Split up circle intersection code into three routines that are used in SmartRangeFactor
							parent
							
								
									140e8a8c7a
								
							
						
					
					
						commit
						d041c5b8a8
					
				| 
						 | 
				
			
			@ -68,59 +68,54 @@ double Point2::distance(const Point2& point, boost::optional<Matrix&> H1,
 | 
			
		|||
    return d.norm();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Calculate f and h, respectively the parallel and perpendicular distance of
 | 
			
		||||
 * the intersections of two circles along and from the line connecting the centers.
 | 
			
		||||
 * Both are dimensionless fractions of the distance d between the circle centers.
 | 
			
		||||
 * If the circles do not intersect or they are identical, returns boost::none.
 | 
			
		||||
 * If one solution (touching circles, as determined by tol), h will be exactly zero.
 | 
			
		||||
 * h is a good measure for how accurate the intersection will be, as when circles touch
 | 
			
		||||
 * or nearly touch, the intersection is ill-defined with noisy radius measurements.
 | 
			
		||||
 * @param R_d : R/d, ratio of radius of first circle to distance between centers
 | 
			
		||||
 * @param r_d : r/d, ratio of radius of second circle to distance between centers
 | 
			
		||||
 * @param tol: absolute tolerance below which we consider touching circles
 | 
			
		||||
 */
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Calculate h, the distance of the intersections of two circles from the center line.
 | 
			
		||||
// This is a dimensionless fraction of the distance d between the circle centers,
 | 
			
		||||
// and also determines how "good" the intersection is. If the circles do not intersect
 | 
			
		||||
// or they are identical, returns boost::none. If one solution, h -> 0.
 | 
			
		||||
// @param R_d : R/d, ratio of radius of first circle to distance between centers
 | 
			
		||||
// @param r_d : r/d, ratio of radius of second circle to distance between centers
 | 
			
		||||
// @param tol: absolute tolerance below which we consider touching circles
 | 
			
		||||
// Math inspired by http://paulbourke.net/geometry/circlesphere/
 | 
			
		||||
static boost::optional<double> circleCircleQuality(double R_d, double r_d, double tol=1e-9) {
 | 
			
		||||
boost::optional<Point2> Point2::CircleCircleIntersection(double R_d, double r_d,
 | 
			
		||||
    double tol) {
 | 
			
		||||
 | 
			
		||||
  double R2_d2 = R_d*R_d; // Yes, RD-D2 !
 | 
			
		||||
  double f = 0.5 + 0.5*(R2_d2 - r_d*r_d);
 | 
			
		||||
  double h2 = R2_d2 - f*f;
 | 
			
		||||
  double h2 = R2_d2 - f*f; // just right triangle rule
 | 
			
		||||
 | 
			
		||||
  // h^2<0 is equivalent to (d > (R + r) || d < (R - r))
 | 
			
		||||
  // Hence, there are only solutions if >=0
 | 
			
		||||
  if (h2<-tol) return boost::none; // allow *slightly* negative
 | 
			
		||||
  else if (h2<tol) return 0.0; // one solution
 | 
			
		||||
  else return sqrt(h2); // two solutions
 | 
			
		||||
  else if (h2<tol) return Point2(f,0.0); // one solution
 | 
			
		||||
  else return Point2(f,sqrt(h2)); // two solutions
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
// Math inspired by http://paulbourke.net/geometry/circlesphere/
 | 
			
		||||
list<Point2> Point2::CircleCircleIntersection(double R, Point2 c, double r) {
 | 
			
		||||
list<Point2> Point2::CircleCircleIntersection(Point2 c1, Point2 c2,
 | 
			
		||||
    boost::optional<Point2> fh) {
 | 
			
		||||
 | 
			
		||||
  list<Point2> solutions;
 | 
			
		||||
  // If fh==boost::none, there are no solutions, i.e., d > (R + r) || d < (R - r)
 | 
			
		||||
  if (fh) {
 | 
			
		||||
    // vector between circle centers
 | 
			
		||||
    Point2 c12 = c2-c1;
 | 
			
		||||
 | 
			
		||||
  // distance between circle centers.
 | 
			
		||||
  double d2 = c.x() * c.x() + c.y() * c.y(), d = sqrt(d2);
 | 
			
		||||
 | 
			
		||||
  // circles coincide, either no solution or infinite number of solutions.
 | 
			
		||||
  if (d2<1e-9) return solutions;
 | 
			
		||||
 | 
			
		||||
  // Calculate h, the distance of the intersections from the center line,
 | 
			
		||||
  // as a dimensionless fraction of  the distance d.
 | 
			
		||||
  // It is the solution of a quadratic, so it has either 2 solutions, is 0, or none
 | 
			
		||||
  double _d = 1.0/d, R_d = R*_d, r_d=r*_d;
 | 
			
		||||
  boost::optional<double> h = circleCircleQuality(R_d,r_d);
 | 
			
		||||
 | 
			
		||||
  // If h== boost::none, there are no solutions, i.e., d > (R + r) || d < (R - r)
 | 
			
		||||
  if (h) {
 | 
			
		||||
    // Determine p2, the point where the line through the circle
 | 
			
		||||
    // intersection points crosses the line between the circle centers.
 | 
			
		||||
    double f = 0.5 + 0.5*(R_d*R_d - r_d*r_d);
 | 
			
		||||
    Point2 p2 = f * c;
 | 
			
		||||
    Point2 p2 = c1 + fh->x() * c12;
 | 
			
		||||
 | 
			
		||||
    // If h == 0, the circles are touching, so just return one point
 | 
			
		||||
    if (h==0.0)
 | 
			
		||||
    if (fh->y()==0.0)
 | 
			
		||||
      solutions.push_back(p2);
 | 
			
		||||
    else {
 | 
			
		||||
      // determine the offsets of the intersection points from p
 | 
			
		||||
      Point2 offset = (*h) * Point2(-c.y(), c.x());
 | 
			
		||||
      Point2 offset = fh->y() * Point2(-c12.y(), c12.x());
 | 
			
		||||
 | 
			
		||||
      // Determine the absolute intersection points.
 | 
			
		||||
      solutions.push_back(p2 + offset);
 | 
			
		||||
| 
						 | 
				
			
			@ -130,56 +125,22 @@ list<Point2> Point2::CircleCircleIntersection(double R, Point2 c, double r) {
 | 
			
		|||
  return solutions;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//list<Point2> Point2::CircleCircleIntersection(double R, Point2 c, double r) {
 | 
			
		||||
//
 | 
			
		||||
//  list<Point2> solutions;
 | 
			
		||||
//
 | 
			
		||||
//  // Math inspired by http://paulbourke.net/geometry/circlesphere/
 | 
			
		||||
//  // Changed to avoid sqrt in case there are 0 or 1 intersections, and only one div
 | 
			
		||||
//
 | 
			
		||||
//  // squared distance between circle centers.
 | 
			
		||||
//  double d2 = c.x() * c.x() + c.y() * c.y();
 | 
			
		||||
//
 | 
			
		||||
//  // A crucial quantity we compute is h, a the distance of the intersections
 | 
			
		||||
//  // from the center line, as a dimensionless fraction of  the distance d.
 | 
			
		||||
//  // It is the solution of a quadratic, so it has either 2 solutions, is 0, or none
 | 
			
		||||
//  // We calculate it as sqrt(h^2*d^4)/d^2, but first check whether h^2*d^4>=0
 | 
			
		||||
//  double R2 = R*R;
 | 
			
		||||
//  double R2d2 = R2*d2; // yes, R2-D2!
 | 
			
		||||
//  double b = R2 + d2 - r*r;
 | 
			
		||||
//  double b2 = b*b;
 | 
			
		||||
//  double h2d4 = R2d2 - 0.25*b2; // h^2*d^4
 | 
			
		||||
//
 | 
			
		||||
//  // h^2*d^4<0 is equivalent to (d > (R + r) || d < (R - r))
 | 
			
		||||
//  // Hence, there are only solutions if >=0
 | 
			
		||||
//  if (h2d4>=0) {
 | 
			
		||||
//    // Determine p2, the point where the line through the circle
 | 
			
		||||
//    // intersection points crosses the line between the circle centers.
 | 
			
		||||
//    double i2 = 1.0/d2;
 | 
			
		||||
//    double f = 0.5*b*i2;
 | 
			
		||||
//    Point2 p2 = f * c;
 | 
			
		||||
//
 | 
			
		||||
//    // If h^2*d^4 == 0, the circles are touching, so just return one point
 | 
			
		||||
//    if (h2d4 < 1e-9)
 | 
			
		||||
//      solutions.push_back(p2);
 | 
			
		||||
//    else {
 | 
			
		||||
//      // determine the offsets of the intersection points from p
 | 
			
		||||
//      double h = sqrt(h2d4)*i2; // h = sqrt(h^2*d^4)/d^2
 | 
			
		||||
//      Point2 offset = h * Point2(-c.y(), c.x());
 | 
			
		||||
//
 | 
			
		||||
//      // Determine the absolute intersection points.
 | 
			
		||||
//      solutions.push_back(p2 + offset);
 | 
			
		||||
//      solutions.push_back(p2 - offset);
 | 
			
		||||
//    }
 | 
			
		||||
//  }
 | 
			
		||||
//  return solutions;
 | 
			
		||||
//}
 | 
			
		||||
//
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
list<Point2> Point2::CircleCircleIntersection(Point2 c1, double r1, Point2 c2, double r2) {
 | 
			
		||||
  list<Point2> solutions = Point2::CircleCircleIntersection(r1,c2-c1,r2);
 | 
			
		||||
  BOOST_FOREACH(Point2& p, solutions) p+= c1;
 | 
			
		||||
  return solutions;
 | 
			
		||||
list<Point2> Point2::CircleCircleIntersection(Point2 c1, double r1, Point2 c2,
 | 
			
		||||
    double r2, double tol) {
 | 
			
		||||
 | 
			
		||||
  // distance between circle centers.
 | 
			
		||||
  double d = c1.dist(c2);
 | 
			
		||||
 | 
			
		||||
  // centers coincide, either no solution or infinite number of solutions.
 | 
			
		||||
  if (d<1e-9) return list<Point2>();
 | 
			
		||||
 | 
			
		||||
  // Calculate f and h given normalized radii
 | 
			
		||||
  double _d = 1.0/d, R_d = r1*_d, r_d=r2*_d;
 | 
			
		||||
  boost::optional<Point2> fh = CircleCircleIntersection(R_d,r_d);
 | 
			
		||||
 | 
			
		||||
  // Call version that takes fh
 | 
			
		||||
  return CircleCircleIntersection(c1, c2, fh);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -65,14 +65,30 @@ public:
 | 
			
		|||
    y_ = v(1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Intersect Circle with radius R at origin, with circle of radius r at c
 | 
			
		||||
   * @param R radius of circle at origin
 | 
			
		||||
   * @param center center of second circle
 | 
			
		||||
   * @param r radius of second circle
 | 
			
		||||
   * @return list of solutions (0,1, or 2 points)
 | 
			
		||||
  /*
 | 
			
		||||
   * @brief Circle-circle intersection, given normalized radii.
 | 
			
		||||
   * Calculate f and h, respectively the parallel and perpendicular distance of
 | 
			
		||||
   * the intersections of two circles along and from the line connecting the centers.
 | 
			
		||||
   * Both are dimensionless fractions of the distance d between the circle centers.
 | 
			
		||||
   * If the circles do not intersect or they are identical, returns boost::none.
 | 
			
		||||
   * If one solution (touching circles, as determined by tol), h will be exactly zero.
 | 
			
		||||
   * h is a good measure for how accurate the intersection will be, as when circles touch
 | 
			
		||||
   * or nearly touch, the intersection is ill-defined with noisy radius measurements.
 | 
			
		||||
   * @param R_d : R/d, ratio of radius of first circle to distance between centers
 | 
			
		||||
   * @param r_d : r/d, ratio of radius of second circle to distance between centers
 | 
			
		||||
   * @param tol: absolute tolerance below which we consider touching circles
 | 
			
		||||
   * @return optional Point2 with f and h, boost::none if no solution.
 | 
			
		||||
   */
 | 
			
		||||
  static std::list<Point2> CircleCircleIntersection(double R, Point2 c, double r);
 | 
			
		||||
  static boost::optional<Point2> CircleCircleIntersection(double R_d, double r_d,
 | 
			
		||||
      double tol = 1e-9);
 | 
			
		||||
 | 
			
		||||
  /*
 | 
			
		||||
   * @brief Circle-circle intersection, from the normalized radii solution.
 | 
			
		||||
   * @param c1 center of first circle
 | 
			
		||||
   * @param c2 center of second circle
 | 
			
		||||
   * @return list of solutions (0,1, or 2). Identical circles will return empty list, as well.
 | 
			
		||||
   */
 | 
			
		||||
  static std::list<Point2> CircleCircleIntersection(Point2 c1, Point2 c2, boost::optional<Point2>);
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * @brief Intersect 2 circles
 | 
			
		||||
| 
						 | 
				
			
			@ -80,8 +96,11 @@ public:
 | 
			
		|||
   * @param r1 radius of first circle
 | 
			
		||||
   * @param c2 center of second circle
 | 
			
		||||
   * @param r2 radius of second circle
 | 
			
		||||
   * @param tol: absolute tolerance below which we consider touching circles
 | 
			
		||||
   * @return list of solutions (0,1, or 2). Identical circles will return empty list, as well.
 | 
			
		||||
   */
 | 
			
		||||
  static std::list<Point2> CircleCircleIntersection(Point2 c1, double r1, Point2 c2, double r2);
 | 
			
		||||
  static std::list<Point2> CircleCircleIntersection(Point2 c1, double r1,
 | 
			
		||||
      Point2 c2, double r2, double tol = 1e-9);
 | 
			
		||||
 | 
			
		||||
  /// @}
 | 
			
		||||
  /// @name Testable
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -148,30 +148,30 @@ TEST( Point2, circleCircleIntersection) {
 | 
			
		|||
  double offset = 0.994987;
 | 
			
		||||
  // Test intersections of circle moving from inside to outside
 | 
			
		||||
 | 
			
		||||
  list<Point2> inside = Point2::CircleCircleIntersection(5,Point2(0,0),1);
 | 
			
		||||
  list<Point2> inside = Point2::CircleCircleIntersection(Point2(0,0),5,Point2(0,0),1);
 | 
			
		||||
  EXPECT_LONGS_EQUAL(0,inside.size());
 | 
			
		||||
 | 
			
		||||
  list<Point2> touching1 = Point2::CircleCircleIntersection(5,Point2(4,0),1);
 | 
			
		||||
  list<Point2> touching1 = Point2::CircleCircleIntersection(Point2(0,0),5,Point2(4,0),1);
 | 
			
		||||
  EXPECT_LONGS_EQUAL(1,touching1.size());
 | 
			
		||||
  EXPECT(assert_equal(Point2(5,0), touching1.front()));
 | 
			
		||||
 | 
			
		||||
  list<Point2> common = Point2::CircleCircleIntersection(5,Point2(5,0),1);
 | 
			
		||||
  list<Point2> common = Point2::CircleCircleIntersection(Point2(0,0),5,Point2(5,0),1);
 | 
			
		||||
  EXPECT_LONGS_EQUAL(2,common.size());
 | 
			
		||||
  EXPECT(assert_equal(Point2(4.9,  offset), common.front(), 1e-6));
 | 
			
		||||
  EXPECT(assert_equal(Point2(4.9, -offset), common.back(), 1e-6));
 | 
			
		||||
 | 
			
		||||
  list<Point2> touching2 = Point2::CircleCircleIntersection(5,Point2(6,0),1);
 | 
			
		||||
  list<Point2> touching2 = Point2::CircleCircleIntersection(Point2(0,0),5,Point2(6,0),1);
 | 
			
		||||
  EXPECT_LONGS_EQUAL(1,touching2.size());
 | 
			
		||||
  EXPECT(assert_equal(Point2(5,0), touching2.front()));
 | 
			
		||||
 | 
			
		||||
  // test rotated case
 | 
			
		||||
  list<Point2> rotated = Point2::CircleCircleIntersection(5,Point2(0,5),1);
 | 
			
		||||
  list<Point2> rotated = Point2::CircleCircleIntersection(Point2(0,0),5,Point2(0,5),1);
 | 
			
		||||
  EXPECT_LONGS_EQUAL(2,rotated.size());
 | 
			
		||||
  EXPECT(assert_equal(Point2(-offset, 4.9), rotated.front(), 1e-6));
 | 
			
		||||
  EXPECT(assert_equal(Point2( offset, 4.9), rotated.back(), 1e-6));
 | 
			
		||||
 | 
			
		||||
  // test r1<r2
 | 
			
		||||
  list<Point2> smaller = Point2::CircleCircleIntersection(1,Point2(5,0),5);
 | 
			
		||||
  list<Point2> smaller = Point2::CircleCircleIntersection(Point2(0,0),1,Point2(5,0),5);
 | 
			
		||||
  EXPECT_LONGS_EQUAL(2,smaller.size());
 | 
			
		||||
  EXPECT(assert_equal(Point2(0.1,  offset), smaller.front(), 1e-6));
 | 
			
		||||
  EXPECT(assert_equal(Point2(0.1, -offset), smaller.back(), 1e-6));
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,136 @@
 | 
			
		|||
/**
 | 
			
		||||
 * @file SmartRangeFactor.h
 | 
			
		||||
 *
 | 
			
		||||
 * @brief A smart factor for range-only SLAM that does initialization and marginalization
 | 
			
		||||
 * 
 | 
			
		||||
 * @date Sep 10, 2012
 | 
			
		||||
 * @author Alex Cunningham
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#pragma once
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/base/dllexport.h>
 | 
			
		||||
#include <gtsam/nonlinear/NonlinearFactor.h>
 | 
			
		||||
#include <gtsam/nonlinear/Key.h>
 | 
			
		||||
#include <gtsam/geometry/Pose2.h>
 | 
			
		||||
#include <boost/foreach.hpp>
 | 
			
		||||
#include <map>
 | 
			
		||||
 | 
			
		||||
namespace gtsam {
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Smart factor for range SLAM
 | 
			
		||||
 * @addtogroup SLAM
 | 
			
		||||
 */
 | 
			
		||||
class GTSAM_UNSTABLE_EXPORT SmartRangeFactor: public NoiseModelFactor {
 | 
			
		||||
protected:
 | 
			
		||||
 | 
			
		||||
  struct KeyedRange {
 | 
			
		||||
    KeyedRange(Key k, double r) :
 | 
			
		||||
        key(k), range(r) {
 | 
			
		||||
    }
 | 
			
		||||
    Key key;
 | 
			
		||||
    double range;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  struct Circle2 {
 | 
			
		||||
    Circle2(const Point2& p, double r) :
 | 
			
		||||
        center(p), radius(r) {
 | 
			
		||||
    }
 | 
			
		||||
    Point2 center;
 | 
			
		||||
    double radius;
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  /// Range measurements
 | 
			
		||||
  std::list<KeyedRange> measurements_;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
 | 
			
		||||
  /** Default constructor: don't use directly */
 | 
			
		||||
  SmartRangeFactor() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** standard binary constructor */
 | 
			
		||||
  SmartRangeFactor(const SharedNoiseModel& model) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  virtual ~SmartRangeFactor() {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Add a range measurement to a pose with given key.
 | 
			
		||||
  void addRange(Key key, double measuredRange) {
 | 
			
		||||
    measurements_.push_back(KeyedRange(key, measuredRange));
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /// Number of measurements added
 | 
			
		||||
  size_t nrMeasurements() const {
 | 
			
		||||
    return measurements_.size();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // testable
 | 
			
		||||
 | 
			
		||||
  /** print */
 | 
			
		||||
  virtual void print(const std::string& s = "",
 | 
			
		||||
      const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /** Check if two factors are equal */
 | 
			
		||||
  virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
 | 
			
		||||
    return false;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // factor interface
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Triangulate a point from at least three pose-range pairs
 | 
			
		||||
   * Checks for best pair that includes first point
 | 
			
		||||
   */
 | 
			
		||||
  static Point2 triangulate(
 | 
			
		||||
      const std::list<Circle2>& circles) {
 | 
			
		||||
    Circle2 circle1 = circles.front();
 | 
			
		||||
    boost::optional<Point2> best_fh;
 | 
			
		||||
    boost::optional<Circle2> best_circle;
 | 
			
		||||
    BOOST_FOREACH(const Circle2& it, circles) {
 | 
			
		||||
      // distance between circle centers.
 | 
			
		||||
      double d = circle1.center.dist(it.center);
 | 
			
		||||
      if (d<1e-9) continue;
 | 
			
		||||
      boost::optional<Point2> fh = Point2::CircleCircleIntersection(circle1.radius/d,it.radius/d);
 | 
			
		||||
      if (fh && (!best_fh || fh->y()>best_fh->y())) {
 | 
			
		||||
        best_fh = fh;
 | 
			
		||||
        best_circle = it;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    std::list<Point2> solutions = Point2::CircleCircleIntersection(
 | 
			
		||||
        circle1.center, best_circle->center, best_fh);
 | 
			
		||||
    solutions.front().print("front");
 | 
			
		||||
    solutions.back().print("back");
 | 
			
		||||
    return solutions.front();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   * Error function *without* the NoiseModel, \f$ z-h(x) \f$.
 | 
			
		||||
   */
 | 
			
		||||
  virtual Vector unwhitenedError(const Values& x,
 | 
			
		||||
      boost::optional<std::vector<Matrix>&> H = boost::none) const {
 | 
			
		||||
    size_t K = nrMeasurements();
 | 
			
		||||
    Vector errors = zero(K);
 | 
			
		||||
    if (K >= 3) {
 | 
			
		||||
      std::list<Circle2> circles;
 | 
			
		||||
      BOOST_FOREACH(const KeyedRange& it, measurements_) {
 | 
			
		||||
        const Pose2& pose = x.at<Pose2>(it.key);
 | 
			
		||||
        circles.push_back(
 | 
			
		||||
            Circle2(pose.translation(), it.range));
 | 
			
		||||
      }
 | 
			
		||||
      Point2 optimizedPoint = triangulate(circles);
 | 
			
		||||
      size_t i = 0;
 | 
			
		||||
      BOOST_FOREACH(const Circle2& it, circles) {
 | 
			
		||||
        errors[i++] = it.radius - it.center.distance(optimizedPoint);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
    return errors;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
} // \namespace gtsam
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,83 @@
 | 
			
		|||
/* ----------------------------------------------------------------------------
 | 
			
