Merged duplicate Pose2SLAMExample_graph.m examples in different directories
parent
a13ef97987
commit
da1a732eff
|
|
@ -1,47 +0,0 @@
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
||||||
% Atlanta, Georgia 30332-0415
|
|
||||||
% All Rights Reserved
|
|
||||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
||||||
%
|
|
||||||
% See LICENSE for the license information
|
|
||||||
%
|
|
||||||
% @brief Read graph from file and perform GraphSLAM
|
|
||||||
% @author Frank Dellaert
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
%% Initialize graph, initial estimate, and odometry noise
|
|
||||||
import gtsam.*
|
|
||||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
|
||||||
maxID = 0;
|
|
||||||
addNoise = false;
|
|
||||||
smart = true;
|
|
||||||
[graph,initial]=load2D('Data/w100-odom.graph',model,maxID,addNoise,smart);
|
|
||||||
initial.print(sprintf('Initial estimate:\n'));
|
|
||||||
|
|
||||||
%% Add a Gaussian prior on pose x_1
|
|
||||||
import gtsam.*
|
|
||||||
priorMean = Pose2(0.0, 0.0, 0.0); % prior mean is at origin
|
|
||||||
priorNoise = noiseModel.Diagonal.Sigmas([0.01; 0.01; 0.01]);
|
|
||||||
graph.addPosePrior(0, priorMean, priorNoise); % add directly to graph
|
|
||||||
|
|
||||||
%% Plot Initial Estimate
|
|
||||||
figure(1);clf
|
|
||||||
P=initial.poses;
|
|
||||||
plot(P(:,1),P(:,2),'g-*'); axis equal
|
|
||||||
|
|
||||||
%% Optimize using Levenberg-Marquardt optimization with an ordering from colamd
|
|
||||||
result = graph.optimize(initial,1);
|
|
||||||
P=result.poses;
|
|
||||||
hold on; plot(P(:,1),P(:,2),'b-*')
|
|
||||||
result.print(sprintf('\nFinal result:\n'));
|
|
||||||
|
|
||||||
%% Plot Covariance Ellipses
|
|
||||||
marginals = graph.marginals(result);
|
|
||||||
P={};
|
|
||||||
for i=1:result.size()-1
|
|
||||||
pose_i = result.pose(i);
|
|
||||||
P{i}=marginals.marginalCovariance(i);
|
|
||||||
plotPose2(pose_i,'b',P{i})
|
|
||||||
end
|
|
||||||
fprintf(1,'%.5f %.5f %.5f\n',P{99})
|
|
||||||
|
|
@ -16,7 +16,10 @@ datafile = gtsam_utils.findExampleDataFile('w100-odom.graph');
|
||||||
%% Initialize graph, initial estimate, and odometry noise
|
%% Initialize graph, initial estimate, and odometry noise
|
||||||
import gtsam.*
|
import gtsam.*
|
||||||
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
model = noiseModel.Diagonal.Sigmas([0.05; 0.05; 5*pi/180]);
|
||||||
[graph,initial] = gtsam_utils.load2D(datafile, model);
|
maxID = 0;
|
||||||
|
addNoise = false;
|
||||||
|
smart = true;
|
||||||
|
[graph,initial] = gtsam.load2D(datafile, model, maxID, addNoise, smart);
|
||||||
initial.print(sprintf('Initial estimate:\n'));
|
initial.print(sprintf('Initial estimate:\n'));
|
||||||
|
|
||||||
%% Add a Gaussian prior on pose x_1
|
%% Add a Gaussian prior on pose x_1
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue