73922 -0.997525 0.0563782 0.0420067 88.5387 0 0 0 1
|
||||
146 0.0477725 0.0278103 0.998471 13.9764 0.0564652 0.997939 -0.0304971 -1.76499 -0.997261 0.0578358 0.0461037 88.5751 0 0 0 1
|
||||
147 0.0518486 0.0263145 0.998308 14.7472 0.0562418 0.997989 -0.0292271 -1.79222 -0.99707 0.057662 0.0502644 88.6178 0 0 0 1
|
||||
148 0.0560658 0.0242863 0.998132 15.5313 0.0531494 0.998214 -0.0272738 -1.82056 -0.997011 0.0545792 0.0546748 88.6693 0 0 0 1
|
||||
149 0.0600218 0.0233355 0.997924 16.3271 0.0522059 0.998285 -0.0264839 -1.84733 -0.996831 0.0536871 0.0587006 88.7243 0 0 0 1
|
||||
150 0.0641513 0.0243795 0.997642 17.1258 0.0492204 0.998408 -0.0275632 -1.87761 -0.996726 0.0508726 0.0628492 88.7821 0 0 0 1
|
||||
151 0.0672583 0.028483 0.997329 17.929 0.0470717 0.998389 -0.0316877 -1.91204 -0.996625 0.0490772 0.0658092 88.842 0 0 0 1
|
||||
152 0.0688453 0.0337446 0.997056 18.7357 0.0413971 0.99847 -0.0366509 -1.9468 -0.996768 0.0437985 0.067343 88.9041 0 0 0 1
|
||||
153 0.0686545 0.0370247 0.996953 19.5482 0.0387033 0.99846 -0.0397459 -1.98038 -0.996889 0.0413142 0.0671158 88.9665 0 0 0 1
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
0 1 0 0 0 0 1 0 0 -0 0 1 0 0 0 0 1
|
||||
1 0.99999 -0.00268679 -0.00354618 6.43221e-05 0.00267957 0.999994 -0.00204036 -0.0073023 0.00355164 0.00203084 0.999992 0.676456 0 0 0 1
|
||||
2 0.999969 -0.00120771 -0.00772489 -0.0100328 0.00117985 0.999993 -0.003611 -0.0111185 0.00772919 0.00360178 0.999964 1.37125 0 0 0 1
|
||||
3 0.999931 -0.00128098 -0.0117006 -0.0237327 0.00122052 0.999986 -0.00517227 -0.0136538 0.0117071 0.00515763 0.999918 2.08563 0 0 0 1
|
||||
4 0.99986 5.79321e-05 -0.0167106 -0.0402272 -0.000155312 0.999983 -0.00582618 -0.0194327 0.01671 0.00582796 0.999843 2.81528 0 0 0 1
|
||||
5 0.999772 -0.00118366 -0.0213077 -0.0572378 0.0010545 0.999981 -0.00607208 -0.0278191 0.0213145 0.00604822 0.999755 3.56204 0 0 0 1
|
||||
6 0.999662 0.000544425 -0.0259946 -0.081545 -0.000735472 0.999973 -0.00734051 -0.0358844 0.0259899 0.00735714 0.999635 4.32265 0 0 0 1
|
||||
7 0.999513 0.0032602 -0.0310324 -0.112137 -0.0035101 0.999962 -0.00800188 -0.0447209 0.0310051 0.00810691 0.999486 5.09668 0 0 0 1
|
||||
8 0.999361 0.00349173 -0.0355658 -0.143594 -0.00372162 0.999973 -0.00639979 -0.0532611 0.0355425 0.00652807 0.999347 5.88701 0 0 0 1
|
||||
9 0.999185 0.00268131 -0.040271 -0.176401 -0.0028332 0.999989 -0.00371493 -0.0632884 0.0402606 0.003826 0.999182 6.6897 0 0 0 1
|
||||
10 0.99903 0.00226305 -0.0439747 -0.211687 -0.00231163 0.999997 -0.00105382 -0.072362 0.0439722 0.00115445 0.999032 7.50361 0 0 0 1
|
||||
11 0.998896 0.00366482 -0.0468376 -0.254125 -0.00374515 0.999992 -0.00162734 -0.0820263 0.0468312 0.00180096 0.998901 8.32333 0 0 0 1
|
||||
12 0.998775 0.00304285 -0.0493866 -0.295424 -0.00313866 0.999993 -0.00186268 -0.0885739 0.0493806 0.00201541 0.998778 9.15211 0 0 0 1
|
||||
13 0.998682 7.09894e-05 -0.0513155 -0.334647 -0.000203775 0.999997 -0.00258241 -0.0938889 0.0513152 0.00258946 0.998679 9.98839 0 0 0 1
|
||||
14 0.998565 -8.82523e-05 -0.0535542 -0.380835 -9.36659e-06 0.999998 -0.00182255 -0.10173 0.0535542 0.00182044 0.998563 10.832 0 0 0 1
|
||||
15 0.998481 -0.00146793 -0.0550718 -0.429135 0.0013525 0.999997 -0.00213307 -0.111427 0.0550748 0.00205535 0.99848 11.687 0 0 0 1
|
||||
16 0.998373 0.000738731 -0.0570218 -0.483426 -0.000993083 0.99999 -0.00443241 -0.122139 0.0570179 0.00448183 0.998363 12.5483 0 0 0 1
|
||||
17 0.998285 0.00120595 -0.0585258 -0.540056 -0.00162301 0.999974 -0.00707907 -0.132598 0.0585158 0.00716191 0.998261 13.4179 0 0 0 1
|
||||
18 0.998165 0.00516151 -0.060337 -0.6023 -0.00570195 0.999945 -0.00878826 -0.143753 0.0602883 0.00911617 0.998139 14.2952 0 0 0 1
|
||||
19 0.998101 0.00610094 -0.0612993 -0.66308 -0.00663017 0.999942 -0.00843386 -0.157854 0.0612443 0.00882427 0.998084 15.1802 0 0 0 1
|
||||
20 0.998014 0.0052997 -0.0627662 -0.722045 -0.00574767 0.999959 -0.0069587 -0.172847 0.0627268 0.00730564 0.998004 16.074 0 0 0 1
|
||||
21 0.99792 0.00591748 -0.0641975 -0.78346 -0.00627924 0.999966 -0.00543487 -0.186221 0.0641631 0.00582667 0.997922 16.9738 0 0 0 1
|
||||
22 0.997857 0.00547694 -0.0651993 -0.845347 -0.00584101 0.999968 -0.00539455 -0.199741 0.0651677 0.00576382 0.997858 17.8786 0 0 0 1
|
||||
23 0.997737 0.00536917 -0.0670282 -0.908218 -0.00579979 0.999964 -0.0062316 -0.212775 0.0669924 0.00660624 0.997732 18.7877 0 0 0 1
|
||||
24 0.997663 0.00386695 -0.0682185 -0.971291 -0.00435203 0.999966 -0.00696344 -0.226442 0.0681893 0.00724406 0.997646 19.7046 0 0 0 1
|
||||
25 0.997629 0.00410637 -0.0687004 -1.03663 -0.00448288 0.999976 -0.00532714 -0.239555 0.0686769 0.00562249 0.997623 20.6257 0 0 0 1
|
||||
26 0.997617 0.00588773 -0.0687501 -1.10557 -0.0060349 0.99998 -0.00193325 -0.254273 0.0687373 0.00234355 0.997632 21.55 0 0 0 1
|
||||
27 0.997662 0.00693766 -0.0679906 -1.17297 -0.00682806 0.999975 0.0018442 -0.26563 0.0680017 -0.00137565 0.997684 22.4875 0 0 0 1
|
||||
28 0.997774 0.00579785 -0.0664343 -1.23728 -0.00550265 0.999974 0.00462554 -0.271962 0.0664594 -0.00424968 0.99778 23.4285 0 0 0 1
|
||||
29 0.997872 0.00589563 -0.0649408 -1.30214 -0.00556012 0.99997 0.00534586 -0.277922 0.0649704 -0.0049734 0.997875 24.3732 0 0 0 1
|
||||
30 0.997958 0.00627024 -0.0635595 -1.36462 -0.00612984 0.999978 0.00240374 -0.285335 0.0635732 -0.00200922 0.997975 25.314 0 0 0 1
|
||||
31 0.998004 0.00714074 -0.0627411 -1.42783 -0.00731158 0.99997 -0.00249375 -0.293171 0.0627215 0.00294751 0.998027 26.2605 0 0 0 1
|
||||
32 0.99808 0.0063692 -0.0616159 -1.48954 -0.00671918 0.999962 -0.00547459 -0.302321 0.0615787 0.00587809 0.998085 27.2168 0 0 0 1
|
||||
33 0.99813 0.00376787 -0.0610159 -1.54654 -0.00404632 0.999982 -0.0044408 -0.313516 0.0609981 0.00467938 0.998127 28.1829 0 0 0 1
|
||||
34 0.998113 0.00193972 -0.0613743 -1.60668 -0.00191171 0.999998 0.000515183 -0.324411 0.0613752 -0.000396881 0.998115 29.1626 0 0 0 1
|
||||
35 0.99806 -0.0017885 -0.062228 -1.66532 0.00203402 0.99999 0.00388232 -0.335656 0.0622204 -0.00400136 0.998054 30.1428 0 0 0 1
|
||||
36 0.997945 -0.00917543 -0.0634115 -1.72059 0.00939451 0.999951 0.00315749 -0.343316 0.0633794 -0.00374672 0.997982 31.1244 0 0 0 1
|
||||
37 0.997825 -0.0112684 -0.0649459 -1.78049 0.011242 0.999937 -0.000771312 -0.350864 0.0649504 3.95099e-05 0.997888 32.1064 0 0 0 1
|
||||
38 0.997739 -0.0110126 -0.0662983 -1.85007 0.0107254 0.999932 -0.00468596 -0.361068 0.0663454 0.00396429 0.997789 33.0886 0 0 0 1
|
||||
39 0.997597 -0.00959503 -0.0686163 -1.92119 0.00924037 0.999942 -0.00548426 -0.373466 0.0686649 0.00483704 0.997628 34.0774 0 0 0 1
|
||||
40 0.99755 -0.0095802 -0.0693031 -1.99331 0.00931271 0.999948 -0.00418184 -0.387047 0.0693396 0.00352619 0.997587 35.0736 0 0 0 1
|
||||
41 0.997473 -0.00634387 -0.0707596 -2.0707 0.00626661 0.99998 -0.0013139 -0.403858 0.0707665 0.00086716 0.997493 36.0721 0 0 0 1
|
||||
42 0.99739 -0.00624366 -0.0719343 -2.14553 0.00625582 0.99998 -5.62375e-05 -0.416888 0.0719332 -0.000393917 0.997409 37.0728 0 0 0 1
|
||||
43 0.997312 -0.00473093 -0.0731254 -2.21909 0.00492848 0.999985 0.00252135 -0.428625 0.0731123 -0.00287497 0.99732 38.0643 0 0 0 1
|
||||
44 0.997318 -0.00467696 -0.0730348 -2.29215 0.00509473 0.999972 0.00553481 -0.440023 0.0730068 -0.00589206 0.997314 39.0618 0 0 0 1
|
||||
45 0.997274 0.00138304 -0.0737801 -2.37574 -0.000811217 0.999969 0.00777971 -0.447869 0.0737886 -0.00769865 0.997244 40.0548 0 0 0 1
|
||||
46 0.997262 0.00149131 -0.0739326 -2.45529 -0.000969511 0.999974 0.00709318 -0.454763 0.0739413 -0.00700208 0.997238 41.0557 0 0 0 1
|
||||
47 0.997266 0.00175929 -0.0738699 -2.53081 -0.00136899 0.999985 0.00533379 -0.460519 0.0738782 -0.00521809 0.997254 42.0518 0 0 0 1
|
||||
48 0.997253 0.00408494 -0.0739555 -2.61212 -0.00386552 0.999988 0.00310988 -0.469863 0.0739673 -0.00281546 0.997257 43.0493 0 0 0 1
|
||||
49 0.997185 0.00365371 -0.0748884 -2.68799 -0.00342799 0.999989 0.00314243 -0.47951 0.0748991 -0.00287687 0.997187 44.0473 0 0 0 1
|
||||
50 0.997077 0.00181435 -0.0763845 -2.76071 -0.00149292 0.99999 0.00426495 -0.487845 0.0763915 -0.00413845 0.997069 45.0403 0 0 0 1
|
||||
51 0.997018 0.00246727 -0.0771352 -2.84117 -0.00206285 0.999984 0.00532227 -0.499132 0.0771471 -0.00514727 0.997006 46.0244 0 0 0 1
|
||||
52 0.996991 0.00504805 -0.0773507 -2.92304 -0.00493379 0.999986 0.00166824 -0.510863 0.0773581 -0.00128158 0.997003 46.994 0 0 0 1
|
||||
53 0.996911 0.00581773 -0.0783264 -3.00373 -0.00604061 0.999978 -0.00260888 -0.521193 0.0783095 0.00307396 0.996924 47.9551 0 0 0 1
|
||||
54 0.996846 0.00678413 -0.0790757 -3.08343 -0.00711636 0.999967 -0.00392044 -0.534186 0.0790465 0.00447081 0.996861 48.9236 0 0 0 1
|
||||
55 0.996843 0.00557268 -0.0792034 -3.16262 -0.00562268 0.999984 -0.000408328 -0.54901 0.0791999 0.000852374 0.996858 49.9005 0 0 0 1
|
||||
56 0.996831 0.00375007 -0.0794568 -3.23868 -0.00354655 0.99999 0.00270227 -0.563036 0.0794661 -0.0024119 0.996835 50.8752 0 0 0 1
|
||||
57 0.996805 0.00190455 -0.0798474 -3.31582 -0.00164885 0.999993 0.00326822 -0.574113 0.0798531 -0.00312612 0.996802 51.8394 0 0 0 1
|
||||
58 0.996782 -0.00124932 -0.0801505 -3.39153 0.00141878 0.999997 0.0020573 -0.586659 0.0801477 -0.00216439 0.996781 52.8005 0 0 0 1
|
||||
59 0.996745 -0.0038025 -0.0805262 -3.4676 0.0038689 0.999992 0.000668539 -0.59892 0.080523 -0.00097791 0.996752 53.7575 0 0 0 1
|
||||
60 0.996643 -0.00519016 -0.0817059 -3.54489 0.00535256 0.999984 0.00176869 -0.60864 0.0816955 -0.00220009 0.996655 54.708 0 0 0 1
|
||||
61 0.996534 -0.0079249 -0.0828082 -3.62139 0.00842977 0.999948 0.00574894 -0.618858 0.0827583 -0.00642707 0.996549 55.6588 0 0 0 1
|
||||
62 0.996473 -0.00854289 -0.0834829 -3.69959 0.00945654 0.9999 0.0105549 -0.624401 0.0833844 -0.0113071 0.996453 56.6119 0 0 0 1
|
||||
63 0.996447 -0.00664747 -0.083957 -3.78502 0.00773966 0.99989 0.0126902 -0.629769 0.0838633 -0.0132949 0.996389 57.5607 0 0 0 1
|
||||
64 0.996335 -0.00522633 -0.0853755 -3.8689 0.00597793 0.999946 0.00855017 -0.636709 0.0853262 -0.0090292 0.996312 58.4941 0 0 0 1
|
||||
65 0.996221 -0.00343661 -0.0867892 -3.95276 0.00350579 0.999994 0.000644619 -0.644008 0.0867865 -0.000946448 0.996226 59.4131 0 0 0 1
|
||||
66 0.996144 -0.00149623 -0.0877201 -4.03806 0.00112725 0.99999 -0.00425562 -0.655271 0.0877256 0.00414033 0.996136 60.3236 0 0 0 1
|
||||
67 0.996055 0.00375138 -0.0886573 -4.12895 -0.00406723 0.999986 -0.00338223 -0.671324 0.0886434 0.00372948 0.996056 61.2274 0 0 0 1
|
||||
68 0.995922 0.00719305 -0.0899263 -4.21985 -0.0073202 0.999973 -0.00108421 -0.691307 0.089916 0.00173807 0.995948 62.125 0 0 0 1
|
||||
69 0.99582 0.00967277 -0.0908194 -4.30702 -0.00966905 0.999953 0.000481019 -0.708494 0.0908198 0.000399128 0.995867 63.0134 0 0 0 1
|
||||
70 0.995713 0.0102896 -0.0919182 -4.39131 -0.0103098 0.999947 0.000255248 -0.721276 0.091916 0.000693502 0.995767 63.8776 0 0 0 1
|
||||
71 0.99554 0.0119225 -0.0935844 -4.477 -0.0118725 0.999929 0.00109156 -0.734766 0.0935908 2.43836e-05 0.995611 64.7307 0 0 0 1
|
||||
72 0.995397 0.0126524 -0.0950024 -4.56121 -0.0125521 0.99992 0.00165348 -0.749039 0.0950157 -0.000453392 0.995476 65.5703 0 0 0 1
|
||||
73 0.995256 0.0126635 -0.0964665 -4.64297 -0.0125254 0.999919 0.00203772 -0.761909 0.0964846 -0.00081977 0.995334 66.3938 0 0 0 1
|
||||
74 0.995133 0.0127023 -0.0977168 -4.72623 -0.0124698 0.999918 0.00298947 -0.7711 0.0977468 -0.00175641 0.99521 67.2017 0 0 0 1
|
||||
75 0.994948 0.015548 -0.0991814 -4.81287 -0.0150604 0.999871 0.00566291 -0.780301 0.0992566 -0.0041406 0.995053 67.9995 0 0 0 1
|
||||
76 0.994794 0.0171065 -0.100462 -4.90076 -0.0162095 0.999821 0.009738 -0.788037 0.100611 -0.00805885 0.994893 68.7922 0 0 0 1
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
|
@ -1,80 +0,0 @@
|
|||
3 7 19
|
||||
|
||||
0 0 -385.989990234375 387.1199951171875
|
||||
1 0 -38.439998626708984375 492.1199951171875
|
||||
2 0 -667.91998291015625 123.1100006103515625
|
||||
0 1 383.8800048828125 -15.299989700317382812
|
||||
1 1 559.75 -106.15000152587890625
|
||||
0 2 591.54998779296875 136.44000244140625
|
||||
1 2 863.8599853515625 -23.469970703125
|
||||
2 2 494.720001220703125 112.51999664306640625
|
||||
0 3 592.5 125.75
|
||||
1 3 861.08001708984375 -35.219970703125
|
||||
2 3 498.540008544921875 101.55999755859375
|
||||
0 4 348.720001220703125 558.3800048828125
|
||||
1 4 776.030029296875 483.529998779296875
|
||||
2 4 7.7800288200378417969 326.350006103515625
|
||||
0 5 14.010009765625 96.420013427734375
|
||||
1 5 207.1300048828125 118.3600006103515625
|
||||
0 6 202.7599945068359375 340.989990234375
|
||||
1 6 543.18011474609375 294.80999755859375
|
||||
2 6 -58.419979095458984375 110.8300018310546875
|
||||
|
||||
0.29656188120312942935
|
||||
-0.035318354384285870207
|
||||
0.31252101755032046793
|
||||
0.47230274932665988752
|
||||
-0.3572340863744113415
|
||||
-2.0517704282499575896
|
||||
1430.031982421875
|
||||
-7.5572756941255647689e-08
|
||||
3.2377570134516087119e-14
|
||||
|
||||
0.28532097381985194184
|
||||
-0.27699838370789808817
|
||||
0.048601169984112867206
|
||||
-1.2598695987143850861
|
||||
-0.049063798188844320869
|
||||
-1.9586867140445654023
|
||||
1432.137451171875
|
||||
-7.3171918302250560373e-08
|
||||
3.1759419042137054801e-14
|
||||
|
||||
0.057491325683772541433
|
||||
0.34853090049579965592
|
||||
0.47985129303736057116
|
||||
8.1963904289063389541
|
||||
6.5146840788718787252
|
||||
-3.8392804395897406344
|
||||
1572.047119140625
|
||||
-1.5962623223231275915e-08
|
||||
-1.6507904730136101212e-14
|
||||
|
||||
-11.317351620610928364
|
||||
3.3594874875767186673
|
||||
-42.755222607849105998
|
||||
|
||||
4.2648515634753199066
|
||||
-8.4629358700849355301
|
||||
-22.252086323427270997
|
||||
|
||||
10.996977688149536689
|
||||
-9.2123370180278048025
|
||||
-29.206739014051372294
|
||||
|
||||
10.935342607054865383
|
||||
-9.4338917557810741954
|
||||
-29.112263909175499776
|
||||
|
||||
15.714024935401759819
|
||||
1.3745079651566265433
|
||||
-59.286834979937104606
|
||||
|
||||
-1.3624227800805182031
|
||||
-4.1979357415396094666
|
||||
-21.034430148188398846
|
||||
|
||||
6.7690173115899296974
|
||||
-4.7352452433700786827
|
||||
-53.605307875695892506
|
||||
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
VERTEX_SE2 0 0.000000 0.000000 0.000000
|
||||
VERTEX_SE2 1 0.774115 1.183389 1.576173
|
||||
VERTEX_SE2 2 -0.262420 2.047059 -3.127594
|
||||
VERTEX_SE2 3 -1.605649 0.993891 -1.561134
|
||||
EDGE_SE2 0 1 0.774115 1.183389 1.576173 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 1 2 0.869231 1.031877 1.579418 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 2 3 1.357840 1.034262 1.566460 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 2 0 0.303492 1.865011 -3.113898 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 0 3 -0.928526 0.993695 -1.563542 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
VERTEX_SE2 0 0.000000 -0.000000 0.000000
|
||||
VERTEX_SE2 1 0.955797 1.137643 1.543041
|
||||
VERTEX_SE2 2 0.129867 1.989651 3.201259
|
||||
VERTEX_SE2 3 -1.047715 0.933789 4.743682
|
||||
EDGE_SE2 0 1 0.774115 1.183389 1.576173 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 1 2 0.869231 1.031877 1.579418 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 2 3 1.357840 1.034262 1.566460 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 2 0 0.303492 1.865011 -3.113898 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 0 3 -0.928526 0.993695 -1.563542 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
|
|
@ -0,0 +1,9 @@
|
|||
VERTEX_SE2 0 0.000000 0.000000 0.000000
|
||||
VERTEX_SE2 1 0.000000 0.000000 1.565449
|
||||
VERTEX_SE2 2 0.000000 0.000000 3.134143
|
||||
VERTEX_SE2 3 0.000000 0.000000 4.710123
|
||||
EDGE_SE2 0 1 0.774115 1.183389 1.576173 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 1 2 0.869231 1.031877 1.579418 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 2 3 1.357840 1.034262 1.566460 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 2 0 0.303492 1.865011 -3.113898 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
EDGE_SE2 0 3 -0.928526 0.993695 -1.563542 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
VERTEX_SE2 0 0.000000 0.000000 0.000000
|
||||
VERTEX_SE2 1 1.030390 0.011350 -0.081596
|
||||
VERTEX_SE2 2 2.036137 -0.129733 -0.301887
|
||||
VERTEX_SE2 3 3.015097 -0.442395 -0.345514
|
||||
VERTEX_SE2 4 3.343949 0.506678 1.214715
|
||||
VERTEX_SE2 5 3.684491 1.464049 1.183785
|
||||
VERTEX_SE2 6 4.064626 2.414783 1.176333
|
||||
VERTEX_SE2 7 4.429778 3.300180 1.259169
|
||||
VERTEX_SE2 8 4.128877 2.321481 -1.825391
|
||||
VERTEX_SE2 9 3.884653 1.327509 -1.953016
|
||||
VERTEX_SE2 10 3.531067 0.388263 -2.148934
|
||||
EDGE_SE2 0 1 1.030390 0.011350 -0.081596 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 1 2 1.013900 -0.058639 -0.220291 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 2 3 1.027650 -0.007456 -0.043627 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 3 4 -0.012016 1.004360 1.560229 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 4 5 1.016030 0.014565 -0.030930 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 5 6 1.023890 0.006808 -0.007452 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 6 7 0.957734 0.003159 0.082836 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 7 8 -1.023820 -0.013668 -3.084560 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 8 9 1.023440 0.013984 -0.127624 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 9 10 1.003350 0.022250 -0.195918 44.721360 0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 5 9 0.033943 0.032439 3.073637 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
EDGE_SE2 3 10 0.044020 0.988477 -1.553511 44.721360 -0.000000 0.000000 44.721360 0.000000 30.901699
|
||||
|
|
@ -0,0 +1,71 @@
|
|||
VERTEX_SE3:QUAT 0 1.63791e-12 7.56548e-14 -3.02811e-12 5.35657e-13 2.43616e-13 9.71152e-14 1
|
||||
VERTEX_SE3:QUAT 1 1.01609 0.00274307 -0.0351514 -0.499545 0.247735 0.723569 -0.406854
|
||||
VERTEX_SE3:QUAT 2 1.99996 0.0304956 -0.040662 0.403501 -0.294714 -0.4254 0.754563
|
||||
VERTEX_SE3:QUAT 3 1.94371 1.06535 0.0118614 -0.0471731 -0.541615 0.820893 0.17482
|
||||
VERTEX_SE3:QUAT 4 0.962753 0.999477 0.0211017 -0.19663 -0.66009 0.470743 0.551379
|
||||
VERTEX_SE3:QUAT 5 -0.00956768 0.965396 -0.021854 -0.320221 -0.518368 0.47521 0.634766
|
||||
VERTEX_SE3:QUAT 6 -0.0863793 1.97682 0.000531117 -0.0173439 -0.573793 -0.450627 0.683663
|
||||
VERTEX_SE3:QUAT 7 0.918905 2.01556 -0.0139773 0.56169 -0.440513 0.199057 0.671438
|
||||
VERTEX_SE3:QUAT 8 1.92094 2.05524 0.0469884 0.0073084 -0.372357 -0.467582 0.801663
|
||||
VERTEX_SE3:QUAT 9 1.86182 2.05449 1.09237 0.0131731 -0.05784 0.0335652 0.997674
|
||||
VERTEX_SE3:QUAT 10 0.880176 2.02406 1.00997 -0.39342 -0.287909 0.757918 0.433462
|
||||
VERTEX_SE3:QUAT 11 -0.0960463 1.98653 0.995791 0.434103 -0.199044 0.585176 0.655367
|
||||
VERTEX_SE3:QUAT 12 -0.0911401 0.997117 0.988217 -0.0925477 0.572872 0.537294 0.612019
|
||||
VERTEX_SE3:QUAT 13 0.948316 1.02239 0.991745 0.142484 0.560062 0.750078 0.321578
|
||||
VERTEX_SE3:QUAT 14 1.92631 1.08945 1.06749 0.23878 0.380837 0.796564 -0.404269
|
||||
VERTEX_SE3:QUAT 15 1.95398 0.0777667 0.982353 -0.384392 0.58733 0.685207 -0.194366
|
||||
VERTEX_SE3:QUAT 16 0.946032 0.0482667 0.952308 -0.218979 0.186315 -0.494185 0.820437
|
||||
VERTEX_SE3:QUAT 17 -0.0625076 -0.034424 0.942171 0.514725 -0.185043 -0.44771 0.707371
|
||||
VERTEX_SE3:QUAT 18 -0.083807 -0.0106666 1.9853 0.00792651 1.98919e-05 -0.00128106 0.999968
|
||||
VERTEX_SE3:QUAT 19 0.918067 -0.000897795 1.92157 -0.342141 0.241241 -0.726975 0.544288
|
||||
VERTEX_SE3:QUAT 20 1.90041 0.0323631 2.00636 0.412572 -0.0930131 -0.133075 0.896339
|
||||
VERTEX_SE3:QUAT 21 1.84895 1.05013 2.0738 -0.580757 0.35427 0.729393 -0.0721062
|
||||
VERTEX_SE3:QUAT 22 0.880221 1.00671 1.99021 0.147752 0.355662 0.917953 0.095058
|
||||
VERTEX_SE3:QUAT 23 -0.0950872 1.00374 1.95013 -0.29909 -0.0578461 0.857019 0.415594
|
||||
VERTEX_SE3:QUAT 24 -0.111581 1.97979 1.98762 0.565153 0.214463 -0.523058 0.600848
|
||||
VERTEX_SE3:QUAT 25 0.837568 2.01589 2.03075 -0.284756 0.369992 0.875484 -0.124692
|
||||
VERTEX_SE3:QUAT 26 1.82708 2.05081 2.07052 0.254696 0.250865 0.653216 0.667462
|
||||
EDGE_SE3:QUAT 0 1 1.00497 0.002077 -0.015539 -0.508004 0.250433 0.711222 -0.416386 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 1 2 -0.200593 0.339956 -0.908079 -0.093598 0.151993 0.42829 0.885836 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 2 3 -0.922791 0.330629 -0.292682 0.365657 -0.051986 0.924849 -0.090813 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 3 4 0.893075 0.246476 0.331154 -0.285927 0.341221 -0.267609 0.854517 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 4 5 0.280674 0.244242 0.923726 0.035064 0.21101 0.083834 0.973251 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 5 6 0.955621 0.355669 -0.025152 -0.306713 0.131221 -0.781587 0.527096 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 6 7 -0.076631 0.636081 -0.771439 0.702021 0.326514 0.122181 0.620988 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 7 8 0.582761 -0.721177 -0.376875 -0.733841 -0.170725 -0.256653 0.605359 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 8 9 0.600312 0.298765 0.767014 0.057612 0.332574 0.486324 0.805956 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 9 10 -0.986649 0.03008 -0.008766 -0.362177 -0.253215 0.763748 0.470531 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 10 11 0.275109 0.534769 0.823463 0.450708 -0.472399 -0.432689 0.621677 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 11 12 -0.61882 0.024878 0.773748 0.0927029 0.786162 -0.21122 0.573359 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 12 13 -0.175537 -0.730832 0.634529 -0.018628 0.006375 0.428306 0.903419 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 13 14 -0.700208 -0.245198 0.637353 -0.035865 0.273394 0.645363 0.712374 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 14 15 0.373495 0.373768 -0.846199 0.400323 0.310362 -0.422222 0.751762 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 15 16 0.648588 0.157829 0.72252 0.781502 -0.210141 -0.501005 -0.30674 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 16 17 -0.390339 -0.702656 -0.572321 0.765815 0.055816 0.032478 0.63981 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 17 18 -0.261114 0.908685 0.421318 -0.501833 0.166567 0.448468 0.720622 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 18 19 1.00815 0.012634 -0.029822 -0.347007 0.205082 -0.740641 0.537569 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 19 20 -0.162376 0.581623 0.810804 0.628338 0.075411 0.650639 0.41973 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 20 21 -0.358942 0.627689 -0.704045 -0.469133 0.542456 0.530583 -0.451816 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 21 22 0.362417 0.298352 0.854822 0.004058 -0.696926 0.140345 0.703265 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 22 23 0.934942 0.020321 -0.358044 -0.445461 0.260916 -0.379862 0.767589 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 23 24 0.741887 -0.657659 0.215293 -0.584859 0.196138 0.688031 0.38221 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 24 25 0.300145 0.82011 -0.39974 0.46538 -0.593595 -0.202131 0.624668 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 25 26 -0.85591 0.022701 -0.510794 0.12929 -0.685192 -0.503707 0.509978 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 0 5 0.026721 0.990497 -0.007651 -0.317476 -0.510239 0.467341 0.648427 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 3 8 0.390516 -0.401461 -0.830724 0.503106 -0.367814 0.780584 0.047806 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 4 1 -0.813838 -0.446181 0.319175 0.224903 -0.031827 0.97265 0.048561 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 4 13 0.571273 -0.805401 0.077339 0.892031 0.329761 0.275468 0.140201 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 5 12 0.389794 -0.882655 0.268063 0.712423 0.550662 0.275339 0.33677 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 6 11 0.800298 0.505022 0.361738 0.739335 0.419366 0.443817 0.283801 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 10 13 -0.912531 0.430955 -0.018942 0.830493 -0.093519 0.272041 0.477001 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 12 23 -0.797606 0.437737 0.311476 -0.657137 -0.196625 0.136652 0.714728 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 13 22 -0.116836 0.952032 0.269398 -0.216437 0.086571 0.260965 0.936781 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 14 21 0.749295 0.373389 0.581641 0.253048 0.511007 -0.537262 0.621439 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 16 1 0.160985 0.555966 -0.811911 0.748057 0.122381 -0.369631 0.537407 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 18 23 0.028909 1.02689 -0.00265 -0.294167 -0.071607 0.850901 0.429308 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 19 16 -0.230711 0.750637 -0.607511 0.14647 -0.102538 0.297899 0.937704 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 20 15 -0.031986 -0.741129 -0.728721 -0.278926 0.731172 0.404675 -0.473103 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 22 19 -0.332601 0.704401 -0.687251 -0.372165 -0.054346 0.713024 0.591725 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 22 25 0.347067 -0.634646 0.657147 0.018567 0.476762 0.040939 0.877882 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 25 10 0.388971 -0.723981 -0.559653 -0.373459 -0.014654 -0.696123 0.612965 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
EDGE_SE3:QUAT 26 21 -0.979482 -0.024822 0.043763 -0.326753 0.819942 0.292615 0.367837 2500 0 0 0 0 0 2500 0 0 0 0 2500 0 0 0 400 0 0 400 0 400
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
|
||||
VERTEX_SE3:QUAT 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423
|
||||
EDGE_SE3:QUAT 0 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423 10000 1 1 1 1 1 10000 2 2 2 2 10000 3 3 3 10000 4 4 10000 5 10000
|
||||
|
|
@ -0,0 +1,3 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000
|
||||
VERTEX_SE3:QUAT 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230
|
||||
EDGE_SE3:QUAT 0 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230 10000.000000 1.000000 1.000000 1.000000 1.000000 1.000000 10000.000000 2.000000 2.000000 2.000000 2.000000 10000.000000 3.000000 3.000000 3.000000 10000.000000 4.000000 4.000000 10000.000000 5.000000 10000.0000
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0 0 0 0 0 0 1
|
||||
VERTEX_SE3:QUAT 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423
|
||||
VERTEX_SE3:QUAT 2 1.9935 0.023275 0.003793 0.351729 0.597838 -0.584174 -0.421446
|
||||
VERTEX_SE3:QUAT 3 2.00429 1.02431 0.018047 0.331798 -0.200659 0.919323 0.067024
|
||||
VERTEX_SE3:QUAT 4 0.999908 1.05507 0.020212 -0.035697 -0.46249 0.445933 0.765488
|
||||
EDGE_SE3:QUAT 0 1 1.00137 0.01539 0.004948 0.190253 0.283162 -0.392318 0.85423 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 -0.311512 -0.656877 0.678505 -0.105373 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 2 3 0.910927 0.055169 -0.411761 0.595795 -0.561677 0.079353 0.568551 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592076 0.30338 -0.513225 0.542222 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 1 4 -0.577841 0.628016 -0.543592 -0.12525 -0.534379 0.769122 0.327419 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
EDGE_SE3:QUAT 3 0 -0.623267 0.086928 0.773222 0.104639 0.627755 0.766795 0.083672 10000 0 0 0 0 0 10000 0 0 0 0 10000 0 0 0 10000 0 0 10000 0 10000
|
||||
|
|
@ -0,0 +1,11 @@
|
|||
VERTEX_SE3:QUAT 0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000
|
||||
VERTEX_SE3:QUAT 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230
|
||||
VERTEX_SE3:QUAT 2 1.993500 0.023275 0.003793 -0.351729 -0.597838 0.584174 0.421446
|
||||
VERTEX_SE3:QUAT 3 2.004291 1.024305 0.018047 0.331798 -0.200659 0.919323 0.067024
|
||||
VERTEX_SE3:QUAT 4 0.999908 1.055073 0.020212 -0.035697 -0.462490 0.445933 0.765488
|
||||
EDGE_SE3:QUAT 0 1 1.001367 0.015390 0.004948 0.190253 0.283162 -0.392318 0.854230 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 1 2 0.523923 0.776654 0.326659 0.311512 0.656877 -0.678505 0.105373 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 2 3 0.910927 0.055169 -0.411761 0.595795 -0.561677 0.079353 0.568551 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 3 4 0.775288 0.228798 -0.596923 -0.592077 0.303380 -0.513226 0.542221 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 1 4 -0.577841 0.628016 -0.543592 -0.125250 -0.534379 0.769122 0.327419 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
EDGE_SE3:QUAT 3 0 -0.623267 0.086928 0.773222 0.104639 0.627755 0.766795 0.083672 10000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 0.000000 10000.000000 0.000000 0.000000 10000.000000 0.000000 10000.000000
|
||||
|
|
@ -120,15 +120,15 @@ int main(int argc, char** argv) {
|
|||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2.0, 0.0, 0.0), odometryNoise));
|
||||
|
||||
// 2b. Add "GPS-like" measurements
|
||||
// We will use our custom UnaryFactor for this.
|
||||
noiseModel::Diagonal::shared_ptr unaryNoise = noiseModel::Diagonal::Sigmas((Vector(2) << 0.1, 0.1)); // 10cm std on x,y
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.push_back(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(1, 0.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(2, 2.0, 0.0, unaryNoise));
|
||||
graph.add(boost::make_shared<UnaryFactor>(3, 4.0, 0.0, unaryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
|||
|
|
@ -65,15 +65,15 @@ int main(int argc, char** argv) {
|
|||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.push_back(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
graph.add(PriorFactor<Pose2>(1, priorMean, priorNoise));
|
||||
|
||||
// Add odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0);
|
||||
// For simplicity, we will use the same noise model for each odometry factor
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, odometry, odometryNoise));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
|||
|
|
@ -81,13 +81,13 @@ int main(int argc, char** argv) {
|
|||
// Add a prior on pose x1 at the origin. A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
|
||||
graph.push_back(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
|
||||
graph.add(PriorFactor<Pose2>(x1, prior, priorNoise)); // add directly to graph
|
||||
|
||||
// Add two odometry factors
|
||||
Pose2 odometry(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case)
|
||||
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1)); // 20cm std on x,y, 0.1 rad on theta
|
||||
graph.push_back(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
|
||||
graph.push_back(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(x1, x2, odometry, odometryNoise));
|
||||
graph.add(BetweenFactor<Pose2>(x2, x3, odometry, odometryNoise));
|
||||
|
||||
// Add Range-Bearing measurements to two different landmarks
|
||||
// create a noise model for the landmark measurements
|
||||
|
|
@ -101,9 +101,9 @@ int main(int argc, char** argv) {
|
|||
range32 = 2.0;
|
||||
|
||||
// Add Bearing-Range factors
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
|
||||
graph.push_back(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x1, l1, bearing11, range11, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x2, l1, bearing21, range21, measurementNoise));
|
||||
graph.add(BearingRangeFactor<Pose2, Point2>(x3, l2, bearing32, range32, measurementNoise));
|
||||
|
||||
// Print
|
||||
graph.print("Factor Graph:\n");
|
||||
|
|
|
|||
|
|
@ -72,23 +72,23 @@ int main(int argc, char** argv) {
|
|||
// 2a. Add a prior on the first pose, setting it to the origin
|
||||
// A prior factor consists of a mean and a noise model (covariance matrix)
|
||||
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Sigmas((Vector(3) << 0.3, 0.3, 0.1));
|
||||
graph.push_back(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
graph.add(PriorFactor<Pose2>(1, Pose2(0, 0, 0), priorNoise));
|
||||
|
||||
// For simplicity, we will use the same noise model for odometry and loop closures
|
||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.2, 0.2, 0.1));
|
||||
|
||||
// 2b. Add odometry factors
|
||||
// Create odometry (Between) factors between consecutive poses
|
||||
graph.push_back(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.push_back(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(1, 2, Pose2(2, 0, 0 ), model));
|
||||
graph.add(BetweenFactor<Pose2>(2, 3, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(3, 4, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(4, 5, Pose2(2, 0, M_PI_2), model));
|
||||
|
||||
// 2c. Add the loop closure constraint
|
||||
// This factor encodes the fact that we have returned to the same pose. In real systems,
|
||||
// these constraints may be identified in many ways, such as appearance-based techniques
|
||||
// with camera images. We will use another Between Factor to enforce this constraint:
|
||||
graph.push_back(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
graph.add(BetweenFactor<Pose2>(5, 2, Pose2(2, 0, M_PI_2), model));
|
||||
graph.print("\nFactor Graph:\n"); // print
|
||||
|
||||
// 3. Create the data structure to hold the initialEstimate estimate to the solution
|
||||
|
|
|
|||
|
|
@ -0,0 +1,62 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose2SLAMExample_g2o.cpp
|
||||
* @brief A 2D Pose SLAM example that reads input from g2o, converts it to a factor graph and does the
|
||||
* optimization. Output is written on a file, in g2o format
|
||||
* Syntax for the script is ./Pose2SLAMExample_g2o input.g2o output.g2o
|
||||
* @date May 15, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("noisyToyGraph.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile);
|
||||
|
||||
// Add prior on the pose having index (key) = 0
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
|
||||
|
||||
std::cout << "Optimizing the factor graph" << std::endl;
|
||||
GaussNewtonOptimizer optimizer(graphWithPrior, *initial);
|
||||
Values result = optimizer.optimize();
|
||||
std::cout << "Optimization complete" << std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
result.print("result");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, result, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -32,7 +32,8 @@ int main (int argc, char** argv) {
|
|||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(3) << 0.05, 0.05, 5.0 * M_PI / 180.0));
|
||||
boost::tie(graph, initial) = load2D("../../examples/Data/w100.graph", model);
|
||||
string graph_file = findExampleDataFile("w100.graph");
|
||||
boost::tie(graph, initial) = load2D(graph_file, model);
|
||||
initial->print("Initial estimate:\n");
|
||||
|
||||
// Add a Gaussian prior on first poses
|
||||
|
|
|
|||
|
|
@ -0,0 +1,64 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Pose2SLAMExample_lago.cpp
|
||||
* @brief A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem
|
||||
* using LAGO (Linear Approximation for Graph Optimization). See class lago.h
|
||||
* Output is written on a file, in g2o format
|
||||
* Syntax for the script is ./Pose2SLAMExample_lago input.g2o output.g2o
|
||||
* @date May 15, 2014
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/lago.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(const int argc, const char *argv[]) {
|
||||
|
||||
// Read graph from file
|
||||
string g2oFile;
|
||||
if (argc < 2)
|
||||
g2oFile = findExampleDataFile("noisyToyGraph.txt");
|
||||
else
|
||||
g2oFile = argv[1];
|
||||
|
||||
NonlinearFactorGraph::shared_ptr graph;
|
||||
Values::shared_ptr initial;
|
||||
boost::tie(graph, initial) = readG2o(g2oFile);
|
||||
|
||||
// Add prior on the pose having index (key) = 0
|
||||
NonlinearFactorGraph graphWithPrior = *graph;
|
||||
noiseModel::Diagonal::shared_ptr priorModel = //
|
||||
noiseModel::Diagonal::Variances((Vector(3) << 1e-6, 1e-6, 1e-8));
|
||||
graphWithPrior.add(PriorFactor<Pose2>(0, Pose2(), priorModel));
|
||||
graphWithPrior.print();
|
||||
|
||||
std::cout << "Computing LAGO estimate" << std::endl;
|
||||
Values estimateLago = lago::initialize(graphWithPrior);
|
||||
std::cout << "done!" << std::endl;
|
||||
|
||||
if (argc < 3) {
|
||||
estimateLago.print("estimateLago");
|
||||
} else {
|
||||
const string outputFile = argv[2];
|
||||
std::cout << "Writing results to file: " << outputFile << std::endl;
|
||||
writeG2o(*graph, estimateLago, outputFile);
|
||||
std::cout << "done! " << std::endl;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -104,7 +104,7 @@ int main(int argc, char** argv) {
|
|||
LevenbergMarquardtParams parameters;
|
||||
parameters.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
parameters.verbosityLM = LevenbergMarquardtParams::LAMBDA;
|
||||
parameters.linearSolverType = NonlinearOptimizerParams::CONJUGATE_GRADIENT;
|
||||
parameters.linearSolverType = NonlinearOptimizerParams::Iterative;
|
||||
|
||||
{
|
||||
parameters.iterativeParams = boost::make_shared<SubgraphSolverParameters>();
|
||||
|
|
|
|||
|
|
@ -40,6 +40,7 @@
|
|||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/RangeFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
// Standard headers, added last, so we know headers above work on their own
|
||||
#include <boost/foreach.hpp>
|
||||
|
|
@ -59,9 +60,8 @@ namespace NM = gtsam::noiseModel;
|
|||
typedef pair<double, Pose2> TimedOdometry;
|
||||
list<TimedOdometry> readOdometry() {
|
||||
list<TimedOdometry> odometryList;
|
||||
ifstream is("../../examples/Data/Plaza2_DR.txt");
|
||||
if (!is)
|
||||
throw runtime_error("../../examples/Data/Plaza2_DR.txt file not found");
|
||||
string data_file = findExampleDataFile("Plaza2_DR.txt");
|
||||
ifstream is(data_file.c_str());
|
||||
|
||||
while (is) {
|
||||
double t, distance_traveled, delta_heading;
|
||||
|
|
@ -78,9 +78,8 @@ list<TimedOdometry> readOdometry() {
|
|||
typedef boost::tuple<double, size_t, double> RangeTriple;
|
||||
vector<RangeTriple> readTriples() {
|
||||
vector<RangeTriple> triples;
|
||||
ifstream is("../../examples/Data/Plaza2_TD.txt");
|
||||
if (!is)
|
||||
throw runtime_error("../../examples/Data/Plaza2_TD.txt file not found");
|
||||
string data_file = findExampleDataFile("Plaza2_TD.txt");
|
||||
ifstream is(data_file.c_str());
|
||||
|
||||
while (is) {
|
||||
double t, sender, receiver, range;
|
||||
|
|
|
|||
|
|
@ -0,0 +1,158 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SFMExample_SmartFactor.cpp
|
||||
* @brief A structure-from-motion problem on a simulated dataset, using smart projection factor
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Jing Dong
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
/**
|
||||
* A structure-from-motion example with landmarks
|
||||
* - The landmarks form a 10 meter cube
|
||||
* - The robot rotates around the landmarks, always facing towards the cube
|
||||
*/
|
||||
|
||||
// For loading the data
|
||||
#include "SFMdata.h"
|
||||
|
||||
// Camera observations of landmarks (i.e. pixel coordinates) will be stored as Point2 (x, y).
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
// In GTSAM, measurement functions are represented as 'factors'.
|
||||
// The factor we used here is SmartProjectionPoseFactor. Every smart factor represent a single landmark,
|
||||
// The SmartProjectionPoseFactor only optimize the pose of camera, not the calibration,
|
||||
// The calibration should be known.
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
|
||||
// Also, we will initialize the robot at some location using a Prior factor.
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
|
||||
// When the factors are created, we will add them to a Factor Graph. As the factors we are using
|
||||
// are nonlinear factors, we will need a Nonlinear Factor Graph.
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
||||
// Finally, once all of the factors have been added to our factor graph, we will want to
|
||||
// solve/optimize to graph to find the best (Maximum A Posteriori) set of variable values.
|
||||
// GTSAM includes several nonlinear optimizers to perform this step. Here we will use a
|
||||
// trust-region method known as Powell's Degleg
|
||||
#include <gtsam/nonlinear/DoglegOptimizer.h>
|
||||
|
||||
// The nonlinear solvers within GTSAM are iterative solvers, meaning they linearize the
|
||||
// nonlinear functions around an initial linearization point, then solve the linear system
|
||||
// to update the linearization point. This happens repeatedly until the solver converges
|
||||
// to a consistent set of variable values. This requires us to specify an initial guess
|
||||
// for each variable, held in a Values container.
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// Make the typename short so it looks much cleaner
|
||||
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3,
|
||||
gtsam::Cal3_S2> SmartFactor;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
// Define the camera calibration parameters
|
||||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
// Define the camera observation noise model
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise =
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Create the set of ground-truth landmarks and poses
|
||||
vector<Point3> points = createPoints();
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a factor graph
|
||||
NonlinearFactorGraph graph;
|
||||
|
||||
// Simulated measurements from each camera pose, adding them to the factor graph
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
|
||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor());
|
||||
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
|
||||
// generate the 2D measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
|
||||
// call add() function to add measurement into a single factor, here we need to add:
|
||||
// 1. the 2D measurement
|
||||
// 2. the corresponding camera's key
|
||||
// 3. camera noise model
|
||||
// 4. camera calibration
|
||||
smartfactor->add(measurement, i, measurementNoise, K);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
graph.push_back(smartfactor);
|
||||
}
|
||||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)));
|
||||
graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise));
|
||||
|
||||
// Because the structure-from-motion problem has a scale ambiguity, the problem is
|
||||
// still under-constrained. Here we add a prior on the second pose x1, so this will
|
||||
// fix the scale by indicating the distance between x0 and x1.
|
||||
// Because these two are fixed, the rest of the poses will be also be fixed.
|
||||
graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise)); // add directly to graph
|
||||
|
||||
graph.print("Factor Graph:\n");
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Values initialEstimate;
|
||||
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(i, poses[i].compose(delta));
|
||||
initialEstimate.print("Initial Estimates:\n");
|
||||
|
||||
// Optimize the graph and print results
|
||||
Values result = DoglegOptimizer(graph, initialEstimate).optimize();
|
||||
result.print("Final results:\n");
|
||||
|
||||
// A smart factor represent the 3D point inside the factor, not as a variable.
|
||||
// The 3D position of the landmark is not explicitly calculated by the optimizer.
|
||||
// To obtain the landmark's 3D position, we use the "point" method of the smart factor.
|
||||
Values landmark_result;
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
|
||||
// The output of point() is in boost::optional<gtsam::Point3>, as sometimes
|
||||
// the triangulation operation inside smart factor will encounter degeneracy.
|
||||
boost::optional<Point3> point;
|
||||
|
||||
// The graph stores Factor shared_ptrs, so we cast back to a SmartFactor first
|
||||
SmartFactor::shared_ptr smart = boost::dynamic_pointer_cast<SmartFactor>(graph[j]);
|
||||
if (smart) {
|
||||
point = smart->point(result);
|
||||
if (point) // ignore if boost::optional return NULL
|
||||
landmark_result.insert(j, *point);
|
||||
}
|
||||
}
|
||||
|
||||
landmark_result.print("Landmark results:\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -43,8 +43,7 @@ int main (int argc, char* argv[]) {
|
|||
|
||||
// Load the SfM data from file
|
||||
SfM_data mydata;
|
||||
const bool success = readBAL(filename, mydata);
|
||||
assert(success);
|
||||
assert(readBAL(filename, mydata));
|
||||
cout << boost::format("read %1% tracks on %2% cameras\n") % mydata.number_tracks() % mydata.number_cameras();
|
||||
|
||||
// Create a factor graph
|
||||
|
|
|
|||
|
|
@ -13,6 +13,22 @@
|
|||
* @brief Incremental and batch solving, timing, and accuracy comparisons
|
||||
* @author Richard Roberts
|
||||
* @date August, 2013
|
||||
*
|
||||
* Here is an example. Below, to run in batch mode, we first generate an initialization in incremental mode.
|
||||
*
|
||||
* Solve in incremental and write to file w_inc:
|
||||
* ./SolverComparer --incremental -d w10000 -o w_inc
|
||||
*
|
||||
* You can then perturb that initialization to get batch something to optimize.
|
||||
* Read in w_inc, perturb it with noise of stddev 0.6, and write to w_pert:
|
||||
* ./SolverComparer --perturb 0.6 -i w_inc -o w_pert
|
||||
*
|
||||
* Then optimize with batch, read in w_pert, solve in batch, and write to w_batch:
|
||||
* ./SolverComparer --batch -d w10000 -i w_pert -o w_batch
|
||||
*
|
||||
* And finally compare solutions in w_inc and w_batch to check that batch converged to the global minimum
|
||||
* ./SolverComparer --compare w_inc w_batch
|
||||
*
|
||||
*/
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
|
|
|
|||
|
|
@ -0,0 +1,76 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SteroVOExample.cpp
|
||||
* @brief A stereo visual odometry example
|
||||
* @date May 25, 2014
|
||||
* @author Stephen Camp
|
||||
*/
|
||||
|
||||
/**
|
||||
* A 3D stereo visual odometry example
|
||||
* - robot starts at origin
|
||||
* -moves forward 1 meter
|
||||
* -takes stereo readings on three landmarks
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Cal3_S2Stereo.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/slam/StereoFactor.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(int argc, char** argv){
|
||||
|
||||
//create graph object, add first pose at origin with key '1'
|
||||
NonlinearFactorGraph graph;
|
||||
Pose3 first_pose;
|
||||
graph.push_back(NonlinearEquality<Pose3>(1, Pose3()));
|
||||
|
||||
//create factor noise model with 3 sigmas of value 1
|
||||
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1);
|
||||
//create stereo camera calibration object with .2m between cameras
|
||||
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(1000, 1000, 0, 320, 240, 0.2));
|
||||
|
||||
//create and add stereo factors between first pose (key value 1) and the three landmarks
|
||||
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(520, 480, 440), model, 1, 3, K));
|
||||
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(120, 80, 440), model, 1, 4, K));
|
||||
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(320, 280, 140), model, 1, 5, K));
|
||||
|
||||
//create and add stereo factors between second pose and the three landmarks
|
||||
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(570, 520, 490), model, 2, 3, K));
|
||||
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(70, 20, 490), model, 2, 4, K));
|
||||
graph.push_back(GenericStereoFactor<Pose3,Point3>(StereoPoint2(320, 270, 115), model, 2, 5, K));
|
||||
|
||||
//create Values object to contain initial estimates of camera poses and landmark locations
|
||||
Values initial_estimate;
|
||||
|
||||
//create and add iniital estimates
|
||||
initial_estimate.insert(1, first_pose);
|
||||
initial_estimate.insert(2, Pose3(Rot3(), Point3(0.1, -0.1, 1.1)));
|
||||
initial_estimate.insert(3, Point3(1, 1, 5));
|
||||
initial_estimate.insert(4, Point3(-1, 1, 5));
|
||||
initial_estimate.insert(5, Point3(0, -0.5, 5));
|
||||
|
||||
//create Levenberg-Marquardt optimizer for resulting factor graph, optimize
|
||||
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
result.print("Final result:\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -0,0 +1,114 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SteroVOExample.cpp
|
||||
* @brief A stereo visual odometry example
|
||||
* @date May 25, 2014
|
||||
* @author Stephen Camp
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
* A 3D stereo visual odometry example
|
||||
* - robot starts at origin
|
||||
* -moves forward, taking periodic stereo measurements
|
||||
* -takes stereo readings of many landmarks
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/geometry/Cal3_S2Stereo.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/slam/StereoFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
int main(int argc, char** argv){
|
||||
|
||||
Values initial_estimate;
|
||||
NonlinearFactorGraph graph;
|
||||
const noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(3,1);
|
||||
|
||||
string calibration_loc = findExampleDataFile("VO_calibration.txt");
|
||||
string pose_loc = findExampleDataFile("VO_camera_poses_large.txt");
|
||||
string factor_loc = findExampleDataFile("VO_stereo_factors_large.txt");
|
||||
|
||||
//read camera calibration info from file
|
||||
// focal lengths fx, fy, skew s, principal point u0, v0, baseline b
|
||||
double fx, fy, s, u0, v0, b;
|
||||
ifstream calibration_file(calibration_loc.c_str());
|
||||
cout << "Reading calibration info" << endl;
|
||||
calibration_file >> fx >> fy >> s >> u0 >> v0 >> b;
|
||||
|
||||
//create stereo camera calibration object
|
||||
const Cal3_S2Stereo::shared_ptr K(new Cal3_S2Stereo(fx,fy,s,u0,v0,b));
|
||||
|
||||
ifstream pose_file(pose_loc.c_str());
|
||||
cout << "Reading camera poses" << endl;
|
||||
int pose_id;
|
||||
MatrixRowMajor m(4,4);
|
||||
//read camera pose parameters and use to make initial estimates of camera poses
|
||||
while (pose_file >> pose_id) {
|
||||
for (int i = 0; i < 16; i++) {
|
||||
pose_file >> m.data()[i];
|
||||
}
|
||||
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
|
||||
}
|
||||
|
||||
// camera and landmark keys
|
||||
size_t x, l;
|
||||
|
||||
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
|
||||
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
|
||||
double uL, uR, v, X, Y, Z;
|
||||
ifstream factor_file(factor_loc.c_str());
|
||||
cout << "Reading stereo factors" << endl;
|
||||
//read stereo measurement details from file and use to create and add GenericStereoFactor objects to the graph representation
|
||||
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
|
||||
graph.push_back(
|
||||
GenericStereoFactor<Pose3, Point3>(StereoPoint2(uL, uR, v), model,
|
||||
Symbol('x', x), Symbol('l', l), K));
|
||||
//if the landmark variable included in this factor has not yet been added to the initial variable value estimate, add it
|
||||
if (!initial_estimate.exists(Symbol('l', l))) {
|
||||
Pose3 camPose = initial_estimate.at<Pose3>(Symbol('x', x));
|
||||
//transform_from() transforms the input Point3 from the camera pose space, camPose, to the global space
|
||||
Point3 worldPoint = camPose.transform_from(Point3(X, Y, Z));
|
||||
initial_estimate.insert(Symbol('l', l), worldPoint);
|
||||
}
|
||||
}
|
||||
|
||||
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
|
||||
//constrain the first pose such that it cannot change from its original value during optimization
|
||||
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
|
||||
// QR is much slower than Cholesky, but numerically more stable
|
||||
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
|
||||
|
||||
cout << "Optimizing" << endl;
|
||||
//create Levenberg-Marquardt optimizer to optimize the factor graph
|
||||
LevenbergMarquardtOptimizer optimizer = LevenbergMarquardtOptimizer(graph, initial_estimate);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
cout << "Final result sample:" << endl;
|
||||
Values pose_values = result.filter<Pose3>();
|
||||
pose_values.print("Final camera poses:\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -14,6 +14,7 @@
|
|||
* @brief A visualSLAM example for the structure-from-motion problem on a simulated dataset
|
||||
* This version uses iSAM to solve the problem incrementally
|
||||
* @author Duy-Nguyen Ta
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
/**
|
||||
|
|
@ -61,7 +62,8 @@ int main(int argc, char* argv[]) {
|
|||
Cal3_S2::shared_ptr K(new Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0));
|
||||
|
||||
// Define the camera observation noise model
|
||||
noiseModel::Isotropic::shared_ptr measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
noiseModel::Isotropic::shared_ptr noise = //
|
||||
noiseModel::Isotropic::Sigma(2, 1.0); // one pixel in u and v
|
||||
|
||||
// Create the set of ground-truth landmarks
|
||||
vector<Point3> points = createPoints();
|
||||
|
|
@ -69,7 +71,8 @@ int main(int argc, char* argv[]) {
|
|||
// Create the set of ground-truth poses
|
||||
vector<Pose3> poses = createPoses();
|
||||
|
||||
// Create a NonlinearISAM object which will relinearize and reorder the variables every "relinearizeInterval" updates
|
||||
// Create a NonlinearISAM object which will relinearize and reorder the variables
|
||||
// every "relinearizeInterval" updates
|
||||
int relinearizeInterval = 3;
|
||||
NonlinearISAM isam(relinearizeInterval);
|
||||
|
||||
|
|
@ -82,32 +85,44 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add factors for each landmark observation
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// Create ground truth measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
graph.push_back(GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, measurementNoise, Symbol('x', i), Symbol('l', j), K));
|
||||
// Add measurement
|
||||
graph.add(
|
||||
GenericProjectionFactor<Pose3, Point3, Cal3_S2>(measurement, noise,
|
||||
Symbol('x', i), Symbol('l', j), K));
|
||||
}
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate.insert(Symbol('x', i), poses[i].compose(Pose3(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20))));
|
||||
Pose3 noise(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
Pose3 initial_xi = poses[i].compose(noise);
|
||||
|
||||
// Add an initial guess for the current pose
|
||||
initialEstimate.insert(Symbol('x', i), initial_xi);
|
||||
|
||||
// If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
||||
// and a prior on the first landmark to set the scale
|
||||
// Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
|
||||
// adding it to iSAM.
|
||||
if( i == 0) {
|
||||
// Add a prior on pose x0
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1))); // 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
|
||||
if (i == 0) {
|
||||
// Add a prior on pose x0, with 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)));
|
||||
graph.add(PriorFactor<Pose3>(Symbol('x', 0), poses[0], poseNoise));
|
||||
|
||||
// Add a prior on landmark l0
|
||||
noiseModel::Isotropic::shared_ptr pointNoise = noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.push_back(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise)); // add directly to graph
|
||||
noiseModel::Isotropic::shared_ptr pointNoise =
|
||||
noiseModel::Isotropic::Sigma(3, 0.1);
|
||||
graph.add(PriorFactor<Point3>(Symbol('l', 0), points[0], pointNoise));
|
||||
|
||||
// Add initial guesses to all observed landmarks
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
for (size_t j = 0; j < points.size(); ++j)
|
||||
initialEstimate.insert(Symbol('l', j), points[j].compose(Point3(-0.25, 0.20, 0.15)));
|
||||
Point3 noise(-0.25, 0.20, 0.15);
|
||||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
// Intentionally initialize the variables off from the ground truth
|
||||
Point3 initial_lj = points[j].compose(noise);
|
||||
initialEstimate.insert(Symbol('l', j), initial_lj);
|
||||
}
|
||||
|
||||
} else {
|
||||
// Update iSAM with the new factors
|
||||
|
|
|
|||
70
gtsam.h
70
gtsam.h
|
|
@ -1423,6 +1423,7 @@ virtual class GaussianBayesNet {
|
|||
void push_back(const gtsam::GaussianBayesNet& bayesNet);
|
||||
|
||||
gtsam::VectorValues optimize() const;
|
||||
gtsam::VectorValues optimize(gtsam::VectorValues& solutionForMissing) const;
|
||||
gtsam::VectorValues optimizeGradientSearch() const;
|
||||
gtsam::VectorValues gradient(const gtsam::VectorValues& x0) const;
|
||||
gtsam::VectorValues gradientAtZero() const;
|
||||
|
|
@ -1480,9 +1481,7 @@ class GaussianISAM {
|
|||
|
||||
#include <gtsam/linear/IterativeSolver.h>
|
||||
virtual class IterativeOptimizationParameters {
|
||||
string getKernel() const ;
|
||||
string getVerbosity() const;
|
||||
void setKernel(string s) ;
|
||||
void setVerbosity(string s) ;
|
||||
void print() const;
|
||||
};
|
||||
|
|
@ -1515,7 +1514,7 @@ virtual class SubgraphSolverParameters : gtsam::ConjugateGradientParameters {
|
|||
void print() const;
|
||||
};
|
||||
|
||||
class SubgraphSolver {
|
||||
virtual class SubgraphSolver {
|
||||
SubgraphSolver(const gtsam::GaussianFactorGraph &A, const gtsam::SubgraphSolverParameters ¶meters, const gtsam::Ordering& ordering);
|
||||
SubgraphSolver(const gtsam::GaussianFactorGraph &Ab1, const gtsam::GaussianFactorGraph &Ab2, const gtsam::SubgraphSolverParameters ¶meters, const gtsam::Ordering& ordering);
|
||||
gtsam::VectorValues optimize() const;
|
||||
|
|
@ -1550,8 +1549,12 @@ char symbolChr(size_t key);
|
|||
size_t symbolIndex(size_t key);
|
||||
|
||||
// Default keyformatter
|
||||
void printKeySet(const gtsam::KeySet& keys);
|
||||
void printKeySet(const gtsam::KeySet& keys, string s);
|
||||
void printKeyList (const gtsam::KeyList& keys);
|
||||
void printKeyList (const gtsam::KeyList& keys, string s);
|
||||
void printKeyVector(const gtsam::KeyVector& keys);
|
||||
void printKeyVector(const gtsam::KeyVector& keys, string s);
|
||||
void printKeySet (const gtsam::KeySet& keys);
|
||||
void printKeySet (const gtsam::KeySet& keys, string s);
|
||||
|
||||
#include <gtsam/inference/LabeledSymbol.h>
|
||||
class LabeledSymbol {
|
||||
|
|
@ -1725,6 +1728,7 @@ class KeySet {
|
|||
|
||||
// structure specific methods
|
||||
void insert(size_t key);
|
||||
void merge(gtsam::KeySet& other);
|
||||
bool erase(size_t key); // returns true if value was removed
|
||||
bool count(size_t key) const; // returns true if value exists
|
||||
|
||||
|
|
@ -1849,12 +1853,12 @@ virtual class NonlinearOptimizerParams {
|
|||
|
||||
void setLinearSolverType(string solver);
|
||||
void setOrdering(const gtsam::Ordering& ordering);
|
||||
void setIterativeParams(const gtsam::SubgraphSolverParameters ¶ms);
|
||||
void setIterativeParams(gtsam::IterativeOptimizationParameters* params);
|
||||
|
||||
bool isMultifrontal() const;
|
||||
bool isSequential() const;
|
||||
bool isCholmod() const;
|
||||
bool isCG() const;
|
||||
bool isIterative() const;
|
||||
};
|
||||
|
||||
bool checkConvergence(double relativeErrorTreshold,
|
||||
|
|
@ -2140,6 +2144,8 @@ template<POSE, POINT, ROTATION>
|
|||
virtual class BearingRangeFactor : gtsam::NoiseModelFactor {
|
||||
BearingRangeFactor(size_t poseKey, size_t pointKey, const ROTATION& measuredBearing, double measuredRange, const gtsam::noiseModel::Base* noiseModel);
|
||||
|
||||
pair<ROTATION, double> measured() const;
|
||||
|
||||
// enabling serialization functionality
|
||||
void serialize() const;
|
||||
};
|
||||
|
|
@ -2191,6 +2197,25 @@ virtual class GeneralSFMFactor2 : gtsam::NoiseModelFactor {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
template<POSE, LANDMARK, CALIBRATION>
|
||||
virtual class SmartProjectionPoseFactor : gtsam::NonlinearFactor {
|
||||
|
||||
SmartProjectionPoseFactor(double rankTol, double linThreshold,
|
||||
bool manageDegeneracy, bool enableEPI, const POSE& body_P_sensor);
|
||||
|
||||
SmartProjectionPoseFactor(double rankTol);
|
||||
SmartProjectionPoseFactor();
|
||||
|
||||
void add(const gtsam::Point2& measured_i, size_t poseKey_i, const gtsam::noiseModel::Base* noise_i,
|
||||
const CALIBRATION* K_i);
|
||||
|
||||
// enabling serialization functionality
|
||||
//void serialize() const;
|
||||
};
|
||||
|
||||
typedef gtsam::SmartProjectionPoseFactor<gtsam::Pose3, gtsam::Point3, gtsam::Cal3_S2> SmartProjectionPose3Factor;
|
||||
|
||||
|
||||
#include <gtsam/slam/StereoFactor.h>
|
||||
template<POSE, LANDMARK>
|
||||
|
|
@ -2241,6 +2266,13 @@ pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename,
|
|||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D(string filename);
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load2D_robust(string filename,
|
||||
gtsam::noiseModel::Base* model);
|
||||
void save2D(const gtsam::NonlinearFactorGraph& graph,
|
||||
const gtsam::Values& config, gtsam::noiseModel::Diagonal* model,
|
||||
string filename);
|
||||
|
||||
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> readG2o(string filename);
|
||||
void writeG2o(const gtsam::NonlinearFactorGraph& graph,
|
||||
const gtsam::Values& estimate, string filename);
|
||||
|
||||
//*************************************************************************
|
||||
// Navigation
|
||||
|
|
@ -2286,7 +2318,8 @@ virtual class ConstantBias : gtsam::Value {
|
|||
#include <gtsam/navigation/ImuFactor.h>
|
||||
class ImuFactorPreintegratedMeasurements {
|
||||
// Standard Constructor
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance, Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance, bool use2ndOrderIntegration);
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::imuBias::ConstantBias& bias, Matrix measuredAccCovariance,Matrix measuredOmegaCovariance, Matrix integrationErrorCovariance);
|
||||
ImuFactorPreintegratedMeasurements(const gtsam::ImuFactorPreintegratedMeasurements& rhs);
|
||||
|
||||
// Testable
|
||||
|
|
@ -2324,6 +2357,15 @@ class CombinedImuFactorPreintegratedMeasurements {
|
|||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit);
|
||||
CombinedImuFactorPreintegratedMeasurements(
|
||||
const gtsam::imuBias::ConstantBias& bias,
|
||||
Matrix measuredAccCovariance,
|
||||
Matrix measuredOmegaCovariance,
|
||||
Matrix integrationErrorCovariance,
|
||||
Matrix biasAccCovariance,
|
||||
Matrix biasOmegaCovariance,
|
||||
Matrix biasAccOmegaInit,
|
||||
bool use2ndOrderIntegration);
|
||||
CombinedImuFactorPreintegratedMeasurements(const gtsam::CombinedImuFactorPreintegratedMeasurements& rhs);
|
||||
|
||||
// Testable
|
||||
|
|
@ -2337,8 +2379,7 @@ class CombinedImuFactorPreintegratedMeasurements {
|
|||
|
||||
virtual class CombinedImuFactor : gtsam::NonlinearFactor {
|
||||
CombinedImuFactor(size_t pose_i, size_t vel_i, size_t pose_j, size_t vel_j, size_t bias_i, size_t bias_j,
|
||||
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis,
|
||||
const gtsam::noiseModel::Base* model);
|
||||
const gtsam::CombinedImuFactorPreintegratedMeasurements& CombinedPreintegratedMeasurements, Vector gravity, Vector omegaCoriolis);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::CombinedImuFactorPreintegratedMeasurements preintegratedMeasurements() const;
|
||||
|
|
@ -2355,17 +2396,26 @@ virtual class CombinedImuFactor : gtsam::NonlinearFactor {
|
|||
namespace utilities {
|
||||
|
||||
#include <matlab.h>
|
||||
gtsam::KeyList createKeyList(Vector I);
|
||||
gtsam::KeyList createKeyList(string s, Vector I);
|
||||
gtsam::KeyVector createKeyVector(Vector I);
|
||||
gtsam::KeyVector createKeyVector(string s, Vector I);
|
||||
gtsam::KeySet createKeySet(Vector I);
|
||||
gtsam::KeySet createKeySet(string s, Vector I);
|
||||
Matrix extractPoint2(const gtsam::Values& values);
|
||||
Matrix extractPoint3(const gtsam::Values& values);
|
||||
Matrix extractPose2(const gtsam::Values& values);
|
||||
gtsam::Values allPose3s(gtsam::Values& values);
|
||||
Matrix extractPose3(const gtsam::Values& values);
|
||||
void perturbPoint2(gtsam::Values& values, double sigma, int seed);
|
||||
void perturbPose2 (gtsam::Values& values, double sigmaT, double sigmaR, int seed);
|
||||
void perturbPoint3(gtsam::Values& values, double sigma, int seed);
|
||||
void insertBackprojections(gtsam::Values& values, const gtsam::SimpleCamera& c, Vector J, Matrix Z, double depth);
|
||||
void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K);
|
||||
void insertProjectionFactors(gtsam::NonlinearFactorGraph& graph, size_t i, Vector J, Matrix Z, const gtsam::noiseModel::Base* model, const gtsam::Cal3_S2* K, const gtsam::Pose3& body_P_sensor);
|
||||
Matrix reprojectionErrors(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& values);
|
||||
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base);
|
||||
gtsam::Values localToWorld(const gtsam::Values& local, const gtsam::Pose2& base, const gtsam::KeyVector& keys);
|
||||
|
||||
} //\namespace utilities
|
||||
|
||||
|
|
|
|||
|
|
@ -617,11 +617,12 @@
|
|||
|
||||
#include "ccolamd.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
#include <limits.h>
|
||||
|
||||
#ifdef MATLAB_MEX_FILE
|
||||
#include <stdint.h>
|
||||
typedef uint16_t char16_t;
|
||||
#include "mex.h"
|
||||
#include "matrix.h"
|
||||
#endif
|
||||
|
|
|
|||
|
|
@ -13,6 +13,9 @@
|
|||
|
||||
#ifndef NPRINT
|
||||
#ifdef MATLAB_MEX_FILE
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
typedef uint16_t char16_t;
|
||||
#include "mex.h"
|
||||
int (*ccolamd_printf) (const char *, ...) = mexPrintf ;
|
||||
#else
|
||||
|
|
|
|||
|
|
@ -16,13 +16,30 @@ if(NOT GTSAM_USE_SYSTEM_EIGEN)
|
|||
endif()
|
||||
endforeach(eigen_dir)
|
||||
|
||||
# do the same for the unsupported eigen folder
|
||||
file(GLOB_RECURSE unsupported_eigen_headers "${CMAKE_CURRENT_SOURCE_DIR}/Eigen/unsupported/Eigen/*.h")
|
||||
|
||||
file(GLOB unsupported_eigen_dir_headers_all "Eigen/unsupported/Eigen/*")
|
||||
foreach(unsupported_eigen_dir ${unsupported_eigen_dir_headers_all})
|
||||
get_filename_component(filename ${unsupported_eigen_dir} NAME)
|
||||
if (NOT ((${filename} MATCHES "CMakeLists.txt") OR (${filename} MATCHES "src") OR (${filename} MATCHES ".svn")))
|
||||
list(APPEND unsupported_eigen_headers "${CMAKE_CURRENT_SOURCE_DIR}/Eigen/unsupported/Eigen/${filename}")
|
||||
install(FILES Eigen/unsupported/Eigen/${filename} DESTINATION include/gtsam/3rdparty/Eigen/unsupported/Eigen)
|
||||
endif()
|
||||
endforeach(unsupported_eigen_dir)
|
||||
|
||||
# Add to project source
|
||||
set(eigen_headers ${eigen_headers} PARENT_SCOPE)
|
||||
# set(unsupported_eigen_headers ${unsupported_eigen_headers} PARENT_SCOPE)
|
||||
|
||||
# install Eigen - only the headers in our 3rdparty directory
|
||||
install(DIRECTORY Eigen/Eigen
|
||||
DESTINATION include/gtsam/3rdparty/Eigen
|
||||
FILES_MATCHING PATTERN "*.h")
|
||||
|
||||
install(DIRECTORY Eigen/unsupported/Eigen
|
||||
DESTINATION include/gtsam/3rdparty/Eigen/unsupported/
|
||||
FILES_MATCHING PATTERN "*.h")
|
||||
endif()
|
||||
|
||||
option(GTSAM_BUILD_METIS "Build metis library" ON)
|
||||
|
|
|
|||
|
|
@ -204,7 +204,7 @@ if(NOT MSVC)
|
|||
|
||||
option(EIGEN_TEST_NEON "Enable/Disable Neon in tests/examples" OFF)
|
||||
if(EIGEN_TEST_NEON)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpu=neon -mcpu=cortex-a"8)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -mfpu=neon -mcpu=cortex-a8")
|
||||
message(STATUS "Enabling NEON in tests/examples")
|
||||
endif()
|
||||
|
||||
|
|
|
|||
|
|
@ -4,14 +4,10 @@
|
|||
## # The following are required to uses Dart and the Cdash dashboard
|
||||
## ENABLE_TESTING()
|
||||
## INCLUDE(CTest)
|
||||
set(CTEST_PROJECT_NAME "Eigen")
|
||||
set(CTEST_PROJECT_NAME "Eigen3.2")
|
||||
set(CTEST_NIGHTLY_START_TIME "00:00:00 UTC")
|
||||
|
||||
set(CTEST_DROP_METHOD "http")
|
||||
set(CTEST_DROP_SITE "manao.inria.fr")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen")
|
||||
set(CTEST_DROP_LOCATION "/CDash/submit.php?project=Eigen3.2")
|
||||
set(CTEST_DROP_SITE_CDASH TRUE)
|
||||
set(CTEST_PROJECT_SUBPROJECTS
|
||||
Official
|
||||
Unsupported
|
||||
)
|
||||
|
|
|
|||
|
|
@ -95,7 +95,7 @@
|
|||
extern "C" {
|
||||
// In theory we should only include immintrin.h and not the other *mmintrin.h header files directly.
|
||||
// Doing so triggers some issues with ICC. However old gcc versions seems to not have this file, thus:
|
||||
#ifdef __INTEL_COMPILER
|
||||
#if defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1110
|
||||
#include <immintrin.h>
|
||||
#else
|
||||
#include <emmintrin.h>
|
||||
|
|
@ -165,7 +165,7 @@
|
|||
#endif
|
||||
|
||||
// required for __cpuid, needs to be included after cmath
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64))
|
||||
#if defined(_MSC_VER) && (defined(_M_IX86)||defined(_M_X64)) && (!defined(_WIN32_WCE))
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
|
|
|
|||
|
|
@ -14,12 +14,25 @@
|
|||
#error Eigen2 support must be enabled by defining EIGEN2_SUPPORT before including any Eigen header
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_NO_EIGEN2_DEPRECATED_WARNING
|
||||
|
||||
#if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
|
||||
#warning "Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)"
|
||||
#else
|
||||
#pragma message ("Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3. (Define EIGEN_NO_EIGEN2_DEPRECATED_WARNING to disable this warning)")
|
||||
#endif
|
||||
|
||||
#endif // EIGEN_NO_EIGEN2_DEPRECATED_WARNING
|
||||
|
||||
#include "src/Core/util/DisableStupidWarnings.h"
|
||||
|
||||
/** \ingroup Support_modules
|
||||
* \defgroup Eigen2Support_Module Eigen2 support module
|
||||
* This module provides a couple of deprecated functions improving the compatibility with Eigen2.
|
||||
*
|
||||
* \warning Eigen2 support is deprecated in Eigen 3.2.x and it will be removed in Eigen 3.3.
|
||||
*
|
||||
* This module provides a couple of deprecated functions improving the compatibility with Eigen2.
|
||||
*
|
||||
* To use it, define EIGEN2_SUPPORT before including any Eigen header
|
||||
* \code
|
||||
* #define EIGEN2_SUPPORT
|
||||
|
|
|
|||
|
|
@ -16,7 +16,10 @@
|
|||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
template<typename MatrixType, int UpLo> struct LDLT_Traits;
|
||||
template<typename MatrixType, int UpLo> struct LDLT_Traits;
|
||||
|
||||
// PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
|
||||
enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
|
||||
}
|
||||
|
||||
/** \ingroup Cholesky_Module
|
||||
|
|
@ -69,7 +72,12 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
* The default constructor is useful in cases in which the user intends to
|
||||
* perform decompositions via LDLT::compute(const MatrixType&).
|
||||
*/
|
||||
LDLT() : m_matrix(), m_transpositions(), m_isInitialized(false) {}
|
||||
LDLT()
|
||||
: m_matrix(),
|
||||
m_transpositions(),
|
||||
m_sign(internal::ZeroSign),
|
||||
m_isInitialized(false)
|
||||
{}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
|
|
@ -81,6 +89,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
: m_matrix(size, size),
|
||||
m_transpositions(size),
|
||||
m_temporary(size),
|
||||
m_sign(internal::ZeroSign),
|
||||
m_isInitialized(false)
|
||||
{}
|
||||
|
||||
|
|
@ -93,6 +102,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
: m_matrix(matrix.rows(), matrix.cols()),
|
||||
m_transpositions(matrix.rows()),
|
||||
m_temporary(matrix.rows()),
|
||||
m_sign(internal::ZeroSign),
|
||||
m_isInitialized(false)
|
||||
{
|
||||
compute(matrix);
|
||||
|
|
@ -139,7 +149,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
inline bool isPositive() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_sign == 1;
|
||||
return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
|
||||
}
|
||||
|
||||
#ifdef EIGEN2_SUPPORT
|
||||
|
|
@ -153,7 +163,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
inline bool isNegative(void) const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "LDLT is not initialized.");
|
||||
return m_sign == -1;
|
||||
return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
|
||||
}
|
||||
|
||||
/** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
|
||||
|
|
@ -235,7 +245,7 @@ template<typename _MatrixType, int _UpLo> class LDLT
|
|||
MatrixType m_matrix;
|
||||
TranspositionType m_transpositions;
|
||||
TmpMatrixType m_temporary;
|
||||
int m_sign;
|
||||
internal::SignMatrix m_sign;
|
||||
bool m_isInitialized;
|
||||
};
|
||||
|
||||
|
|
@ -246,7 +256,7 @@ template<int UpLo> struct ldlt_inplace;
|
|||
template<> struct ldlt_inplace<Lower>
|
||||
{
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace>
|
||||
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
|
||||
static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
|
||||
{
|
||||
using std::abs;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
|
@ -258,36 +268,19 @@ template<> struct ldlt_inplace<Lower>
|
|||
if (size <= 1)
|
||||
{
|
||||
transpositions.setIdentity();
|
||||
if(sign)
|
||||
*sign = numext::real(mat.coeff(0,0))>0 ? 1:-1;
|
||||
if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
|
||||
else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
|
||||
else sign = ZeroSign;
|
||||
return true;
|
||||
}
|
||||
|
||||
RealScalar cutoff(0), biggest_in_corner;
|
||||
|
||||
for (Index k = 0; k < size; ++k)
|
||||
{
|
||||
// Find largest diagonal element
|
||||
Index index_of_biggest_in_corner;
|
||||
biggest_in_corner = mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
|
||||
index_of_biggest_in_corner += k;
|
||||
|
||||
if(k == 0)
|
||||
{
|
||||
// The biggest overall is the point of reference to which further diagonals
|
||||
// are compared; if any diagonal is negligible compared
|
||||
// to the largest overall, the algorithm bails.
|
||||
cutoff = abs(NumTraits<Scalar>::epsilon() * biggest_in_corner);
|
||||
}
|
||||
|
||||
// Finish early if the matrix is not full rank.
|
||||
if(biggest_in_corner < cutoff)
|
||||
{
|
||||
for(Index i = k; i < size; i++) transpositions.coeffRef(i) = i;
|
||||
if(sign) *sign = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
transpositions.coeffRef(k) = index_of_biggest_in_corner;
|
||||
if(k != index_of_biggest_in_corner)
|
||||
{
|
||||
|
|
@ -318,22 +311,27 @@ template<> struct ldlt_inplace<Lower>
|
|||
|
||||
if(k>0)
|
||||
{
|
||||
temp.head(k) = mat.diagonal().head(k).asDiagonal() * A10.adjoint();
|
||||
temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
|
||||
mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
|
||||
if(rs>0)
|
||||
A21.noalias() -= A20 * temp.head(k);
|
||||
}
|
||||
if((rs>0) && (abs(mat.coeffRef(k,k)) > cutoff))
|
||||
A21 /= mat.coeffRef(k,k);
|
||||
|
||||
if(sign)
|
||||
{
|
||||
// LDLT is not guaranteed to work for indefinite matrices, but let's try to get the sign right
|
||||
int newSign = numext::real(mat.diagonal().coeff(index_of_biggest_in_corner)) > 0;
|
||||
if(k == 0)
|
||||
*sign = newSign;
|
||||
else if(*sign != newSign)
|
||||
*sign = 0;
|
||||
// In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
|
||||
// was smaller than the cutoff value. However, soince LDLT is not rank-revealing
|
||||
// we should only make sure we do not introduce INF or NaN values.
|
||||
// LAPACK also uses 0 as the cutoff value.
|
||||
RealScalar realAkk = numext::real(mat.coeffRef(k,k));
|
||||
if((rs>0) && (abs(realAkk) > RealScalar(0)))
|
||||
A21 /= realAkk;
|
||||
|
||||
if (sign == PositiveSemiDef) {
|
||||
if (realAkk < 0) sign = Indefinite;
|
||||
} else if (sign == NegativeSemiDef) {
|
||||
if (realAkk > 0) sign = Indefinite;
|
||||
} else if (sign == ZeroSign) {
|
||||
if (realAkk > 0) sign = PositiveSemiDef;
|
||||
else if (realAkk < 0) sign = NegativeSemiDef;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -399,7 +397,7 @@ template<> struct ldlt_inplace<Lower>
|
|||
template<> struct ldlt_inplace<Upper>
|
||||
{
|
||||
template<typename MatrixType, typename TranspositionType, typename Workspace>
|
||||
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, int* sign=0)
|
||||
static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
|
||||
{
|
||||
Transpose<MatrixType> matt(mat);
|
||||
return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
|
||||
|
|
@ -445,7 +443,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
|
|||
m_isInitialized = false;
|
||||
m_temporary.resize(size);
|
||||
|
||||
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, &m_sign);
|
||||
internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
|
@ -473,7 +471,7 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri
|
|||
for (Index i = 0; i < size; i++)
|
||||
m_transpositions.coeffRef(i) = i;
|
||||
m_temporary.resize(size);
|
||||
m_sign = sigma>=0 ? 1 : -1;
|
||||
m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
|
||||
m_isInitialized = true;
|
||||
}
|
||||
|
||||
|
|
@ -506,14 +504,20 @@ struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
|
|||
typedef typename LDLTType::MatrixType MatrixType;
|
||||
typedef typename LDLTType::Scalar Scalar;
|
||||
typedef typename LDLTType::RealScalar RealScalar;
|
||||
const Diagonal<const MatrixType> vectorD = dec().vectorD();
|
||||
RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() * NumTraits<Scalar>::epsilon(),
|
||||
RealScalar(1) / NumTraits<RealScalar>::highest()); // motivated by LAPACK's xGELSS
|
||||
const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
|
||||
// In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
|
||||
// as motivated by LAPACK's xGELSS:
|
||||
// RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
|
||||
// However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
|
||||
// diagonal element is not well justified and to numerical issues in some cases.
|
||||
// Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
|
||||
RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
|
||||
|
||||
for (Index i = 0; i < vectorD.size(); ++i) {
|
||||
if(abs(vectorD(i)) > tolerance)
|
||||
dst.row(i) /= vectorD(i);
|
||||
dst.row(i) /= vectorD(i);
|
||||
else
|
||||
dst.row(i).setZero();
|
||||
dst.row(i).setZero();
|
||||
}
|
||||
|
||||
// dst = L^-T (D^-1 L^-1 P b)
|
||||
|
|
@ -566,7 +570,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
|
|||
// L^* P
|
||||
res = matrixU() * res;
|
||||
// D(L^*P)
|
||||
res = vectorD().asDiagonal() * res;
|
||||
res = vectorD().real().asDiagonal() * res;
|
||||
// L(DL^*P)
|
||||
res = matrixL() * res;
|
||||
// P^T (LDL^*P)
|
||||
|
|
|
|||
|
|
@ -58,10 +58,12 @@ cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat)
|
|||
res.p = mat.outerIndexPtr();
|
||||
res.i = mat.innerIndexPtr();
|
||||
res.x = mat.valuePtr();
|
||||
res.z = 0;
|
||||
res.sorted = 1;
|
||||
if(mat.isCompressed())
|
||||
{
|
||||
res.packed = 1;
|
||||
res.nz = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
@ -170,6 +172,7 @@ class CholmodBase : internal::noncopyable
|
|||
CholmodBase()
|
||||
: m_cholmodFactor(0), m_info(Success), m_isInitialized(false)
|
||||
{
|
||||
m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0);
|
||||
cholmod_start(&m_cholmod);
|
||||
}
|
||||
|
||||
|
|
@ -241,7 +244,7 @@ class CholmodBase : internal::noncopyable
|
|||
return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived());
|
||||
}
|
||||
|
||||
/** Performs a symbolic decomposition on the sparcity of \a matrix.
|
||||
/** Performs a symbolic decomposition on the sparsity pattern of \a matrix.
|
||||
*
|
||||
* This function is particularly useful when solving for several problems having the same structure.
|
||||
*
|
||||
|
|
@ -265,7 +268,7 @@ class CholmodBase : internal::noncopyable
|
|||
|
||||
/** Performs a numeric decomposition of \a matrix
|
||||
*
|
||||
* The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed.
|
||||
* The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed.
|
||||
*
|
||||
* \sa analyzePattern()
|
||||
*/
|
||||
|
|
@ -302,7 +305,7 @@ class CholmodBase : internal::noncopyable
|
|||
{
|
||||
this->m_info = NumericalIssue;
|
||||
}
|
||||
// TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
|
||||
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
|
||||
dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols());
|
||||
cholmod_free_dense(&x_cd, &m_cholmod);
|
||||
}
|
||||
|
|
@ -323,7 +326,7 @@ class CholmodBase : internal::noncopyable
|
|||
{
|
||||
this->m_info = NumericalIssue;
|
||||
}
|
||||
// TODO optimize this copy by swapping when possible (be carreful with alignment, etc.)
|
||||
// TODO optimize this copy by swapping when possible (be careful with alignment, etc.)
|
||||
dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs);
|
||||
cholmod_free_sparse(&x_cs, &m_cholmod);
|
||||
}
|
||||
|
|
@ -365,8 +368,8 @@ class CholmodBase : internal::noncopyable
|
|||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization
|
||||
* using the Cholmod library.
|
||||
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Thefore, it has little practical interest.
|
||||
* The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest.
|
||||
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
|
|
@ -412,8 +415,8 @@ class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimpl
|
|||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization
|
||||
* using the Cholmod library.
|
||||
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Thefore, it has little practical interest.
|
||||
* The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest.
|
||||
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
|
|
@ -458,7 +461,7 @@ class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimp
|
|||
* This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization
|
||||
* using the Cholmod library.
|
||||
* This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM.
|
||||
* The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
|
|
@ -501,7 +504,7 @@ class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSuper
|
|||
* \brief A general Cholesky factorization and solver based on Cholmod
|
||||
*
|
||||
* This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization
|
||||
* using the Cholmod library. The sparse matrix A must be selfajoint and positive definite. The vectors or matrices
|
||||
* using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices
|
||||
* X and B can be either dense or sparse.
|
||||
*
|
||||
* This variant permits to change the underlying Cholesky method at runtime.
|
||||
|
|
|
|||
|
|
@ -210,7 +210,7 @@ class Array
|
|||
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::resize(other.rows(), other.cols());
|
||||
Base::_resize_to_match(other);
|
||||
*this = other;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -81,7 +81,7 @@ struct traits<Block<XprType, BlockRows, BlockCols, InnerPanel> > : traits<XprTyp
|
|||
&& (InnerStrideAtCompileTime == 1)
|
||||
? PacketAccessBit : 0,
|
||||
MaskAlignedBit = (InnerPanel && (OuterStrideAtCompileTime!=Dynamic) && (((OuterStrideAtCompileTime * int(sizeof(Scalar))) % 16) == 0)) ? AlignedBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1) ? LinearAccessBit : 0,
|
||||
FlagsLinearAccessBit = (RowsAtCompileTime == 1 || ColsAtCompileTime == 1 || (InnerPanel && (traits<XprType>::Flags&LinearAccessBit))) ? LinearAccessBit : 0,
|
||||
FlagsLvalueBit = is_lvalue<XprType>::value ? LvalueBit : 0,
|
||||
FlagsRowMajorBit = IsRowMajor ? RowMajorBit : 0,
|
||||
Flags0 = traits<XprType>::Flags & ( (HereditaryBits & ~RowMajorBit) |
|
||||
|
|
|
|||
|
|
@ -29,9 +29,9 @@ struct all_unroller
|
|||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct all_unroller<Derived, 1>
|
||||
struct all_unroller<Derived, 0>
|
||||
{
|
||||
static inline bool run(const Derived &mat) { return mat.coeff(0, 0); }
|
||||
static inline bool run(const Derived &/*mat*/) { return true; }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
|
|
@ -55,9 +55,9 @@ struct any_unroller
|
|||
};
|
||||
|
||||
template<typename Derived>
|
||||
struct any_unroller<Derived, 1>
|
||||
struct any_unroller<Derived, 0>
|
||||
{
|
||||
static inline bool run(const Derived &mat) { return mat.coeff(0, 0); }
|
||||
static inline bool run(const Derived & /*mat*/) { return false; }
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
|
|
|
|||
|
|
@ -47,6 +47,17 @@ struct CommaInitializer :
|
|||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -0,0 +1,154 @@
|
|||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_COMMAINITIALIZER_H
|
||||
#define EIGEN_COMMAINITIALIZER_H
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** \class CommaInitializer
|
||||
* \ingroup Core_Module
|
||||
*
|
||||
* \brief Helper class used by the comma initializer operator
|
||||
*
|
||||
* This class is internally used to implement the comma initializer feature. It is
|
||||
* the return type of MatrixBase::operator<<, and most of the time this is the only
|
||||
* way it is used.
|
||||
*
|
||||
* \sa \ref MatrixBaseCommaInitRef "MatrixBase::operator<<", CommaInitializer::finished()
|
||||
*/
|
||||
template<typename XprType>
|
||||
struct CommaInitializer
|
||||
{
|
||||
typedef typename XprType::Scalar Scalar;
|
||||
typedef typename XprType::Index Index;
|
||||
|
||||
inline CommaInitializer(XprType& xpr, const Scalar& s)
|
||||
: m_xpr(xpr), m_row(0), m_col(1), m_currentBlockRows(1)
|
||||
{
|
||||
m_xpr.coeffRef(0,0) = s;
|
||||
}
|
||||
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer(XprType& xpr, const DenseBase<OtherDerived>& other)
|
||||
: m_xpr(xpr), m_row(0), m_col(other.cols()), m_currentBlockRows(other.rows())
|
||||
{
|
||||
m_xpr.block(0, 0, other.rows(), other.cols()) = other;
|
||||
}
|
||||
|
||||
/* Copy/Move constructor which transfers ownership. This is crucial in
|
||||
* absence of return value optimization to avoid assertions during destruction. */
|
||||
// FIXME in C++11 mode this could be replaced by a proper RValue constructor
|
||||
inline CommaInitializer(const CommaInitializer& o)
|
||||
: m_xpr(o.m_xpr), m_row(o.m_row), m_col(o.m_col), m_currentBlockRows(o.m_currentBlockRows) {
|
||||
// Mark original object as finished. In absence of R-value references we need to const_cast:
|
||||
const_cast<CommaInitializer&>(o).m_row = m_xpr.rows();
|
||||
const_cast<CommaInitializer&>(o).m_col = m_xpr.cols();
|
||||
const_cast<CommaInitializer&>(o).m_currentBlockRows = 0;
|
||||
}
|
||||
|
||||
/* inserts a scalar value in the target matrix */
|
||||
CommaInitializer& operator,(const Scalar& s)
|
||||
{
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = 1;
|
||||
eigen_assert(m_row<m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==1);
|
||||
m_xpr.coeffRef(m_row, m_col++) = s;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/* inserts a matrix expression in the target matrix */
|
||||
template<typename OtherDerived>
|
||||
CommaInitializer& operator,(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
if(other.cols()==0 || other.rows()==0)
|
||||
return *this;
|
||||
if (m_col==m_xpr.cols())
|
||||
{
|
||||
m_row+=m_currentBlockRows;
|
||||
m_col = 0;
|
||||
m_currentBlockRows = other.rows();
|
||||
eigen_assert(m_row+m_currentBlockRows<=m_xpr.rows()
|
||||
&& "Too many rows passed to comma initializer (operator<<)");
|
||||
}
|
||||
eigen_assert(m_col<m_xpr.cols()
|
||||
&& "Too many coefficients passed to comma initializer (operator<<)");
|
||||
eigen_assert(m_currentBlockRows==other.rows());
|
||||
if (OtherDerived::SizeAtCompileTime != Dynamic)
|
||||
m_xpr.template block<OtherDerived::RowsAtCompileTime != Dynamic ? OtherDerived::RowsAtCompileTime : 1,
|
||||
OtherDerived::ColsAtCompileTime != Dynamic ? OtherDerived::ColsAtCompileTime : 1>
|
||||
(m_row, m_col) = other;
|
||||
else
|
||||
m_xpr.block(m_row, m_col, other.rows(), other.cols()) = other;
|
||||
m_col += other.cols();
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline ~CommaInitializer()
|
||||
{
|
||||
eigen_assert((m_row+m_currentBlockRows) == m_xpr.rows()
|
||||
&& m_col == m_xpr.cols()
|
||||
&& "Too few coefficients passed to comma initializer (operator<<)");
|
||||
}
|
||||
|
||||
/** \returns the built matrix once all its coefficients have been set.
|
||||
* Calling finished is 100% optional. Its purpose is to write expressions
|
||||
* like this:
|
||||
* \code
|
||||
* quaternion.fromRotationMatrix((Matrix3f() << axis0, axis1, axis2).finished());
|
||||
* \endcode
|
||||
*/
|
||||
inline XprType& finished() { return m_xpr; }
|
||||
|
||||
XprType& m_xpr; // target expression
|
||||
Index m_row; // current row id
|
||||
Index m_col; // current col id
|
||||
Index m_currentBlockRows; // current block height
|
||||
};
|
||||
|
||||
/** \anchor MatrixBaseCommaInitRef
|
||||
* Convenient operator to set the coefficients of a matrix.
|
||||
*
|
||||
* The coefficients must be provided in a row major order and exactly match
|
||||
* the size of the matrix. Otherwise an assertion is raised.
|
||||
*
|
||||
* Example: \include MatrixBase_set.cpp
|
||||
* Output: \verbinclude MatrixBase_set.out
|
||||
*
|
||||
* \note According the c++ standard, the argument expressions of this comma initializer are evaluated in arbitrary order.
|
||||
*
|
||||
* \sa CommaInitializer::finished(), class CommaInitializer
|
||||
*/
|
||||
template<typename Derived>
|
||||
inline CommaInitializer<Derived> DenseBase<Derived>::operator<< (const Scalar& s)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived*>(this), s);
|
||||
}
|
||||
|
||||
/** \sa operator<<(const Scalar&) */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline CommaInitializer<Derived>
|
||||
DenseBase<Derived>::operator<<(const DenseBase<OtherDerived>& other)
|
||||
{
|
||||
return CommaInitializer<Derived>(*static_cast<Derived *>(this), other);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_COMMAINITIALIZER_H
|
||||
|
|
@ -24,6 +24,14 @@ namespace internal {
|
|||
|
||||
struct constructor_without_unaligned_array_assert {};
|
||||
|
||||
template<typename T, int Size> void check_static_allocation_size()
|
||||
{
|
||||
// if EIGEN_STACK_ALLOCATION_LIMIT is defined to 0, then no limit
|
||||
#if EIGEN_STACK_ALLOCATION_LIMIT
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= EIGEN_STACK_ALLOCATION_LIMIT, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** \internal
|
||||
* Static array. If the MatrixOrArrayOptions require auto-alignment, the array will be automatically aligned:
|
||||
* to 16 bytes boundary if the total size is a multiple of 16 bytes.