		||||
 | 
			
		||||
 * GTSAM Copyright 2010, Georgia Tech Research Corporation, 
 | 
			
		||||
 * Atlanta, Georgia 30332-0415
 | 
			
		||||
 * All Rights Reserved
 | 
			
		||||
 * Authors: Frank Dellaert, et al. (see THANKS for the full author list)
 | 
			
		||||
 | 
			
		||||
 * See LICENSE for the license information
 | 
			
		||||
 | 
			
		||||
 * -------------------------------------------------------------------------- */
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 *  @file  testSmartRangeFactor.cpp
 | 
			
		||||
 *  @brief Unit tests for SmartRangeFactor Class
 | 
			
		||||
 *  @author Frank Dellaert
 | 
			
		||||
 *  @date Nov 2013
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <gtsam_unstable/slam/SmartRangeFactor.h>
 | 
			
		||||
#include <CppUnitLite/TestHarness.h>
 | 
			
		||||
 | 
			
		||||
using namespace std;
 | 
			
		||||
using namespace gtsam;
 | 
			
		||||
 | 
			
		||||
const noiseModel::Base::shared_ptr gaussian = noiseModel::Isotropic::Sigma(1,
 | 
			
		||||
    2.0);
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
TEST( SmartRangeFactor, constructor ) {
 | 
			
		||||
  SmartRangeFactor f1;
 | 
			
		||||
  LONGS_EQUAL(0, f1.nrMeasurements())
 | 
			
		||||
  SmartRangeFactor f2(gaussian);
 | 
			
		||||
  LONGS_EQUAL(0, f2.nrMeasurements())
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
TEST( SmartRangeFactor, addRange ) {
 | 
			
		||||
  SmartRangeFactor f(gaussian);
 | 
			
		||||
  f.addRange(1, 10);
 | 
			
		||||
  f.addRange(1, 12);
 | 
			
		||||
  LONGS_EQUAL(2, f.nrMeasurements())
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
TEST( SmartRangeFactor, unwhitenedError ) {
 | 
			
		||||
  // Test situation:
 | 
			
		||||
  Point2 p(0, 10);
 | 
			
		||||
  Pose2 pose1(0, 0, 0), pose2(5, 0, 0), pose3(5, 5, 0);
 | 
			
		||||
  double r1 = pose1.range(p), r2 = pose2.range(p), r3 = pose3.range(p);
 | 
			
		||||
  DOUBLES_EQUAL(10, r1, 1e-9);
 | 
			
		||||
  DOUBLES_EQUAL(sqrt(100+25), r2, 1e-9);
 | 
			
		||||
  DOUBLES_EQUAL(sqrt(50), r3, 1e-9);
 | 
			
		||||
 | 
			
		||||
  Values values; // all correct
 | 
			
		||||
  values.insert(1, pose1);
 | 
			
		||||
  values.insert(2, pose2);
 | 
			
		||||
  values.insert(3, pose3);
 | 
			
		||||
 | 
			
		||||
  SmartRangeFactor f(gaussian);
 | 
			
		||||
  f.addRange(1, r1);
 | 
			
		||||
 | 
			
		||||
  // Whenever there are two ranges or less, error should be zero
 | 
			
		||||
  Vector actual1 = f.unwhitenedError(values);
 | 
			
		||||
  EXPECT(assert_equal(Vector_(1,0.0), actual1));
 | 
			
		||||
  f.addRange(2, r2);
 | 
			
		||||
  Vector actual2 = f.unwhitenedError(values);
 | 
			
		||||
  EXPECT(assert_equal(Vector2(0,0), actual2));
 | 
			
		||||
 | 
			
		||||
  f.addRange(3, r3);
 | 
			
		||||
  Vector actual3 = f.unwhitenedError(values);
 | 
			
		||||
  EXPECT(assert_equal(Vector3(0,0,0), actual3));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
int main() {
 | 
			
		||||
  TestResult tr;
 | 
			
		||||
  return TestRegistry::runAllTests(tr);
 | 
			
		||||
}
 | 
			
		||||
/* ************************************************************************* */
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue