commit
d5ca4c1e0c
|
|
@ -3,19 +3,23 @@ from __future__ import print_function
|
|||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import time # for sleep()
|
||||
import time # for sleep()
|
||||
|
||||
import gtsam
|
||||
from gtsam_examples import SFMdata
|
||||
import gtsam_utils
|
||||
|
||||
# shorthand symbols:
|
||||
X = lambda i: int(gtsam.Symbol('x', i))
|
||||
L = lambda j: int(gtsam.Symbol('l', j))
|
||||
|
||||
def visual_ISAM2_plot(poses, points, result):
|
||||
# VisualISAMPlot plots current state of ISAM2 object
|
||||
# Author: Ellon Paiva
|
||||
# Based on MATLAB version by: Duy Nguyen Ta and Frank Dellaert
|
||||
|
||||
# Declare an id for the figure
|
||||
fignum = 0;
|
||||
fignum = 0
|
||||
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
|
|
@ -23,33 +27,31 @@ def visual_ISAM2_plot(poses, points, result):
|
|||
|
||||
# Plot points
|
||||
# Can't use data because current frame might not see all points
|
||||
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate()); # TODO - this is slow
|
||||
# gtsam.plot3DPoints(result, [], marginals);
|
||||
gtsam_utils.plot3DPoints(fignum, result, 'rx');
|
||||
# marginals = Marginals(isam.getFactorsUnsafe(), isam.calculateEstimate()) # TODO - this is slow
|
||||
# gtsam.plot3DPoints(result, [], marginals)
|
||||
gtsam_utils.plot3DPoints(fignum, result, 'rx')
|
||||
|
||||
# Plot cameras
|
||||
M = 0;
|
||||
while result.exists(int(gtsam.Symbol('x',M))):
|
||||
ii = int(gtsam.Symbol('x',M));
|
||||
pose_i = result.pose3_at(ii);
|
||||
gtsam_utils.plotPose3(fignum, pose_i, 10);
|
||||
|
||||
M = M + 1;
|
||||
i = 0
|
||||
while result.exists(X(i)):
|
||||
pose_i = result.atPose3(X(i))
|
||||
gtsam_utils.plotPose3(fignum, pose_i, 10)
|
||||
i += 1
|
||||
|
||||
# draw
|
||||
ax.set_xlim3d(-40, 40)
|
||||
ax.set_ylim3d(-40, 40)
|
||||
ax.set_zlim3d(-40, 40)
|
||||
plt.ion()
|
||||
plt.show()
|
||||
plt.draw()
|
||||
plt.pause(1)
|
||||
|
||||
def visual_ISAM2_example():
|
||||
plt.ion()
|
||||
|
||||
# Define the camera calibration parameters
|
||||
K = gtsam.Cal3_S2(50.0, 50.0, 0.0, 50.0, 50.0)
|
||||
|
||||
# Define the camera observation noise model
|
||||
measurementNoise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
|
||||
measurementNoise = gtsam.noiseModel.Isotropic.Sigma(2, 1.0) # one pixel in u and v
|
||||
|
||||
# Create the set of ground-truth landmarks
|
||||
points = SFMdata.createPoints()
|
||||
|
|
@ -78,29 +80,29 @@ def visual_ISAM2_example():
|
|||
for j, point in enumerate(points):
|
||||
camera = gtsam.PinholeCameraCal3_S2(pose, K)
|
||||
measurement = camera.project(point)
|
||||
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, int(gtsam.Symbol('x', i)), int(gtsam.Symbol('l', j)), K))
|
||||
graph.push_back(gtsam.GenericProjectionFactorCal3_S2(measurement, measurementNoise, X(i), L(j), K))
|
||||
|
||||
# Add an initial guess for the current pose
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
initialEstimate.insert(int(gtsam.Symbol('x', i)), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
|
||||
initialEstimate.insert(X(i), pose.compose(gtsam.Pose3(gtsam.Rot3.Rodrigues(-0.1, 0.2, 0.25), gtsam.Point3(0.05, -0.10, 0.20))))
|
||||
|
||||
# If this is the first iteration, add a prior on the first pose to set the coordinate frame
|
||||
# and a prior on the first landmark to set the scale
|
||||
# Also, as iSAM solves incrementally, we must wait until each is observed at least twice before
|
||||
# adding it to iSAM.
|
||||
if( i == 0):
|
||||
if(i == 0):
|
||||
# Add a prior on pose x0
|
||||
poseNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(gtsam.PriorFactorPose3(int(gtsam.Symbol('x', 0)), poses[0], poseNoise))
|
||||
poseNoise = gtsam.noiseModel.Diagonal.Sigmas(np.array([0.3, 0.3, 0.3, 0.1, 0.1, 0.1])) # 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
graph.push_back(gtsam.PriorFactorPose3(X(0), poses[0], poseNoise))
|
||||
|
||||
# Add a prior on landmark l0
|
||||
pointNoise = gtsam.noiseModel.Isotropic.Sigma(3, 0.1)
|
||||
graph.push_back(gtsam.PriorFactorPoint3(int(gtsam.Symbol('l', 0)), points[0], pointNoise)) # add directly to graph
|
||||
graph.push_back(gtsam.PriorFactorPoint3(L(0), points[0], pointNoise)) # add directly to graph
|
||||
|
||||
# Add initial guesses to all observed landmarks
|
||||
# Intentionally initialize the variables off from the ground truth
|
||||
for j, point in enumerate(points):
|
||||
initialEstimate.insert(int(gtsam.Symbol('l', j)), point + gtsam.Point3(-0.25, 0.20, 0.15));
|
||||
initialEstimate.insert(L(j), point + gtsam.Point3(-0.25, 0.20, 0.15))
|
||||
else:
|
||||
# Update iSAM with the new factors
|
||||
isam.update(graph, initialEstimate)
|
||||
|
|
@ -108,23 +110,23 @@ def visual_ISAM2_example():
|
|||
# If accuracy is desired at the expense of time, update(*) can be called additional times
|
||||
# to perform multiple optimizer iterations every step.
|
||||
isam.update()
|
||||
currentEstimate = isam.calculate_estimate();
|
||||
print( "****************************************************" )
|
||||
print( "Frame", i, ":" )
|
||||
for j in range(i+1):
|
||||
print( gtsam.Symbol('x',j) )
|
||||
print( currentEstimate.pose3_at(int(gtsam.Symbol('x',j))) )
|
||||
currentEstimate = isam.calculate_estimate()
|
||||
print("****************************************************")
|
||||
print("Frame", i, ":")
|
||||
for j in range(i + 1):
|
||||
print(X(j), ":", currentEstimate.atPose3(X(j)))
|
||||
|
||||
for j in range(len(points)):
|
||||
print( gtsam.Symbol('l',j) )
|
||||
print( currentEstimate.point3_at(int(gtsam.Symbol('l',j))) )
|
||||
print(L(j), ":", currentEstimate.atPoint3(L(j)))
|
||||
|
||||
visual_ISAM2_plot(poses, points, currentEstimate);
|
||||
time.sleep(1)
|
||||
visual_ISAM2_plot(poses, points, currentEstimate)
|
||||
|
||||
# Clear the factor graph and values for the next iteration
|
||||
graph.resize(0);
|
||||
initialEstimate.clear();
|
||||
graph.resize(0)
|
||||
initialEstimate.clear()
|
||||
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
|
||||
if __name__ == '__main__':
|
||||
visual_ISAM2_example()
|
||||
|
|
|
|||
|
|
@ -1 +1 @@
|
|||
from ._plot import *
|
||||
from .plot import *
|
||||
|
|
|
|||
|
|
@ -0,0 +1,59 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D as _Axes3D
|
||||
|
||||
def plotPoint3(fignum, point, linespec):
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
ax.plot([point.x()], [point.y()], [point.z()], linespec)
|
||||
|
||||
|
||||
def plot3DPoints(fignum, values, linespec, marginals=None):
|
||||
# PLOT3DPOINTS Plots the Point3's in a values, with optional covariances
|
||||
# Finds all the Point3 objects in the given Values object and plots them.
|
||||
# If a Marginals object is given, this function will also plot marginal
|
||||
# covariance ellipses for each point.
|
||||
|
||||
keys = values.keys()
|
||||
|
||||
# Plot points and covariance matrices
|
||||
for key in keys:
|
||||
try:
|
||||
p = values.atPoint3(key);
|
||||
# if haveMarginals
|
||||
# P = marginals.marginalCovariance(key);
|
||||
# gtsam.plotPoint3(p, linespec, P);
|
||||
# else
|
||||
plotPoint3(fignum, p, linespec);
|
||||
except RuntimeError:
|
||||
continue
|
||||
# I guess it's not a Point3
|
||||
|
||||
def plotPose3(fignum, pose, axisLength=0.1):
|
||||
# get figure object
|
||||
fig = plt.figure(fignum)
|
||||
ax = fig.gca(projection='3d')
|
||||
|
||||
# get rotation and translation (center)
|
||||
gRp = pose.rotation().matrix() # rotation from pose to global
|
||||
C = pose.translation().vector()
|
||||
|
||||
# draw the camera axes
|
||||
xAxis = C + gRp[:, 0] * axisLength
|
||||
L = np.append(C[np.newaxis], xAxis[np.newaxis], axis=0)
|
||||
ax.plot(L[:, 0], L[:, 1], L[:, 2], 'r-')
|
||||
|
||||
yAxis = C + gRp[:, 1] * axisLength
|
||||
L = np.append(C[np.newaxis], yAxis[np.newaxis], axis=0)
|
||||
ax.plot(L[:, 0], L[:, 1], L[:, 2], 'g-')
|
||||
|
||||
zAxis = C + gRp[:, 2] * axisLength
|
||||
L = np.append(C[np.newaxis], zAxis[np.newaxis], axis=0)
|
||||
ax.plot(L[:, 0], L[:, 1], L[:, 2], 'b-')
|
||||
|
||||
# # plot the covariance
|
||||
# if (nargin>2) && (~isempty(P))
|
||||
# pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame
|
||||
# gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame
|
||||
# gtsam.covarianceEllipse3D(C,gPp);
|
||||
# end
|
||||
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @brief exports NonlinearFactorGraph class to python
|
||||
* @author Andrew Melim
|
||||
* @author Andrew Melim
|
||||
* @author Ellon Paiva Mendes (LAAS-CNRS)
|
||||
**/
|
||||
|
||||
|
|
@ -28,6 +28,13 @@ using namespace gtsam;
|
|||
|
||||
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(print_overloads, NonlinearFactorGraph::print, 0, 1);
|
||||
|
||||
boost::shared_ptr<NonlinearFactor> getNonlinearFactor(
|
||||
const NonlinearFactorGraph& graph, size_t idx) {
|
||||
auto p = boost::dynamic_pointer_cast<NonlinearFactor>(graph.at(idx));
|
||||
if (!p) throw std::runtime_error("No NonlinearFactor at requested index");
|
||||
return p;
|
||||
};
|
||||
|
||||
void exportNonlinearFactorGraph(){
|
||||
|
||||
typedef NonlinearFactorGraph::sharedFactor sharedFactor;
|
||||
|
|
@ -36,7 +43,7 @@ void exportNonlinearFactorGraph(){
|
|||
void (NonlinearFactorGraph::*add1)(const sharedFactor&) = &NonlinearFactorGraph::add;
|
||||
|
||||
class_<NonlinearFactorGraph>("NonlinearFactorGraph", init<>())
|
||||
.def("size",&NonlinearFactorGraph::size)
|
||||
.def("size",&NonlinearFactorGraph::size)
|
||||
.def("push_back", push_back1)
|
||||
.def("add", add1)
|
||||
.def("resize", &NonlinearFactorGraph::resize)
|
||||
|
|
@ -44,4 +51,6 @@ void exportNonlinearFactorGraph(){
|
|||
.def("print", &NonlinearFactorGraph::print, print_overloads(args("s")))
|
||||
;
|
||||
|
||||
def("getNonlinearFactor", getNonlinearFactor);
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
|
@ -26,61 +26,17 @@
|
|||
#include "gtsam/geometry/Point3.h"
|
||||
#include "gtsam/geometry/Rot3.h"
|
||||
#include "gtsam/geometry/Pose3.h"
|
||||
#include "gtsam/navigation/ImuBias.h"
|
||||
|
||||
using namespace boost::python;
|
||||
using namespace gtsam;
|
||||
|
||||
/** The function ValuesAt is a workaround to be able to call the correct templated version
|
||||
* of Values::at. Without it, python would only try to match the last 'at' metho defined
|
||||
* below. With this wrapper function we can call 'at' in python passing an extra type,
|
||||
* which will define the type to be returned. Example:
|
||||
*
|
||||
* >>> import gtsam
|
||||
* >>> v = gtsam.nonlinear.Values()
|
||||
* >>> v.insert(1,gtsam.geometry.Point3())
|
||||
* >>> v.insert(2,gtsam.geometry.Rot3())
|
||||
* >>> v.insert(3,gtsam.geometry.Pose3())
|
||||
* >>> v.at(1,gtsam.geometry.Point3())
|
||||
* >>> v.at(2,gtsam.geometry.Rot3())
|
||||
* >>> v.at(3,gtsam.geometry.Pose3())
|
||||
*
|
||||
* A more 'pythonic' way I think would be to not use this function and define different
|
||||
* 'at' methods below using the name of the type in the function name, like:
|
||||
*
|
||||
* .def("point3_at", &Values::at<Point3>, return_internal_reference<>())
|
||||
* .def("rot3_at", &Values::at<Rot3>, return_internal_reference<>())
|
||||
* .def("pose3_at", &Values::at<Pose3>, return_internal_reference<>())
|
||||
*
|
||||
* and then they could be accessed from python as
|
||||
*
|
||||
* >>> import gtsam
|
||||
* >>> v = gtsam.nonlinear.Values()
|
||||
* >>> v.insert(1,gtsam.geometry.Point3())
|
||||
* >>> v.insert(2,gtsam.geometry.Rot3())
|
||||
* >>> v.insert(3,gtsam.geometry.Pose3())
|
||||
* >>> v.point3_at(1)
|
||||
* >>> v.rot3_at(2)
|
||||
* >>> v.pose3_at(3)
|
||||
*
|
||||
* In fact, I just saw the pythonic way sounds more clear, so I'm sticking with this and
|
||||
* leaving the comments here for future reference. I'm using the PEP0008 for method naming.
|
||||
* See: https://www.python.org/dev/peps/pep-0008/#function-and-method-arguments
|
||||
*/
|
||||
// template<typename T>
|
||||
// const T & ValuesAt( const Values & v, Key j, T /*type*/)
|
||||
// {
|
||||
// return v.at<T>(j);
|
||||
// }
|
||||
|
||||
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(print_overloads, Values::print, 0, 1);
|
||||
|
||||
void exportValues(){
|
||||
|
||||
// NOTE: Apparently the class 'Value'' is deprecated, so the commented lines below
|
||||
// will compile, but are useless in the python wrapper. We need to use specific
|
||||
// 'at' and 'insert' methods for each type.
|
||||
// const Value& (Values::*at1)(Key) const = &Values::at;
|
||||
// void (Values::*insert1)(Key, const Value&) = &Values::insert;
|
||||
typedef imuBias::ConstantBias Bias;
|
||||
|
||||
bool (Values::*exists1)(Key) const = &Values::exists;
|
||||
void (Values::*insert_point2)(Key, const gtsam::Point2&) = &Values::insert;
|
||||
void (Values::*insert_rot2) (Key, const gtsam::Rot2&) = &Values::insert;
|
||||
|
|
@ -88,7 +44,8 @@ void exportValues(){
|
|||
void (Values::*insert_point3)(Key, const gtsam::Point3&) = &Values::insert;
|
||||
void (Values::*insert_rot3) (Key, const gtsam::Rot3&) = &Values::insert;
|
||||
void (Values::*insert_pose3) (Key, const gtsam::Pose3&) = &Values::insert;
|
||||
|
||||
void (Values::*insert_bias) (Key, const Bias&) = &Values::insert;
|
||||
void (Values::*insert_vector3) (Key, const gtsam::Vector3&) = &Values::insert;
|
||||
|
||||
class_<Values>("Values", init<>())
|
||||
.def(init<Values>())
|
||||
|
|
@ -101,23 +58,22 @@ void exportValues(){
|
|||
.def("print", &Values::print, print_overloads(args("s")))
|
||||
.def("size", &Values::size)
|
||||
.def("swap", &Values::swap)
|
||||
// NOTE: Following commented lines add useless methods on Values
|
||||
// .def("insert", insert1)
|
||||
// .def("at", at1, return_value_policy<copy_const_reference>())
|
||||
.def("insert", insert_point2)
|
||||
.def("insert", insert_rot2)
|
||||
.def("insert", insert_pose2)
|
||||
.def("insert", insert_point3)
|
||||
.def("insert", insert_rot3)
|
||||
.def("insert", insert_pose3)
|
||||
// NOTE: The following commented lines are another way of specializing the return type.
|
||||
// See long comment above.
|
||||
// .def("at", &ValuesAt<Point3>, return_internal_reference<>())
|
||||
// .def("at", &ValuesAt<Rot3>, return_internal_reference<>())
|
||||
// .def("at", &ValuesAt<Pose3>, return_internal_reference<>())
|
||||
.def("point3_at", &Values::at<Point3>, return_value_policy<copy_const_reference>())
|
||||
.def("rot3_at", &Values::at<Rot3>, return_value_policy<copy_const_reference>())
|
||||
.def("pose3_at", &Values::at<Pose3>, return_value_policy<copy_const_reference>())
|
||||
.def("insert", insert_bias)
|
||||
.def("insert", insert_vector3)
|
||||
.def("atPoint2", &Values::at<Point2>, return_value_policy<copy_const_reference>())
|
||||
.def("atRot2", &Values::at<Rot2>, return_value_policy<copy_const_reference>())
|
||||
.def("atPose2", &Values::at<Pose2>, return_value_policy<copy_const_reference>())
|
||||
.def("atPoint3", &Values::at<Point3>, return_value_policy<copy_const_reference>())
|
||||
.def("atRot3", &Values::at<Rot3>, return_value_policy<copy_const_reference>())
|
||||
.def("atPose3", &Values::at<Pose3>, return_value_policy<copy_const_reference>())
|
||||
.def("atConstantBias", &Values::at<Bias>, return_value_policy<copy_const_reference>())
|
||||
.def("atVector3", &Values::at<Vector3>, return_value_policy<copy_const_reference>())
|
||||
.def("exists", exists1)
|
||||
.def("keys", &Values::keys)
|
||||
;
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @brief wraps BetweenFactor for several values to python
|
||||
* @author Andrew Melim
|
||||
* @author Andrew Melim
|
||||
* @author Ellon Paiva Mendes (LAAS-CNRS)
|
||||
**/
|
||||
|
||||
|
|
@ -33,17 +33,17 @@ using namespace gtsam;
|
|||
|
||||
using namespace std;
|
||||
|
||||
// template<class VALUE>
|
||||
// template<class T>
|
||||
// void exportBetweenFactor(const std::string& name){
|
||||
// class_<VALUE>(name, init<>())
|
||||
// .def(init<Key, Key, VALUE, SharedNoiseModel>())
|
||||
// class_<T>(name, init<>())
|
||||
// .def(init<Key, Key, T, SharedNoiseModel>())
|
||||
// ;
|
||||
// }
|
||||
|
||||
#define BETWEENFACTOR(VALUE) \
|
||||
class_< BetweenFactor<VALUE>, bases<NonlinearFactor>, boost::shared_ptr< BetweenFactor<VALUE> > >("BetweenFactor"#VALUE) \
|
||||
.def(init<Key,Key,VALUE,noiseModel::Base::shared_ptr>()) \
|
||||
.def("measured", &BetweenFactor<VALUE>::measured, return_internal_reference<>()) \
|
||||
#define BETWEENFACTOR(T) \
|
||||
class_< BetweenFactor<T>, bases<NonlinearFactor>, boost::shared_ptr< BetweenFactor<T> > >("BetweenFactor"#T) \
|
||||
.def(init<Key,Key,T,noiseModel::Base::shared_ptr>()) \
|
||||
.def("measured", &BetweenFactor<T>::measured, return_internal_reference<>()) \
|
||||
;
|
||||
|
||||
void exportBetweenFactors()
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
|
@ -11,7 +11,7 @@
|
|||
|
||||
/**
|
||||
* @brief wraps PriorFactor for several values to python
|
||||
* @author Andrew Melim
|
||||
* @author Andrew Melim
|
||||
* @author Ellon Paiva Mendes (LAAS-CNRS)
|
||||
**/
|
||||
|
||||
|
|
@ -54,4 +54,5 @@ void exportPriorFactors()
|
|||
PRIORFACTOR(Point3)
|
||||
PRIORFACTOR(Rot3)
|
||||
PRIORFACTOR(Pose3)
|
||||
}
|
||||
PRIORFACTOR(Vector3)
|
||||
}
|
||||
|
|
|
|||
Loading…
Reference in New Issue