|
||||
|
|
@ -38,12 +46,12 @@ struct plain_array
|
|||
|
||||
plain_array()
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
@ -76,12 +84,12 @@ struct plain_array<T, Size, MatrixOrArrayOptions, 16>
|
|||
plain_array()
|
||||
{
|
||||
EIGEN_MAKE_UNALIGNED_ARRAY_ASSERT(0xf);
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
|
||||
plain_array(constructor_without_unaligned_array_assert)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(Size * sizeof(T) <= 128 * 128 * 8, OBJECT_ALLOCATED_ON_STACK_IS_TOO_BIG);
|
||||
check_static_allocation_size<T,Size>();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
|||
|
|
@ -126,36 +126,6 @@ Derived& DenseBase<Derived>::operator-=(const EigenBase<OtherDerived> &other)
|
|||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived&
|
||||
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. */
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheLeft(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_EIGENBASE_H
|
||||
|
|
|
|||
|
|
@ -589,7 +589,7 @@ struct linspaced_op_impl<Scalar,true>
|
|||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
|
||||
{ return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(Scalar(i)),m_interPacket))); }
|
||||
|
||||
const Scalar m_low;
|
||||
const Scalar m_step;
|
||||
|
|
@ -609,7 +609,7 @@ template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_o
|
|||
template <typename Scalar, bool RandomAccess> struct linspaced_op
|
||||
{
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
|
||||
linspaced_op(const Scalar& low, const Scalar& high, DenseIndex num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/Scalar(num_steps-1))) {}
|
||||
|
||||
template<typename Index>
|
||||
EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
|
||||
|
|
|
|||
|
|
@ -185,21 +185,22 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat&
|
|||
explicit_precision = fmt.precision;
|
||||
}
|
||||
|
||||
std::streamsize old_precision = 0;
|
||||
if(explicit_precision) old_precision = s.precision(explicit_precision);
|
||||
|
||||
bool align_cols = !(fmt.flags & DontAlignCols);
|
||||
if(align_cols)
|
||||
{
|
||||
// compute the largest width
|
||||
for(Index j = 1; j < m.cols(); ++j)
|
||||
for(Index j = 0; j < m.cols(); ++j)
|
||||
for(Index i = 0; i < m.rows(); ++i)
|
||||
{
|
||||
std::stringstream sstr;
|
||||
if(explicit_precision) sstr.precision(explicit_precision);
|
||||
sstr.copyfmt(s);
|
||||
sstr << m.coeff(i,j);
|
||||
width = std::max<Index>(width, Index(sstr.str().length()));
|
||||
}
|
||||
}
|
||||
std::streamsize old_precision = 0;
|
||||
if(explicit_precision) old_precision = s.precision(explicit_precision);
|
||||
s << fmt.matPrefix;
|
||||
for(Index i = 0; i < m.rows(); ++i)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -237,6 +237,8 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
|
|||
using Base::Base::operator=;
|
||||
};
|
||||
|
||||
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MAPBASE_H
|
||||
|
|
|
|||
|
|
@ -304,7 +304,7 @@ class Matrix
|
|||
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
|
||||
{
|
||||
Base::_check_template_params();
|
||||
Base::resize(other.rows(), other.cols());
|
||||
Base::_resize_to_match(other);
|
||||
// FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
|
||||
// go for pure _set() implementations, right?
|
||||
*this = other;
|
||||
|
|
|
|||
|
|
@ -510,6 +510,51 @@ template<typename Derived> class MatrixBase
|
|||
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
|
||||
};
|
||||
|
||||
|
||||
/***************************************************************************
|
||||
* Implementation of matrix base methods
|
||||
***************************************************************************/
|
||||
|
||||
/** replaces \c *this by \c *this * \a other.
|
||||
*
|
||||
* \returns a reference to \c *this
|
||||
*
|
||||
* Example: \include MatrixBase_applyOnTheRight.cpp
|
||||
* Output: \verbinclude MatrixBase_applyOnTheRight.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline Derived&
|
||||
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
return derived();
|
||||
}
|
||||
|
||||
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
|
||||
*
|
||||
* Example: \include MatrixBase_applyOnTheRight.cpp
|
||||
* Output: \verbinclude MatrixBase_applyOnTheRight.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheRight(derived());
|
||||
}
|
||||
|
||||
/** replaces \c *this by \a other * \c *this.
|
||||
*
|
||||
* Example: \include MatrixBase_applyOnTheLeft.cpp
|
||||
* Output: \verbinclude MatrixBase_applyOnTheLeft.out
|
||||
*/
|
||||
template<typename Derived>
|
||||
template<typename OtherDerived>
|
||||
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
|
||||
{
|
||||
other.derived().applyThisOnTheLeft(derived());
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // EIGEN_MATRIXBASE_H
|
||||
|
|
|
|||
|
|
@ -553,7 +553,8 @@ struct permut_matrix_product_retval
|
|||
template<typename Dest> inline void evalTo(Dest& dst) const
|
||||
{
|
||||
const Index n = Side==OnTheLeft ? rows() : cols();
|
||||
|
||||
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
|
||||
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
|
||||
if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix))
|
||||
{
|
||||
// apply the permutation inplace
|
||||
|
|
|
|||
|
|
@ -47,7 +47,10 @@ template<> struct check_rows_cols_for_overflow<Dynamic> {
|
|||
}
|
||||
};
|
||||
|
||||
template <typename Derived, typename OtherDerived = Derived, bool IsVector = bool(Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl;
|
||||
template <typename Derived,
|
||||
typename OtherDerived = Derived,
|
||||
bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)>
|
||||
struct conservative_resize_like_impl;
|
||||
|
||||
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
|
||||
|
||||
|
|
@ -668,8 +671,10 @@ private:
|
|||
enum { ThisConstantIsPrivateInPlainObjectBase };
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
template <typename Derived, typename OtherDerived, bool IsVector>
|
||||
struct internal::conservative_resize_like_impl
|
||||
struct conservative_resize_like_impl
|
||||
{
|
||||
typedef typename Derived::Index Index;
|
||||
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
|
||||
|
|
@ -729,11 +734,14 @@ struct internal::conservative_resize_like_impl
|
|||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
|
||||
// Here, the specialization for vectors inherits from the general matrix case
|
||||
// to allow calling .conservativeResize(rows,cols) on vectors.
|
||||
template <typename Derived, typename OtherDerived>
|
||||
struct conservative_resize_like_impl<Derived,OtherDerived,true>
|
||||
: conservative_resize_like_impl<Derived,OtherDerived,false>
|
||||
{
|
||||
using conservative_resize_like_impl<Derived,OtherDerived,false>::run;
|
||||
|
||||
typedef typename Derived::Index Index;
|
||||
static void run(DenseBase<Derived>& _this, Index size)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -94,13 +94,14 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
typedef _PlainObjectType PlainObjectType;
|
||||
typedef _StrideType StrideType;
|
||||
enum {
|
||||
Options = _Options
|
||||
Options = _Options,
|
||||
Flags = traits<Map<_PlainObjectType, _Options, _StrideType> >::Flags | NestByRefBit
|
||||
};
|
||||
|
||||
template<typename Derived> struct match {
|
||||
enum {
|
||||
HasDirectAccess = internal::has_direct_access<Derived>::ret,
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
StorageOrderMatch = PlainObjectType::IsVectorAtCompileTime || Derived::IsVectorAtCompileTime || ((PlainObjectType::Flags&RowMajorBit)==(Derived::Flags&RowMajorBit)),
|
||||
InnerStrideMatch = int(StrideType::InnerStrideAtCompileTime)==int(Dynamic)
|
||||
|| int(StrideType::InnerStrideAtCompileTime)==int(Derived::InnerStrideAtCompileTime)
|
||||
|| (int(StrideType::InnerStrideAtCompileTime)==0 && int(Derived::InnerStrideAtCompileTime)==1),
|
||||
|
|
@ -111,7 +112,7 @@ struct traits<Ref<_PlainObjectType, _Options, _StrideType> >
|
|||
};
|
||||
typedef typename internal::conditional<MatchAtCompileTime,internal::true_type,internal::false_type>::type type;
|
||||
};
|
||||
|
||||
|
||||
};
|
||||
|
||||
template<typename Derived>
|
||||
|
|
@ -171,8 +172,12 @@ protected:
|
|||
}
|
||||
else
|
||||
::new (static_cast<Base*>(this)) Base(expr.data(), expr.rows(), expr.cols());
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
|
||||
if(Expression::IsVectorAtCompileTime && (!PlainObjectType::IsVectorAtCompileTime) && ((Expression::Flags&RowMajorBit)!=(PlainObjectType::Flags&RowMajorBit)))
|
||||
::new (&m_stride) StrideBase(expr.innerStride(), StrideType::InnerStrideAtCompileTime==0?0:1);
|
||||
else
|
||||
::new (&m_stride) StrideBase(StrideType::OuterStrideAtCompileTime==0?0:expr.outerStride(),
|
||||
StrideType::InnerStrideAtCompileTime==0?0:expr.innerStride());
|
||||
}
|
||||
|
||||
StrideBase m_stride;
|
||||
|
|
|
|||
|
|
@ -17,16 +17,29 @@ namespace internal {
|
|||
template<typename ExpressionType, typename Scalar>
|
||||
inline void stable_norm_kernel(const ExpressionType& bl, Scalar& ssq, Scalar& scale, Scalar& invScale)
|
||||
{
|
||||
Scalar max = bl.cwiseAbs().maxCoeff();
|
||||
if (max>scale)
|
||||
using std::max;
|
||||
Scalar maxCoeff = bl.cwiseAbs().maxCoeff();
|
||||
|
||||
if (maxCoeff>scale)
|
||||
{
|
||||
ssq = ssq * numext::abs2(scale/max);
|
||||
scale = max;
|
||||
invScale = Scalar(1)/scale;
|
||||
ssq = ssq * numext::abs2(scale/maxCoeff);
|
||||
Scalar tmp = Scalar(1)/maxCoeff;
|
||||
if(tmp > NumTraits<Scalar>::highest())
|
||||
{
|
||||
invScale = NumTraits<Scalar>::highest();
|
||||
scale = Scalar(1)/invScale;
|
||||
}
|
||||
else
|
||||
{
|
||||
scale = maxCoeff;
|
||||
invScale = tmp;
|
||||
}
|
||||
}
|
||||
// TODO if the max is much much smaller than the current scale,
|
||||
|
||||
// TODO if the maxCoeff is much much smaller than the current scale,
|
||||
// then we can neglect this sub vector
|
||||
ssq += (bl*invScale).squaredNorm();
|
||||
if(scale>Scalar(0)) // if scale==0, then bl is 0
|
||||
ssq += (bl*invScale).squaredNorm();
|
||||
}
|
||||
|
||||
template<typename Derived>
|
||||
|
|
|
|||
|
|
@ -284,7 +284,8 @@ struct inplace_transpose_selector<MatrixType,false> { // non square matrix
|
|||
* Notice however that this method is only useful if you want to replace a matrix by its own transpose.
|
||||
* If you just need the transpose of a matrix, use transpose().
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
* This excludes (non-square) fixed-size matrices, block-expressions and maps.
|
||||
*
|
||||
* \sa transpose(), adjoint(), adjointInPlace() */
|
||||
template<typename Derived>
|
||||
|
|
@ -315,6 +316,7 @@ inline void DenseBase<Derived>::transposeInPlace()
|
|||
* If you just need the adjoint of a matrix, use adjoint().
|
||||
*
|
||||
* \note if the matrix is not square, then \c *this must be a resizable matrix.
|
||||
* This excludes (non-square) fixed-size matrices, block-expressions and maps.
|
||||
*
|
||||
* \sa transpose(), adjoint(), transposeInPlace() */
|
||||
template<typename Derived>
|
||||
|
|
|
|||
|
|
@ -278,21 +278,21 @@ template<typename _MatrixType, unsigned int _Mode> class TriangularView
|
|||
|
||||
/** Efficient triangular matrix times vector/matrix product */
|
||||
template<typename OtherDerived>
|
||||
TriangularProduct<Mode,true,MatrixType,false,OtherDerived, OtherDerived::IsVectorAtCompileTime>
|
||||
TriangularProduct<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
operator*(const MatrixBase<OtherDerived>& rhs) const
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,true,MatrixType,false,OtherDerived,OtherDerived::IsVectorAtCompileTime>
|
||||
<Mode, true, MatrixType, false, OtherDerived, OtherDerived::ColsAtCompileTime==1>
|
||||
(m_matrix, rhs.derived());
|
||||
}
|
||||
|
||||
/** Efficient vector/matrix times triangular matrix product */
|
||||
template<typename OtherDerived> friend
|
||||
TriangularProduct<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
TriangularProduct<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
operator*(const MatrixBase<OtherDerived>& lhs, const TriangularView& rhs)
|
||||
{
|
||||
return TriangularProduct
|
||||
<Mode,false,OtherDerived,OtherDerived::IsVectorAtCompileTime,MatrixType,false>
|
||||
<Mode, false, OtherDerived, OtherDerived::RowsAtCompileTime==1, MatrixType, false>
|
||||
(lhs.derived(),rhs.m_matrix);
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -50,7 +50,7 @@ struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
|
|||
MaxColsAtCompileTime = Direction==Horizontal ? 1 : MatrixType::MaxColsAtCompileTime,
|
||||
Flags0 = (unsigned int)_MatrixTypeNested::Flags & HereditaryBits,
|
||||
Flags = (Flags0 & ~RowMajorBit) | (RowsAtCompileTime == 1 ? RowMajorBit : 0),
|
||||
TraversalSize = Direction==Vertical ? RowsAtCompileTime : ColsAtCompileTime
|
||||
TraversalSize = Direction==Vertical ? MatrixType::RowsAtCompileTime : MatrixType::ColsAtCompileTime
|
||||
};
|
||||
#if EIGEN_GNUC_AT_LEAST(3,4)
|
||||
typedef typename MemberOp::template Cost<InputScalar,int(TraversalSize)> CostOpType;
|
||||
|
|
@ -58,7 +58,8 @@ struct traits<PartialReduxExpr<MatrixType, MemberOp, Direction> >
|
|||
typedef typename MemberOp::template Cost<InputScalar,TraversalSize> CostOpType;
|
||||
#endif
|
||||
enum {
|
||||
CoeffReadCost = TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
|
||||
CoeffReadCost = TraversalSize==Dynamic ? Dynamic
|
||||
: TraversalSize * traits<_MatrixTypeNested>::CoeffReadCost + int(CostOpType::value)
|
||||
};
|
||||
};
|
||||
}
|
||||
|
|
|
|||
|
|
@ -442,8 +442,11 @@ Packet4f pcos<Packet4f>(const Packet4f& _x)
|
|||
return _mm_xor_ps(y, sign_bit);
|
||||
}
|
||||
|
||||
#if EIGEN_FAST_MATH
|
||||
|
||||
// This is based on Quake3's fast inverse square root.
|
||||
// For detail see here: http://www.beyond3d.com/content/articles/8/
|
||||
// It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
|
||||
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
|
||||
Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
||||
{
|
||||
|
|
@ -457,6 +460,14 @@ Packet4f psqrt<Packet4f>(const Packet4f& _x)
|
|||
return pmul(_x,x);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }
|
||||
|
||||
#endif
|
||||
|
||||
template<> EIGEN_STRONG_INLINE Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
|
|
|||
|
|
@ -83,7 +83,8 @@ template<> struct packet_traits<double> : default_packet_traits
|
|||
size=2,
|
||||
|
||||
HasDiv = 1,
|
||||
HasExp = 1
|
||||
HasExp = 1,
|
||||
HasSqrt = 1
|
||||
};
|
||||
};
|
||||
template<> struct packet_traits<int> : default_packet_traits
|
||||
|
|
@ -507,8 +508,8 @@ template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
|
|||
// for GCC (eg., it does not like using std::min after the pstore !!)
|
||||
EIGEN_ALIGN16 int aux[4];
|
||||
pstore(aux, a);
|
||||
register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
|
||||
int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
|
||||
int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
|
||||
return aux0<aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
|
|
@ -528,8 +529,8 @@ template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
|
|||
// for GCC (eg., it does not like using std::min after the pstore !!)
|
||||
EIGEN_ALIGN16 int aux[4];
|
||||
pstore(aux, a);
|
||||
register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
|
||||
register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
|
||||
int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
|
||||
int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
|
||||
return aux0>aux2 ? aux0 : aux2;
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1128,6 +1128,8 @@ EIGEN_DONT_INLINE void gemm_pack_lhs<Scalar, Index, Pack1, Pack2, StorageOrder,
|
|||
enum { PacketSize = packet_traits<Scalar>::size };
|
||||
|
||||
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK LHS");
|
||||
EIGEN_UNUSED_VARIABLE(stride)
|
||||
EIGEN_UNUSED_VARIABLE(offset)
|
||||
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
||||
eigen_assert( (StorageOrder==RowMajor) || ((Pack1%PacketSize)==0 && Pack1<=4*PacketSize) );
|
||||
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
||||
|
|
@ -1215,6 +1217,8 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, ColMajor, Conjugate, Pan
|
|||
::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
|
||||
{
|
||||
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS COLMAJOR");
|
||||
EIGEN_UNUSED_VARIABLE(stride)
|
||||
EIGEN_UNUSED_VARIABLE(offset)
|
||||
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
||||
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
||||
Index packet_cols = (cols/nr) * nr;
|
||||
|
|
@ -1266,6 +1270,8 @@ EIGEN_DONT_INLINE void gemm_pack_rhs<Scalar, Index, nr, RowMajor, Conjugate, Pan
|
|||
::operator()(Scalar* blockB, const Scalar* rhs, Index rhsStride, Index depth, Index cols, Index stride, Index offset)
|
||||
{
|
||||
EIGEN_ASM_COMMENT("EIGEN PRODUCT PACK RHS ROWMAJOR");
|
||||
EIGEN_UNUSED_VARIABLE(stride)
|
||||
EIGEN_UNUSED_VARIABLE(offset)
|
||||
eigen_assert(((!PanelMode) && stride==0 && offset==0) || (PanelMode && stride>=depth && offset<=stride));
|
||||
conj_if<NumTraits<Scalar>::IsComplex && Conjugate> cj;
|
||||
Index packet_cols = (cols/nr) * nr;
|
||||
|
|
|
|||
|
|
@ -52,11 +52,7 @@ EIGEN_DONT_INLINE static void run(
|
|||
Index rows, Index cols,
|
||||
const LhsScalar* lhs, Index lhsStride,
|
||||
const RhsScalar* rhs, Index rhsIncr,
|
||||
ResScalar* res, Index
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
resIncr
|
||||
#endif
|
||||
, RhsScalar alpha);
|
||||
ResScalar* res, Index resIncr, RhsScalar alpha);
|
||||
};
|
||||
|
||||
template<typename Index, typename LhsScalar, bool ConjugateLhs, typename RhsScalar, bool ConjugateRhs, int Version>
|
||||
|
|
@ -64,12 +60,9 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,Co
|
|||
Index rows, Index cols,
|
||||
const LhsScalar* lhs, Index lhsStride,
|
||||
const RhsScalar* rhs, Index rhsIncr,
|
||||
ResScalar* res, Index
|
||||
#ifdef EIGEN_INTERNAL_DEBUGGING
|
||||
resIncr
|
||||
#endif
|
||||
, RhsScalar alpha)
|
||||
ResScalar* res, Index resIncr, RhsScalar alpha)
|
||||
{
|
||||
EIGEN_UNUSED_VARIABLE(resIncr)
|
||||
eigen_internal_assert(resIncr==1);
|
||||
#ifdef _EIGEN_ACCUMULATE_PACKETS
|
||||
#error _EIGEN_ACCUMULATE_PACKETS has already been defined
|
||||
|
|
@ -265,7 +258,7 @@ EIGEN_DONT_INLINE void general_matrix_vector_product<Index,LhsScalar,ColMajor,Co
|
|||
// process aligned result's coeffs
|
||||
if ((size_t(lhs0+alignedStart)%sizeof(LhsPacket))==0)
|
||||
for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
|
||||
pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
|
||||
pstore(&res[i], pcj.pmadd(pload<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
|
||||
else
|
||||
for (Index i = alignedStart;i<alignedSize;i+=ResPacketSize)
|
||||
pstore(&res[i], pcj.pmadd(ploadu<LhsPacket>(&lhs0[i]), ptmp0, pload<ResPacket>(&res[i])));
|
||||
|
|
|
|||
|
|
@ -79,8 +79,8 @@ EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrd
|
|||
for (Index j=FirstTriangular ? bound : 0;
|
||||
j<(FirstTriangular ? size : bound);j+=2)
|
||||
{
|
||||
register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
|
||||
register const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
|
||||
const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
|
||||
const Scalar* EIGEN_RESTRICT A1 = lhs + (j+1)*lhsStride;
|
||||
|
||||
Scalar t0 = cjAlpha * rhs[j];
|
||||
Packet ptmp0 = pset1<Packet>(t0);
|
||||
|
|
@ -147,7 +147,7 @@ EIGEN_DONT_INLINE void selfadjoint_matrix_vector_product<Scalar,Index,StorageOrd
|
|||
}
|
||||
for (Index j=FirstTriangular ? 0 : bound;j<(FirstTriangular ? bound : size);j++)
|
||||
{
|
||||
register const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
|
||||
const Scalar* EIGEN_RESTRICT A0 = lhs + j*lhsStride;
|
||||
|
||||
Scalar t1 = cjAlpha * rhs[j];
|
||||
Scalar t2(0);
|
||||
|
|
|
|||
|
|
@ -54,8 +54,25 @@
|
|||
#endif
|
||||
|
||||
#if defined EIGEN_USE_MKL
|
||||
# include <mkl.h>
|
||||
/*Check IMKL version for compatibility: < 10.3 is not usable with Eigen*/
|
||||
# ifndef INTEL_MKL_VERSION
|
||||
# undef EIGEN_USE_MKL /* INTEL_MKL_VERSION is not even defined on older versions */
|
||||
# elif INTEL_MKL_VERSION < 100305 /* the intel-mkl-103-release-notes say this was when the lapacke.h interface was added*/
|
||||
# undef EIGEN_USE_MKL
|
||||
# endif
|
||||
# ifndef EIGEN_USE_MKL
|
||||
/*If the MKL version is too old, undef everything*/
|
||||
# undef EIGEN_USE_MKL_ALL
|
||||
# undef EIGEN_USE_BLAS
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# undef EIGEN_USE_MKL_VML
|
||||
# undef EIGEN_USE_LAPACKE_STRICT
|
||||
# undef EIGEN_USE_LAPACKE
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#include <mkl.h>
|
||||
#if defined EIGEN_USE_MKL
|
||||
#include <mkl_lapacke.h>
|
||||
#define EIGEN_MKL_VML_THRESHOLD 128
|
||||
|
||||
|
|
|
|||
|
|
@ -13,7 +13,7 @@
|
|||
|
||||
#define EIGEN_WORLD_VERSION 3
|
||||
#define EIGEN_MAJOR_VERSION 2
|
||||
#define EIGEN_MINOR_VERSION 0
|
||||
#define EIGEN_MINOR_VERSION 2
|
||||
|
||||
#define EIGEN_VERSION_AT_LEAST(x,y,z) (EIGEN_WORLD_VERSION>x || (EIGEN_WORLD_VERSION>=x && \
|
||||
(EIGEN_MAJOR_VERSION>y || (EIGEN_MAJOR_VERSION>=y && \
|
||||
|
|
@ -238,7 +238,12 @@
|
|||
#endif
|
||||
|
||||
// Suppresses 'unused variable' warnings.
|
||||
#define EIGEN_UNUSED_VARIABLE(var) (void)var;
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
template<typename T> void ignore_unused_variable(const T&) {}
|
||||
}
|
||||
}
|
||||
#define EIGEN_UNUSED_VARIABLE(var) Eigen::internal::ignore_unused_variable(var);
|
||||
|
||||
#if !defined(EIGEN_ASM_COMMENT)
|
||||
#if (defined __GNUC__) && ( defined(__i386__) || defined(__x86_64__) )
|
||||
|
|
@ -284,7 +289,8 @@
|
|||
#endif
|
||||
|
||||
#ifndef EIGEN_STACK_ALLOCATION_LIMIT
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 20000
|
||||
// 131072 == 128 KB
|
||||
#define EIGEN_STACK_ALLOCATION_LIMIT 131072
|
||||
#endif
|
||||
|
||||
#ifndef EIGEN_DEFAULT_IO_FORMAT
|
||||
|
|
|
|||
|
|
@ -272,12 +272,12 @@ inline void* aligned_realloc(void *ptr, size_t new_size, size_t old_size)
|
|||
// The defined(_mm_free) is just here to verify that this MSVC version
|
||||
// implements _mm_malloc/_mm_free based on the corresponding _aligned_
|
||||
// functions. This may not always be the case and we just try to be safe.
|
||||
#if defined(_MSC_VER) && defined(_mm_free)
|
||||
#if defined(_MSC_VER) && (!defined(_WIN32_WCE)) && defined(_mm_free)
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = generic_aligned_realloc(ptr,new_size,old_size);
|
||||
#endif
|
||||
#elif defined(_MSC_VER)
|
||||
#elif defined(_MSC_VER) && (!defined(_WIN32_WCE))
|
||||
result = _aligned_realloc(ptr,new_size,16);
|
||||
#else
|
||||
result = handmade_aligned_realloc(ptr,new_size,old_size);
|
||||
|
|
@ -578,7 +578,7 @@ template<typename T> class aligned_stack_memory_handler
|
|||
*/
|
||||
#ifdef EIGEN_ALLOCA
|
||||
|
||||
#ifdef __arm__
|
||||
#if defined(__arm__) || defined(_WIN32)
|
||||
#define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((reinterpret_cast<size_t>(EIGEN_ALLOCA(SIZE+16)) & ~(size_t(15))) + 16)
|
||||
#else
|
||||
#define EIGEN_ALIGNED_ALLOCA EIGEN_ALLOCA
|
||||
|
|
@ -630,11 +630,15 @@ template<typename T> class aligned_stack_memory_handler
|
|||
} \
|
||||
void operator delete(void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete[](void * ptr) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete(void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
void operator delete[](void * ptr, std::size_t /* sz */) throw() { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \
|
||||
/* in-place new and delete. since (at least afaik) there is no actual */ \
|
||||
/* memory allocated we can safely let the default implementation handle */ \
|
||||
/* this particular case. */ \
|
||||
static void *operator new(size_t size, void *ptr) { return ::operator new(size,ptr); } \
|
||||
static void *operator new[](size_t size, void* ptr) { return ::operator new[](size,ptr); } \
|
||||
void operator delete(void * memory, void *ptr) throw() { return ::operator delete(memory,ptr); } \
|
||||
void operator delete[](void * memory, void *ptr) throw() { return ::operator delete[](memory,ptr); } \
|
||||
/* nothrow-new (returns zero instead of std::bad_alloc) */ \
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \
|
||||
void operator delete(void *ptr, const std::nothrow_t&) throw() { \
|
||||
|
|
@ -729,15 +733,6 @@ public:
|
|||
::new( p ) T( value );
|
||||
}
|
||||
|
||||
// Support for c++11
|
||||
#if (__cplusplus >= 201103L)
|
||||
template<typename... Args>
|
||||
void construct(pointer p, Args&&... args)
|
||||
{
|
||||
::new(p) T(std::forward<Args>(args)...);
|
||||
}
|
||||
#endif
|
||||
|
||||
void destroy( pointer p )
|
||||
{
|
||||
p->~T();
|
||||
|
|
@ -784,9 +779,9 @@ namespace internal {
|
|||
|
||||
#ifdef EIGEN_CPUID
|
||||
|
||||
inline bool cpuid_is_vendor(int abcd[4], const char* vendor)
|
||||
inline bool cpuid_is_vendor(int abcd[4], const int vendor[3])
|
||||
{
|
||||
return abcd[1]==(reinterpret_cast<const int*>(vendor))[0] && abcd[3]==(reinterpret_cast<const int*>(vendor))[1] && abcd[2]==(reinterpret_cast<const int*>(vendor))[2];
|
||||
return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2];
|
||||
}
|
||||
|
||||
inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3)
|
||||
|
|
@ -928,13 +923,16 @@ inline void queryCacheSizes(int& l1, int& l2, int& l3)
|
|||
{
|
||||
#ifdef EIGEN_CPUID
|
||||
int abcd[4];
|
||||
const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e};
|
||||
const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163};
|
||||
const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!"
|
||||
|
||||
// identify the CPU vendor
|
||||
EIGEN_CPUID(abcd,0x0,0);
|
||||
int max_std_funcs = abcd[1];
|
||||
if(cpuid_is_vendor(abcd,"GenuineIntel"))
|
||||
if(cpuid_is_vendor(abcd,GenuineIntel))
|
||||
queryCacheSizes_intel(l1,l2,l3,max_std_funcs);
|
||||
else if(cpuid_is_vendor(abcd,"AuthenticAMD") || cpuid_is_vendor(abcd,"AMDisbetter!"))
|
||||
else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_))
|
||||
queryCacheSizes_amd(l1,l2,l3);
|
||||
else
|
||||
// by default let's use Intel's API
|
||||
|
|
|
|||
|
|
@ -512,8 +512,7 @@ template<typename MatrixType>
|
|||
template<typename OtherDerived, typename ResultType>
|
||||
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
|
||||
{
|
||||
const int rows = m_matU.rows();
|
||||
ei_assert(b.rows() == rows);
|
||||
ei_assert(b.rows() == m_matU.rows());
|
||||
|
||||
Scalar maxVal = m_sigma.cwise().abs().maxCoeff();
|
||||
for (int j=0; j<b.cols(); ++j)
|
||||
|
|
|
|||
|
|
@ -28,7 +28,7 @@ namespace Eigen {
|
|||
* * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode
|
||||
* This corresponds to the right-multiply conventions (with right hand side frames).
|
||||
*
|
||||
* The returned angles are in the ranges [0:pi]x[0:pi]x[-pi:pi].
|
||||
* The returned angles are in the ranges [0:pi]x[-pi:pi]x[-pi:pi].
|
||||
*
|
||||
* \sa class AngleAxis
|
||||
*/
|
||||
|
|
|
|||
|
|
@ -150,10 +150,6 @@ public:
|
|||
/** \returns the conjugated quaternion */
|
||||
Quaternion<Scalar> conjugate() const;
|
||||
|
||||
/** \returns an interpolation for a constant motion between \a other and \c *this
|
||||
* \a t in [0;1]
|
||||
* see http://en.wikipedia.org/wiki/Slerp
|
||||
*/
|
||||
template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
|
||||
|
||||
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
||||
|
|
@ -194,11 +190,11 @@ public:
|
|||
* \brief The quaternion class used to represent 3D orientations and rotations
|
||||
*
|
||||
* \tparam _Scalar the scalar type, i.e., the type of the coefficients
|
||||
* \tparam _Options controls the memory alignement of the coeffecients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
|
||||
* \tparam _Options controls the memory alignment of the coefficients. Can be \# AutoAlign or \# DontAlign. Default is AutoAlign.
|
||||
*
|
||||
* This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
|
||||
* orientations and rotations of objects in three dimensions. Compared to other representations
|
||||
* like Euler angles or 3x3 matrices, quatertions offer the following advantages:
|
||||
* like Euler angles or 3x3 matrices, quaternions offer the following advantages:
|
||||
* \li \b compact storage (4 scalars)
|
||||
* \li \b efficient to compose (28 flops),
|
||||
* \li \b stable spherical interpolation
|
||||
|
|
@ -207,6 +203,8 @@ public:
|
|||
* \li \c Quaternionf for \c float
|
||||
* \li \c Quaterniond for \c double
|
||||
*
|
||||
* \warning Operations interpreting the quaternion as rotation have undefined behavior if the quaternion is not normalized.
|
||||
*
|
||||
* \sa class AngleAxis, class Transform
|
||||
*/
|
||||
|
||||
|
|
@ -348,7 +346,7 @@ class Map<const Quaternion<_Scalar>, _Options >
|
|||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
||||
|
|
@ -385,7 +383,7 @@ class Map<Quaternion<_Scalar>, _Options >
|
|||
|
||||
/** Constructs a Mapped Quaternion object from the pointer \a coeffs
|
||||
*
|
||||
* The pointer \a coeffs must reference the four coeffecients of Quaternion in the following order:
|
||||
* The pointer \a coeffs must reference the four coefficients of Quaternion in the following order:
|
||||
* \code *coeffs == {x, y, z, w} \endcode
|
||||
*
|
||||
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
|
||||
|
|
@ -399,16 +397,16 @@ class Map<Quaternion<_Scalar>, _Options >
|
|||
};
|
||||
|
||||
/** \ingroup Geometry_Module
|
||||
* Map an unaligned array of single precision scalar as a quaternion */
|
||||
* Map an unaligned array of single precision scalars as a quaternion */
|
||||
typedef Map<Quaternion<float>, 0> QuaternionMapf;
|
||||
/** \ingroup Geometry_Module
|
||||
* Map an unaligned array of double precision scalar as a quaternion */
|
||||
* Map an unaligned array of double precision scalars as a quaternion */
|
||||
typedef Map<Quaternion<double>, 0> QuaternionMapd;
|
||||
/** \ingroup Geometry_Module
|
||||
* Map a 16-bits aligned array of double precision scalars as a quaternion */
|
||||
* Map a 16-byte aligned array of single precision scalars as a quaternion */
|
||||
typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
|
||||
/** \ingroup Geometry_Module
|
||||
* Map a 16-bits aligned array of double precision scalars as a quaternion */
|
||||
* Map a 16-byte aligned array of double precision scalars as a quaternion */
|
||||
typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
|
||||
|
||||
/***************************************************************************
|
||||
|
|
@ -468,7 +466,7 @@ QuaternionBase<Derived>::_transformVector(Vector3 v) const
|
|||
// Note that this algorithm comes from the optimization by hand
|
||||
// of the conversion to a Matrix followed by a Matrix/Vector product.
|
||||
// It appears to be much faster than the common algorithm found
|
||||
// in the litterature (30 versus 39 flops). It also requires two
|
||||
// in the literature (30 versus 39 flops). It also requires two
|
||||
// Vector3 as temporaries.
|
||||
Vector3 uv = this->vec().cross(v);
|
||||
uv += uv;
|
||||
|
|
@ -579,7 +577,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
|
|||
Scalar c = v1.dot(v0);
|
||||
|
||||
// if dot == -1, vectors are nearly opposites
|
||||
// => accuraletly compute the rotation axis by computing the
|
||||
// => accurately compute the rotation axis by computing the
|
||||
// intersection of the two planes. This is done by solving:
|
||||
// x^T v0 = 0
|
||||
// x^T v1 = 0
|
||||
|
|
@ -588,7 +586,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
|
|||
// which yields a singular value problem
|
||||
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
|
||||
{
|
||||
c = max<Scalar>(c,-1);
|
||||
c = (max)(c,Scalar(-1));
|
||||
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
|
||||
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
|
||||
Vector3 axis = svd.matrixV().col(2);
|
||||
|
|
@ -671,14 +669,19 @@ QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& oth
|
|||
{
|
||||
using std::acos;
|
||||
using std::abs;
|
||||
double d = abs(this->dot(other));
|
||||
if (d>=1.0)
|
||||
Scalar d = abs(this->dot(other));
|
||||
if (d>=Scalar(1))
|
||||
return Scalar(0);
|
||||
return static_cast<Scalar>(2 * acos(d));
|
||||
return Scalar(2) * acos(d);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** \returns the spherical linear interpolation between the two quaternions
|
||||
* \c *this and \a other at the parameter \a t
|
||||
* \c *this and \a other at the parameter \a t in [0;1].
|
||||
*
|
||||
* This represents an interpolation for a constant motion between \c *this and \a other,
|
||||
* see also http://en.wikipedia.org/wiki/Slerp.
|
||||
*/
|
||||
template <class Derived>
|
||||
template <class OtherDerived>
|
||||
|
|
|
|||
|
|
@ -194,9 +194,9 @@ public:
|
|||
/** type of the matrix used to represent the linear part of the transformation */
|
||||
typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType;
|
||||
/** type of read/write reference to the linear part of the transformation */
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact)> LinearPart;
|
||||
typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart;
|
||||
/** type of read reference to the linear part of the transformation */
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact)> ConstLinearPart;
|
||||
typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart;
|
||||
/** type of read/write reference to the affine part of the transformation */
|
||||
typedef typename internal::conditional<int(Mode)==int(AffineCompact),
|
||||
MatrixType&,
|
||||
|
|
@ -530,9 +530,9 @@ public:
|
|||
|
||||
inline Transform& operator=(const UniformScaling<Scalar>& t);
|
||||
inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
|
||||
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry)> operator*(const UniformScaling<Scalar>& s) const
|
||||
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
|
||||
{
|
||||
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Isometry),Options> res = *this;
|
||||
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
|
||||
res.scale(s.factor());
|
||||
return res;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -113,7 +113,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
const Index n = src.cols(); // number of measurements
|
||||
|
||||
// required for demeaning ...
|
||||
const RealScalar one_over_n = 1 / static_cast<RealScalar>(n);
|
||||
const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
|
||||
|
||||
// computation of mean
|
||||
const VectorType src_mean = src.rowwise().sum() * one_over_n;
|
||||
|
|
@ -136,16 +136,16 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
|
||||
// Eq. (39)
|
||||
VectorType S = VectorType::Ones(m);
|
||||
if (sigma.determinant()<0) S(m-1) = -1;
|
||||
if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
|
||||
|
||||
// Eq. (40) and (43)
|
||||
const VectorType& d = svd.singularValues();
|
||||
Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
|
||||
if (rank == m-1) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > 0 ) {
|
||||
if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
|
||||
} else {
|
||||
const Scalar s = S(m-1); S(m-1) = -1;
|
||||
const Scalar s = S(m-1); S(m-1) = Scalar(-1);
|
||||
Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
|
||||
S(m-1) = s;
|
||||
}
|
||||
|
|
@ -156,7 +156,7 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
|
|||
if (with_scaling)
|
||||
{
|
||||
// Eq. (42)
|
||||
const Scalar c = 1/src_var * svd.singularValues().dot(S);
|
||||
const Scalar c = Scalar(1)/src_var * svd.singularValues().dot(S);
|
||||
|
||||
// Eq. (41)
|
||||
Rt.col(m).head(m) = dst_mean;
|
||||
|
|
|
|||
|
|
@ -48,7 +48,7 @@ void apply_block_householder_on_the_left(MatrixType& mat, const VectorsType& vec
|
|||
typedef typename MatrixType::Index Index;
|
||||
enum { TFactorSize = MatrixType::ColsAtCompileTime };
|
||||
Index nbVecs = vectors.cols();
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize> T(nbVecs,nbVecs);
|
||||
Matrix<typename MatrixType::Scalar, TFactorSize, TFactorSize, ColMajor> T(nbVecs,nbVecs);
|
||||
make_block_householder_triangular_factor(T, vectors, hCoeffs);
|
||||
|
||||
const TriangularView<const VectorsType, UnitLower>& V(vectors);
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
VectorType s(n), t(n);
|
||||
|
||||
RealScalar tol2 = tol*tol;
|
||||
RealScalar eps2 = NumTraits<Scalar>::epsilon()*NumTraits<Scalar>::epsilon();
|
||||
int i = 0;
|
||||
int restarts = 0;
|
||||
|
||||
|
|
@ -69,7 +70,7 @@ bool bicgstab(const MatrixType& mat, const Rhs& rhs, Dest& x,
|
|||
Scalar rho_old = rho;
|
||||
|
||||
rho = r0.dot(r);
|
||||
if (internal::isMuchSmallerThan(rho,r0_sqnorm))
|
||||
if (abs(rho) < eps2*r0_sqnorm)
|
||||
{
|
||||
// The new residual vector became too orthogonal to the arbitrarily choosen direction r0
|
||||
// Let's restart with a new r0:
|
||||
|
|
|
|||
|
|
@ -20,10 +20,11 @@ namespace Eigen {
|
|||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the LU decomposition
|
||||
*
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A
|
||||
* is decomposed as A = PLUQ where L is unit-lower-triangular, U is upper-triangular, and P and Q
|
||||
* are permutation matrices. This is a rank-revealing LU decomposition. The eigenvalues (diagonal
|
||||
* coefficients) of U are sorted in such a way that any zeros are at the end.
|
||||
* This class represents a LU decomposition of any matrix, with complete pivoting: the matrix A is
|
||||
* decomposed as \f$ A = P^{-1} L U Q^{-1} \f$ where L is unit-lower-triangular, U is
|
||||
* upper-triangular, and P and Q are permutation matrices. This is a rank-revealing LU
|
||||
* decomposition. The eigenvalues (diagonal coefficients) of U are sorted in such a way that any
|
||||
* zeros are at the end.
|
||||
*
|
||||
* This decomposition provides the generic approach to solving systems of linear equations, computing
|
||||
* the rank, invertibility, inverse, kernel, and determinant.
|
||||
|
|
@ -511,8 +512,8 @@ typename internal::traits<MatrixType>::Scalar FullPivLU<MatrixType>::determinant
|
|||
}
|
||||
|
||||
/** \returns the matrix represented by the decomposition,
|
||||
* i.e., it returns the product: P^{-1} L U Q^{-1}.
|
||||
* This function is provided for debug purpose. */
|
||||
* i.e., it returns the product: \f$ P^{-1} L U Q^{-1} \f$.
|
||||
* This function is provided for debug purposes. */
|
||||
template<typename MatrixType>
|
||||
MatrixType FullPivLU<MatrixType>::reconstructedMatrix() const
|
||||
{
|
||||
|
|
|
|||
|
|
@ -109,7 +109,7 @@ class NaturalOrdering
|
|||
* \class COLAMDOrdering
|
||||
*
|
||||
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
||||
* The matrix should be in column-major format
|
||||
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template<typename Index>
|
||||
class COLAMDOrdering
|
||||
|
|
@ -118,10 +118,14 @@ class COLAMDOrdering
|
|||
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
||||
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
||||
|
||||
/** Compute the permutation vector form a sparse matrix */
|
||||
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
||||
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
||||
*/
|
||||
template <typename MatrixType>
|
||||
void operator() (const MatrixType& mat, PermutationType& perm)
|
||||
{
|
||||
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
||||
|
||||
Index m = mat.rows();
|
||||
Index n = mat.cols();
|
||||
Index nnz = mat.nonZeros();
|
||||
|
|
@ -132,12 +136,12 @@ class COLAMDOrdering
|
|||
Index stats [COLAMD_STATS];
|
||||
internal::colamd_set_defaults(knobs);
|
||||
|
||||
Index info;
|
||||
IndexVector p(n+1), A(Alen);
|
||||
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
||||
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
||||
// Call Colamd routine to compute the ordering
|
||||
info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
||||
EIGEN_UNUSED_VARIABLE(info);
|
||||
eigen_assert( info && "COLAMD failed " );
|
||||
|
||||
perm.resize(n);
|
||||
|
|
|
|||
|
|
@ -76,7 +76,8 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
m_colsTranspositions(),
|
||||
m_temp(),
|
||||
m_colSqNorms(),
|
||||
m_isInitialized(false) {}
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
/** \brief Default Constructor with memory preallocation
|
||||
*
|
||||
|
|
@ -349,7 +350,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
|
|||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
||||
// and turns out to be identical to Higham's formula used already in LDLt.
|
||||
: NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
|
||||
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
|
||||
}
|
||||
|
||||
/** \returns the number of nonzero pivots in the QR decomposition.
|
||||
|
|
|
|||
|
|
@ -63,9 +63,10 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
typedef typename MatrixType::Index Index;
|
||||
typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
|
||||
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
||||
typedef Matrix<Index, 1, ColsAtCompileTime, RowMajor, 1, MaxColsAtCompileTime> IntRowVectorType;
|
||||
typedef Matrix<Index, 1,
|
||||
EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
|
||||
EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
|
||||
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
|
||||
typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
|
||||
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
|
||||
typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
|
||||
|
||||
|
|
@ -93,10 +94,10 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
FullPivHouseholderQR(Index rows, Index cols)
|
||||
: m_qr(rows, cols),
|
||||
m_hCoeffs((std::min)(rows,cols)),
|
||||
m_rows_transpositions(rows),
|
||||
m_cols_transpositions(cols),
|
||||
m_rows_transpositions((std::min)(rows,cols)),
|
||||
m_cols_transpositions((std::min)(rows,cols)),
|
||||
m_cols_permutation(cols),
|
||||
m_temp((std::min)(rows,cols)),
|
||||
m_temp(cols),
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false) {}
|
||||
|
||||
|
|
@ -115,10 +116,10 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
FullPivHouseholderQR(const MatrixType& matrix)
|
||||
: m_qr(matrix.rows(), matrix.cols()),
|
||||
m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
|
||||
m_rows_transpositions(matrix.rows()),
|
||||
m_cols_transpositions(matrix.cols()),
|
||||
m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
|
||||
m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
|
||||
m_cols_permutation(matrix.cols()),
|
||||
m_temp((std::min)(matrix.rows(), matrix.cols())),
|
||||
m_temp(matrix.cols()),
|
||||
m_isInitialized(false),
|
||||
m_usePrescribedThreshold(false)
|
||||
{
|
||||
|
|
@ -126,11 +127,12 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
}
|
||||
|
||||
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
|
||||
* *this is the QR decomposition, if any exists.
|
||||
* \c *this is the QR decomposition.
|
||||
*
|
||||
* \param b the right-hand-side of the equation to solve.
|
||||
*
|
||||
* \returns a solution.
|
||||
* \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
|
||||
* and an arbitrary solution otherwise.
|
||||
*
|
||||
* \note The case where b is a matrix is not yet implemented. Also, this
|
||||
* code is space inefficient.
|
||||
|
|
@ -172,7 +174,7 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
}
|
||||
|
||||
/** \returns a const reference to the vector of indices representing the rows transpositions */
|
||||
const IntColVectorType& rowsTranspositions() const
|
||||
const IntDiagSizeVectorType& rowsTranspositions() const
|
||||
{
|
||||
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
|
||||
return m_rows_transpositions;
|
||||
|
|
@ -344,7 +346,7 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
|
||||
// and turns out to be identical to Higham's formula used already in LDLt.
|
||||
: NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
|
||||
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
|
||||
}
|
||||
|
||||
/** \returns the number of nonzero pivots in the QR decomposition.
|
||||
|
|
@ -368,8 +370,8 @@ template<typename _MatrixType> class FullPivHouseholderQR
|
|||
protected:
|
||||
MatrixType m_qr;
|
||||
HCoeffsType m_hCoeffs;
|
||||
IntColVectorType m_rows_transpositions;
|
||||
IntRowVectorType m_cols_transpositions;
|
||||
IntDiagSizeVectorType m_rows_transpositions;
|
||||
IntDiagSizeVectorType m_cols_transpositions;
|
||||
PermutationType m_cols_permutation;
|
||||
RowVectorType m_temp;
|
||||
bool m_isInitialized, m_usePrescribedThreshold;
|
||||
|
|
@ -415,10 +417,10 @@ FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(cons
|
|||
|
||||
m_temp.resize(cols);
|
||||
|
||||
m_precision = NumTraits<Scalar>::epsilon() * size;
|
||||
m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
|
||||
|
||||
m_rows_transpositions.resize(matrix.rows());
|
||||
m_cols_transpositions.resize(matrix.cols());
|
||||
m_rows_transpositions.resize(size);
|
||||
m_cols_transpositions.resize(size);
|
||||
Index number_of_transpositions = 0;
|
||||
|
||||
RealScalar biggest(0);
|
||||
|
|
@ -516,17 +518,6 @@ struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
|
|||
dec().hCoeffs().coeff(k), &temp.coeffRef(0));
|
||||
}
|
||||
|
||||
if(!dec().isSurjective())
|
||||
{
|
||||
// is c is in the image of R ?
|
||||
RealScalar biggest_in_upper_part_of_c = c.topRows( dec().rank() ).cwiseAbs().maxCoeff();
|
||||
RealScalar biggest_in_lower_part_of_c = c.bottomRows(rows-dec().rank()).cwiseAbs().maxCoeff();
|
||||
// FIXME brain dead
|
||||
const RealScalar m_precision = NumTraits<Scalar>::epsilon() * (std::min)(rows,cols);
|
||||
// this internal:: prefix is needed by at least gcc 3.4 and ICC
|
||||
if(!internal::isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
|
||||
return;
|
||||
}
|
||||
dec().matrixQR()
|
||||
.topLeftCorner(dec().rank(), dec().rank())
|
||||
.template triangularView<Upper>()
|
||||
|
|
@ -548,14 +539,14 @@ template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
|
|||
{
|
||||
public:
|
||||
typedef typename MatrixType::Index Index;
|
||||
typedef typename internal::plain_col_type<MatrixType, Index>::type IntColVectorType;
|
||||
typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
|
||||
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
|
||||
typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
|
||||
MatrixType::MaxRowsAtCompileTime> WorkVectorType;
|
||||
|
||||
FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
|
||||
const HCoeffsType& hCoeffs,
|
||||
const IntColVectorType& rowsTranspositions)
|
||||
const IntDiagSizeVectorType& rowsTranspositions)
|
||||
: m_qr(qr),
|
||||
m_hCoeffs(hCoeffs),
|
||||
m_rowsTranspositions(rowsTranspositions)
|
||||
|
|
@ -595,7 +586,7 @@ public:
|
|||
protected:
|
||||
typename MatrixType::Nested m_qr;
|
||||
typename HCoeffsType::Nested m_hCoeffs;
|
||||
typename IntColVectorType::Nested m_rowsTranspositions;
|
||||
typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
|
|
|||
|
|
@ -64,7 +64,8 @@ class SPQR
|
|||
typedef PermutationMatrix<Dynamic, Dynamic> PermutationType;
|
||||
public:
|
||||
SPQR()
|
||||
: m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
: m_isInitialized(false),
|
||||
m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
m_allow_tol(SPQR_DEFAULT_TOL),
|
||||
m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
|
|
@ -72,7 +73,8 @@ class SPQR
|
|||
}
|
||||
|
||||
SPQR(const _MatrixType& matrix)
|
||||
: m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
: m_isInitialized(false),
|
||||
m_ordering(SPQR_ORDERING_DEFAULT),
|
||||
m_allow_tol(SPQR_DEFAULT_TOL),
|
||||
m_tolerance (NumTraits<Scalar>::epsilon())
|
||||
{
|
||||
|
|
@ -82,16 +84,22 @@ class SPQR
|
|||
|
||||
~SPQR()
|
||||
{
|
||||
// Calls SuiteSparseQR_free()
|
||||
SPQR_free();
|
||||
cholmod_l_finish(&m_cc);
|
||||
}
|
||||
void SPQR_free()
|
||||
{
|
||||
cholmod_l_free_sparse(&m_H, &m_cc);
|
||||
cholmod_l_free_sparse(&m_cR, &m_cc);
|
||||
cholmod_l_free_dense(&m_HTau, &m_cc);
|
||||
std::free(m_E);
|
||||
std::free(m_HPinv);
|
||||
cholmod_l_finish(&m_cc);
|
||||
}
|
||||
|
||||
void compute(const _MatrixType& matrix)
|
||||
{
|
||||
if(m_isInitialized) SPQR_free();
|
||||
|
||||
MatrixType mat(matrix);
|
||||
cholmod_sparse A;
|
||||
A = viewAsCholmod(mat);
|
||||
|
|
@ -139,7 +147,7 @@ class SPQR
|
|||
eigen_assert(b.cols()==1 && "This method is for vectors only");
|
||||
|
||||
//Compute Q^T * b
|
||||
Dest y;
|
||||
typename Dest::PlainObject y;
|
||||
y = matrixQ().transpose() * b;
|
||||
// Solves with the triangular matrix R
|
||||
Index rk = this->rank();
|
||||
|
|
|
|||
|
|
@ -375,14 +375,19 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true>
|
|||
Scalar z;
|
||||
JacobiRotation<Scalar> rot;
|
||||
RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p)));
|
||||
|
||||
if(n==0)
|
||||
{
|
||||
z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q);
|
||||
work_matrix.row(p) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z);
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
if(work_matrix.coeff(q,q)!=Scalar(0))
|
||||
{
|
||||
z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q);
|
||||
work_matrix.row(q) *= z;
|
||||
if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z);
|
||||
}
|
||||
// otherwise the second row is already zero, so we have nothing to do.
|
||||
}
|
||||
else
|
||||
{
|
||||
|
|
@ -412,6 +417,7 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
JacobiRotation<RealScalar> *j_right)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
Matrix<RealScalar,2,2> m;
|
||||
m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)),
|
||||
numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q));
|
||||
|
|
@ -425,9 +431,11 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q,
|
|||
}
|
||||
else
|
||||
{
|
||||
RealScalar u = d / t;
|
||||
rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u));
|
||||
rot1.s() = rot1.c() * u;
|
||||
RealScalar t2d2 = numext::hypot(t,d);
|
||||
rot1.c() = abs(t)/t2d2;
|
||||
rot1.s() = d/t2d2;
|
||||
if(t<RealScalar(0))
|
||||
rot1.s() = -rot1.s();
|
||||
}
|
||||
m.applyOnTheLeft(0,1,rot1);
|
||||
j_right->makeJacobi(m,0,1);
|
||||
|
|
@ -528,8 +536,9 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD()
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
m_rows(-1), m_cols(-1), m_diagSize(0)
|
||||
{}
|
||||
|
||||
|
||||
|
|
@ -542,6 +551,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
|
@ -561,6 +571,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
|
||||
: m_isInitialized(false),
|
||||
m_isAllocated(false),
|
||||
m_usePrescribedThreshold(false),
|
||||
m_computationOptions(0),
|
||||
m_rows(-1), m_cols(-1)
|
||||
{
|
||||
|
|
@ -662,6 +673,69 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
return m_nonzeroSingularValues;
|
||||
}
|
||||
|
||||
/** \returns the rank of the matrix of which \c *this is the SVD.
|
||||
*
|
||||
* \note This method has to determine which singular values should be considered nonzero.
|
||||
* For that, it uses the threshold value that you can control by calling
|
||||
* setThreshold(const RealScalar&).
|
||||
*/
|
||||
inline Index rank() const
|
||||
{
|
||||
using std::abs;
|
||||
eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
|
||||
if(m_singularValues.size()==0) return 0;
|
||||
RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold();
|
||||
Index i = m_nonzeroSingularValues-1;
|
||||
while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
|
||||
return i+1;
|
||||
}
|
||||
|
||||
/** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
|
||||
* which need to determine when singular values are to be considered nonzero.
|
||||
* This is not used for the SVD decomposition itself.
|
||||
*
|
||||
* When it needs to get the threshold value, Eigen calls threshold().
|
||||
* The default is \c NumTraits<Scalar>::epsilon()
|
||||
*
|
||||
* \param threshold The new value to use as the threshold.
|
||||
*
|
||||
* A singular value will be considered nonzero if its value is strictly greater than
|
||||
* \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
|
||||
*
|
||||
* If you want to come back to the default behavior, call setThreshold(Default_t)
|
||||
*/
|
||||
JacobiSVD& setThreshold(const RealScalar& threshold)
|
||||
{
|
||||
m_usePrescribedThreshold = true;
|
||||
m_prescribedThreshold = threshold;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Allows to come back to the default behavior, letting Eigen use its default formula for
|
||||
* determining the threshold.
|
||||
*
|
||||
* You should pass the special object Eigen::Default as parameter here.
|
||||
* \code svd.setThreshold(Eigen::Default); \endcode
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
JacobiSVD& setThreshold(Default_t)
|
||||
{
|
||||
m_usePrescribedThreshold = false;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Returns the threshold that will be used by certain methods such as rank().
|
||||
*
|
||||
* See the documentation of setThreshold(const RealScalar&).
|
||||
*/
|
||||
RealScalar threshold() const
|
||||
{
|
||||
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
|
||||
return m_usePrescribedThreshold ? m_prescribedThreshold
|
||||
: (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
|
||||
}
|
||||
|
||||
inline Index rows() const { return m_rows; }
|
||||
inline Index cols() const { return m_cols; }
|
||||
|
|
@ -674,11 +748,12 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD
|
|||
MatrixVType m_matrixV;
|
||||
SingularValuesType m_singularValues;
|
||||
WorkMatrixType m_workMatrix;
|
||||
bool m_isInitialized, m_isAllocated;
|
||||
bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
|
||||
bool m_computeFullU, m_computeThinU;
|
||||
bool m_computeFullV, m_computeThinV;
|
||||
unsigned int m_computationOptions;
|
||||
Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
|
||||
RealScalar m_prescribedThreshold;
|
||||
|
||||
template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex>
|
||||
friend struct internal::svd_precondition_2x2_block_to_be_real;
|
||||
|
|
@ -761,6 +836,11 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols);
|
||||
if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize);
|
||||
}
|
||||
|
||||
// Scaling factor to reduce over/under-flows
|
||||
RealScalar scale = m_workMatrix.cwiseAbs().maxCoeff();
|
||||
if(scale==RealScalar(0)) scale = RealScalar(1);
|
||||
m_workMatrix /= scale;
|
||||
|
||||
/*** step 2. The main Jacobi SVD iteration. ***/
|
||||
|
||||
|
|
@ -830,6 +910,8 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig
|
|||
if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i));
|
||||
}
|
||||
}
|
||||
|
||||
m_singularValues *= scale;
|
||||
|
||||
m_isInitialized = true;
|
||||
return *this;
|
||||
|
|
@ -851,11 +933,11 @@ struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs>
|
|||
// So A^{-1} = V S^{-1} U^*
|
||||
|
||||
Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp;
|
||||
Index nonzeroSingVals = dec().nonzeroSingularValues();
|
||||
Index rank = dec().rank();
|
||||
|
||||
tmp.noalias() = dec().matrixU().leftCols(nonzeroSingVals).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(nonzeroSingVals).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(nonzeroSingVals) * tmp;
|
||||
tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs();
|
||||
tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp;
|
||||
dst = dec().matrixV().leftCols(rank) * tmp;
|
||||
}
|
||||
};
|
||||
} // end namespace internal
|
||||
|
|
|
|||
|
|
@ -37,6 +37,7 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
{
|
||||
public:
|
||||
typedef typename internal::traits<Derived>::MatrixType MatrixType;
|
||||
typedef typename internal::traits<Derived>::OrderingType OrderingType;
|
||||
enum { UpLo = internal::traits<Derived>::UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::RealScalar RealScalar;
|
||||
|
|
@ -240,15 +241,16 @@ class SimplicialCholeskyBase : internal::noncopyable
|
|||
RealScalar m_shiftScale;
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower> class SimplicialCholesky;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialLDLT;
|
||||
template<typename _MatrixType, int _UpLo = Lower, typename _Ordering = AMDOrdering<typename _MatrixType::Index> > class SimplicialCholesky;
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
|
@ -259,9 +261,10 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialLLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType,int _UpLo, typename _Ordering> struct traits<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef typename MatrixType::Index Index;
|
||||
|
|
@ -272,9 +275,10 @@ template<typename _MatrixType,int _UpLo> struct traits<SimplicialLDLT<_MatrixTyp
|
|||
static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
|
||||
};
|
||||
|
||||
template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering> struct traits<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef _Ordering OrderingType;
|
||||
enum { UpLo = _UpLo };
|
||||
};
|
||||
|
||||
|
|
@ -294,11 +298,12 @@ template<typename _MatrixType, int _UpLo> struct traits<SimplicialCholesky<_Matr
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLDLT
|
||||
* \sa class SimplicialLDLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLLT : public SimplicialCholeskyBase<SimplicialLLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
|
@ -382,11 +387,12 @@ public:
|
|||
* \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<>
|
||||
* \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
|
||||
* or Upper. Default is Lower.
|
||||
* \tparam _Ordering The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<>
|
||||
*
|
||||
* \sa class SimplicialLLT
|
||||
* \sa class SimplicialLLT, class AMDOrdering, class NaturalOrdering
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialLDLT : public SimplicialCholeskyBase<SimplicialLDLT<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
|
@ -467,8 +473,8 @@ public:
|
|||
*
|
||||
* \sa class SimplicialLDLT, class SimplicialLLT
|
||||
*/
|
||||
template<typename _MatrixType, int _UpLo>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo> >
|
||||
template<typename _MatrixType, int _UpLo, typename _Ordering>
|
||||
class SimplicialCholesky : public SimplicialCholeskyBase<SimplicialCholesky<_MatrixType,_UpLo,_Ordering> >
|
||||
{
|
||||
public:
|
||||
typedef _MatrixType MatrixType;
|
||||
|
|
@ -612,15 +618,13 @@ void SimplicialCholeskyBase<Derived>::ordering(const MatrixType& a, CholMatrixTy
|
|||
{
|
||||
eigen_assert(a.rows()==a.cols());
|
||||
const Index size = a.rows();
|
||||
// TODO allows to configure the permutation
|
||||
// Note that amd compute the inverse permutation
|
||||
{
|
||||
CholMatrixType C;
|
||||
C = a.template selfadjointView<UpLo>();
|
||||
// remove diagonal entries:
|
||||
// seems not to be needed
|
||||
// C.prune(keep_diag());
|
||||
internal::minimum_degree_ordering(C, m_Pinv);
|
||||
|
||||
OrderingType ordering;
|
||||
ordering(C,m_Pinv);
|
||||
}
|
||||
|
||||
if(m_Pinv.size()>0)
|
||||
|
|
|
|||
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue