fix testGaussianMixture
parent
e620729c4a
commit
d18569be62
|
@ -20,6 +20,7 @@
|
||||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||||
#include <gtsam/discrete/DiscreteConditional.h>
|
#include <gtsam/discrete/DiscreteConditional.h>
|
||||||
#include <gtsam/discrete/DiscreteKey.h>
|
#include <gtsam/discrete/DiscreteKey.h>
|
||||||
|
#include <gtsam/discrete/DiscreteTableConditional.h>
|
||||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||||
#include <gtsam/hybrid/HybridGaussianConditional.h>
|
#include <gtsam/hybrid/HybridGaussianConditional.h>
|
||||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||||
|
@ -79,8 +80,8 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
||||||
double midway = mu1 - mu0;
|
double midway = mu1 - mu0;
|
||||||
auto eliminationResult =
|
auto eliminationResult =
|
||||||
gmm.toFactorGraph({{Z(0), Vector1(midway)}}).eliminateSequential();
|
gmm.toFactorGraph({{Z(0), Vector1(midway)}}).eliminateSequential();
|
||||||
auto pMid = eliminationResult->at(0)->asDiscrete();
|
auto pMid = eliminationResult->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||||
EXPECT(assert_equal(DiscreteConditional(m, "60/40"), *pMid));
|
EXPECT(assert_equal(DiscreteTableConditional(m, "60/40"), *pMid));
|
||||||
|
|
||||||
// Everywhere else, the result should be a sigmoid.
|
// Everywhere else, the result should be a sigmoid.
|
||||||
for (const double shift : {-4, -2, 0, 2, 4}) {
|
for (const double shift : {-4, -2, 0, 2, 4}) {
|
||||||
|
@ -90,7 +91,8 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
||||||
// Workflow 1: convert HBN to HFG and solve
|
// Workflow 1: convert HBN to HFG and solve
|
||||||
auto eliminationResult1 =
|
auto eliminationResult1 =
|
||||||
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
|
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
|
||||||
auto posterior1 = *eliminationResult1->at(0)->asDiscrete();
|
auto posterior1 =
|
||||||
|
*eliminationResult1->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||||
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
|
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
|
||||||
|
|
||||||
// Workflow 2: directly specify HFG and solve
|
// Workflow 2: directly specify HFG and solve
|
||||||
|
@ -99,7 +101,8 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
||||||
m, std::vector{Gaussian(mu0, sigma, z), Gaussian(mu1, sigma, z)});
|
m, std::vector{Gaussian(mu0, sigma, z), Gaussian(mu1, sigma, z)});
|
||||||
hfg1.push_back(mixing);
|
hfg1.push_back(mixing);
|
||||||
auto eliminationResult2 = hfg1.eliminateSequential();
|
auto eliminationResult2 = hfg1.eliminateSequential();
|
||||||
auto posterior2 = *eliminationResult2->at(0)->asDiscrete();
|
auto posterior2 =
|
||||||
|
*eliminationResult2->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||||
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
|
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -138,8 +141,9 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
||||||
EXPECT(assert_equal(expectedDiscretePosterior,
|
EXPECT(assert_equal(expectedDiscretePosterior,
|
||||||
eliminationResultMax->discretePosterior(vv)));
|
eliminationResultMax->discretePosterior(vv)));
|
||||||
|
|
||||||
auto pMax = *eliminationResultMax->at(0)->asDiscrete();
|
auto pMax =
|
||||||
EXPECT(assert_equal(DiscreteConditional(m, "42/58"), pMax, 1e-4));
|
*eliminationResultMax->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||||
|
EXPECT(assert_equal(DiscreteTableConditional(m, "42/58"), pMax, 1e-4));
|
||||||
|
|
||||||
// Everywhere else, the result should be a bell curve like function.
|
// Everywhere else, the result should be a bell curve like function.
|
||||||
for (const double shift : {-4, -2, 0, 2, 4}) {
|
for (const double shift : {-4, -2, 0, 2, 4}) {
|
||||||
|
@ -149,7 +153,8 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
||||||
// Workflow 1: convert HBN to HFG and solve
|
// Workflow 1: convert HBN to HFG and solve
|
||||||
auto eliminationResult1 =
|
auto eliminationResult1 =
|
||||||
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
|
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
|
||||||
auto posterior1 = *eliminationResult1->at(0)->asDiscrete();
|
auto posterior1 =
|
||||||
|
*eliminationResult1->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||||
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
|
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
|
||||||
|
|
||||||
// Workflow 2: directly specify HFG and solve
|
// Workflow 2: directly specify HFG and solve
|
||||||
|
@ -158,7 +163,8 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
||||||
m, std::vector{Gaussian(mu0, sigma0, z), Gaussian(mu1, sigma1, z)});
|
m, std::vector{Gaussian(mu0, sigma0, z), Gaussian(mu1, sigma1, z)});
|
||||||
hfg.push_back(mixing);
|
hfg.push_back(mixing);
|
||||||
auto eliminationResult2 = hfg.eliminateSequential();
|
auto eliminationResult2 = hfg.eliminateSequential();
|
||||||
auto posterior2 = *eliminationResult2->at(0)->asDiscrete();
|
auto posterior2 =
|
||||||
|
*eliminationResult2->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||||
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
|
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue