fix testGaussianMixture
parent
e620729c4a
commit
d18569be62
|
@ -20,6 +20,7 @@
|
|||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteConditional.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteTableConditional.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridGaussianConditional.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
|
@ -79,8 +80,8 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
|||
double midway = mu1 - mu0;
|
||||
auto eliminationResult =
|
||||
gmm.toFactorGraph({{Z(0), Vector1(midway)}}).eliminateSequential();
|
||||
auto pMid = eliminationResult->at(0)->asDiscrete();
|
||||
EXPECT(assert_equal(DiscreteConditional(m, "60/40"), *pMid));
|
||||
auto pMid = eliminationResult->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||
EXPECT(assert_equal(DiscreteTableConditional(m, "60/40"), *pMid));
|
||||
|
||||
// Everywhere else, the result should be a sigmoid.
|
||||
for (const double shift : {-4, -2, 0, 2, 4}) {
|
||||
|
@ -90,7 +91,8 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
|||
// Workflow 1: convert HBN to HFG and solve
|
||||
auto eliminationResult1 =
|
||||
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
|
||||
auto posterior1 = *eliminationResult1->at(0)->asDiscrete();
|
||||
auto posterior1 =
|
||||
*eliminationResult1->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
|
||||
|
||||
// Workflow 2: directly specify HFG and solve
|
||||
|
@ -99,7 +101,8 @@ TEST(GaussianMixture, GaussianMixtureModel) {
|
|||
m, std::vector{Gaussian(mu0, sigma, z), Gaussian(mu1, sigma, z)});
|
||||
hfg1.push_back(mixing);
|
||||
auto eliminationResult2 = hfg1.eliminateSequential();
|
||||
auto posterior2 = *eliminationResult2->at(0)->asDiscrete();
|
||||
auto posterior2 =
|
||||
*eliminationResult2->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
|
||||
}
|
||||
}
|
||||
|
@ -138,8 +141,9 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
|||
EXPECT(assert_equal(expectedDiscretePosterior,
|
||||
eliminationResultMax->discretePosterior(vv)));
|
||||
|
||||
auto pMax = *eliminationResultMax->at(0)->asDiscrete();
|
||||
EXPECT(assert_equal(DiscreteConditional(m, "42/58"), pMax, 1e-4));
|
||||
auto pMax =
|
||||
*eliminationResultMax->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||
EXPECT(assert_equal(DiscreteTableConditional(m, "42/58"), pMax, 1e-4));
|
||||
|
||||
// Everywhere else, the result should be a bell curve like function.
|
||||
for (const double shift : {-4, -2, 0, 2, 4}) {
|
||||
|
@ -149,7 +153,8 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
|||
// Workflow 1: convert HBN to HFG and solve
|
||||
auto eliminationResult1 =
|
||||
gmm.toFactorGraph({{Z(0), Vector1(z)}}).eliminateSequential();
|
||||
auto posterior1 = *eliminationResult1->at(0)->asDiscrete();
|
||||
auto posterior1 =
|
||||
*eliminationResult1->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||
EXPECT_DOUBLES_EQUAL(expected, posterior1(m1Assignment), 1e-8);
|
||||
|
||||
// Workflow 2: directly specify HFG and solve
|
||||
|
@ -158,7 +163,8 @@ TEST(GaussianMixture, GaussianMixtureModel2) {
|
|||
m, std::vector{Gaussian(mu0, sigma0, z), Gaussian(mu1, sigma1, z)});
|
||||
hfg.push_back(mixing);
|
||||
auto eliminationResult2 = hfg.eliminateSequential();
|
||||
auto posterior2 = *eliminationResult2->at(0)->asDiscrete();
|
||||
auto posterior2 =
|
||||
*eliminationResult2->at(0)->asDiscrete<DiscreteTableConditional>();
|
||||
EXPECT_DOUBLES_EQUAL(expected, posterior2(m1Assignment), 1e-8);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue