diff --git a/gtsam/geometry/SO3.cpp b/gtsam/geometry/SO3.cpp index 80c0171ad..890bcd206 100644 --- a/gtsam/geometry/SO3.cpp +++ b/gtsam/geometry/SO3.cpp @@ -261,25 +261,38 @@ Vector3 SO3::Logmap(const SO3& Q, ChartJacobian H) { // when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, etc. // we do something special - if (tr + 1.0 < 1e-10) { - if (std::abs(R33 + 1.0) > 1e-5) - omega = (M_PI / sqrt(2.0 + 2.0 * R33)) * Vector3(R13, R23, 1.0 + R33); - else if (std::abs(R22 + 1.0) > 1e-5) - omega = (M_PI / sqrt(2.0 + 2.0 * R22)) * Vector3(R12, 1.0 + R22, R32); - else - // if(std::abs(R.r1_.x()+1.0) > 1e-5) This is implicit - omega = (M_PI / sqrt(2.0 + 2.0 * R11)) * Vector3(1.0 + R11, R21, R31); + if (tr + 1.0 < 1e-4) { + if (R33 > R22 && R33 > R11) { + // R33 is the largest diagonal + const double sgn_w = (R21 - R12) < 0 ? -1.0 : 1.0; + const double r = sqrt(2.0 + 2.0 * R33); + const double scale = M_PI_2 / r - 0.5 / (r * r) * (R21 - R12); + omega = sgn_w * scale * Vector3(R31 + R13, R32 + R23, 2.0 + 2.0 * R33); + } else if (R22 > R11) { + // R22 is the largest diagonal + const double sgn_w = (R13 - R31) < 0 ? -1.0 : 1.0; + const double r = sqrt(2.0 + 2.0 * R22); + const double scale = M_PI_2 / r - 0.5 / (r * r) * (R13 - R31); + omega = sgn_w * scale * Vector3(R21 + R12, 2.0 + 2.0 * R22, R23 + R32); + } else { + // R11 is the largest diagonal + const double sgn_w = (R32 - R23) < 0 ? -1.0 : 1.0; + const double r = sqrt(2.0 + 2.0 * R11); + const double scale = M_PI_2 / r - 0.5 / (r * r) * (R32 - R23); + omega = sgn_w * scale * Vector3(2.0 + 2.0 * R11, R12 + R21, R13 + R31); + } } else { double magnitude; - const double tr_3 = tr - 3.0; // always negative - if (tr_3 < -1e-7) { + const double tr_3 = tr - 3.0; // could be non-negative if the matrix is off orthogonal + if (tr_3 < -1e-6) { + // this is the normal case -1 < trace < 3 double theta = acos((tr - 1.0) / 2.0); magnitude = theta / (2.0 * sin(theta)); } else { // when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0) // use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2) // see https://github.com/borglab/gtsam/issues/746 for details - magnitude = 0.5 - tr_3 / 12.0; + magnitude = 0.5 - tr_3 / 12.0 + tr_3*tr_3/60.0; } omega = magnitude * Vector3(R32 - R23, R13 - R31, R21 - R12); } diff --git a/gtsam/geometry/tests/testRot3.cpp b/gtsam/geometry/tests/testRot3.cpp index 34f90c8cc..bb6f1a77a 100644 --- a/gtsam/geometry/tests/testRot3.cpp +++ b/gtsam/geometry/tests/testRot3.cpp @@ -122,6 +122,21 @@ TEST( Rot3, AxisAngle) CHECK(assert_equal(expected,actual3,1e-5)); } +/* ************************************************************************* */ +TEST( Rot3, AxisAngle2) +{ + // constructor from a rotation matrix, as doubles in *row-major* order. + Rot3 R1(-0.999957, 0.00922903, 0.00203116, 0.00926964, 0.999739, 0.0208927, -0.0018374, 0.0209105, -0.999781); + + Unit3 actualAxis; + double actualAngle; + // convert Rot3 to quaternion using GTSAM + std::tie(actualAxis, actualAngle) = R1.axisAngle(); + + double expectedAngle = 3.1396582; + CHECK(assert_equal(expectedAngle, actualAngle, 1e-5)); +} + /* ************************************************************************* */ TEST( Rot3, Rodrigues) { @@ -181,13 +196,13 @@ TEST( Rot3, retract) } /* ************************************************************************* */ -TEST(Rot3, log) { +TEST( Rot3, log) { static const double PI = boost::math::constants::pi(); Vector w; Rot3 R; #define CHECK_OMEGA(X, Y, Z) \ - w = (Vector(3) << X, Y, Z).finished(); \ + w = (Vector(3) << (X), (Y), (Z)).finished(); \ R = Rot3::Rodrigues(w); \ EXPECT(assert_equal(w, Rot3::Logmap(R), 1e-12)); @@ -219,17 +234,17 @@ TEST(Rot3, log) { CHECK_OMEGA(0, 0, PI) // Windows and Linux have flipped sign in quaternion mode -#if !defined(__APPLE__) && defined(GTSAM_USE_QUATERNIONS) +//#if !defined(__APPLE__) && defined(GTSAM_USE_QUATERNIONS) w = (Vector(3) << x * PI, y * PI, z * PI).finished(); R = Rot3::Rodrigues(w); EXPECT(assert_equal(Vector(-w), Rot3::Logmap(R), 1e-12)); -#else - CHECK_OMEGA(x * PI, y * PI, z * PI) -#endif +//#else +// CHECK_OMEGA(x * PI, y * PI, z * PI) +//#endif // Check 360 degree rotations #define CHECK_OMEGA_ZERO(X, Y, Z) \ - w = (Vector(3) << X, Y, Z).finished(); \ + w = (Vector(3) << (X), (Y), (Z)).finished(); \ R = Rot3::Rodrigues(w); \ EXPECT(assert_equal((Vector)Z_3x1, Rot3::Logmap(R))); @@ -247,15 +262,15 @@ TEST(Rot3, log) { // Rot3's Logmap returns different, but equivalent compacted // axis-angle vectors depending on whether Rot3 is implemented // by Quaternions or SO3. - #if defined(GTSAM_USE_QUATERNIONS) - // Quaternion bounds angle to [-pi, pi] resulting in ~179.9 degrees - EXPECT(assert_equal(Vector3(0.264451979, -0.742197651, -3.04098211), +#if defined(GTSAM_USE_QUATERNIONS) + // Quaternion bounds angle to [-pi, pi] resulting in ~179.9 degrees + EXPECT(assert_equal(Vector3(0.264451979, -0.742197651, -3.04098211), + (Vector)Rot3::Logmap(Rlund), 1e-8)); +#else + // SO3 will be approximate because of the non-orthogonality + EXPECT(assert_equal(Vector3(0.264485272, -0.742291088, -3.04136444), (Vector)Rot3::Logmap(Rlund), 1e-8)); - #else - // SO3 does not bound angle resulting in ~180.1 degrees - EXPECT(assert_equal(Vector3(-0.264544406, 0.742217405, 3.04117314), - (Vector)Rot3::Logmap(Rlund), 1e-8)); - #endif +#endif } /* ************************************************************************* */ diff --git a/python/gtsam/tests/test_Rot3.py b/python/gtsam/tests/test_Rot3.py new file mode 100644 index 000000000..90c80ab31 --- /dev/null +++ b/python/gtsam/tests/test_Rot3.py @@ -0,0 +1,41 @@ +""" +GTSAM Copyright 2010-2019, Georgia Tech Research Corporation, +Atlanta, Georgia 30332-0415 +All Rights Reserved +See LICENSE for the license information +Rot3 unit tests. +Author: John Lambert +""" +# pylint: disable=no-name-in-module + +import unittest + +import numpy as np + +import gtsam +from gtsam import Rot3 +from gtsam.utils.test_case import GtsamTestCase + + +class TestRot3(GtsamTestCase): + """Test selected Rot3 methods.""" + + def test_axisangle(self) -> None: + """Test .axisAngle() method.""" + # fmt: off + R = np.array( + [ + [ -0.999957, 0.00922903, 0.00203116], + [ 0.00926964, 0.999739, 0.0208927], + [ -0.0018374, 0.0209105, -0.999781] + ]) + # fmt: on + + # get back angle in radians + _, actual_angle = Rot3(R).axisAngle() + expected_angle = 3.1396582 + np.testing.assert_almost_equal(actual_angle, expected_angle, 1e-7) + + +if __name__ == "__main__": + unittest.main()