Merge pull request #899 from borglab/add-pose2-lago-to-wrapper

release/4.3a0
Varun Agrawal 2021-10-22 22:17:15 -04:00 committed by GitHub
commit cb0e62b1ad
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 112 additions and 1 deletions

View File

@ -334,5 +334,11 @@ virtual class FrobeniusBetweenFactor : gtsam::NoiseModelFactor {
Vector evaluateError(const T& R1, const T& R2);
};
#include <gtsam/slam/lago.h>
namespace lago {
gtsam::Values initialize(const gtsam::NonlinearFactorGraph& graph, bool useOdometricPath = true);
gtsam::Values initialize(const gtsam::NonlinearFactorGraph& graph, const gtsam::Values& initialGuess);
}
} // namespace gtsam

View File

@ -0,0 +1,67 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
A 2D Pose SLAM example that reads input from g2o, and solve the Pose2 problem
using LAGO (Linear Approximation for Graph Optimization).
Output is written to a file, in g2o format
Reference:
L. Carlone, R. Aragues, J. Castellanos, and B. Bona, A fast and accurate
approximation for planar pose graph optimization, IJRR, 2014.
L. Carlone, R. Aragues, J.A. Castellanos, and B. Bona, A linear approximation
for graph-based simultaneous localization and mapping, RSS, 2011.
Author: Luca Carlone (C++), John Lambert (Python)
"""
import argparse
from argparse import Namespace
import numpy as np
import gtsam
from gtsam import Point3, Pose2, PriorFactorPose2, Values
def run(args: Namespace) -> None:
"""Run LAGO on input data stored in g2o file."""
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt") if args.input is None else args.input
graph = gtsam.NonlinearFactorGraph()
graph, initial = gtsam.readG2o(g2oFile)
# Add prior on the pose having index (key) = 0
priorModel = gtsam.noiseModel.Diagonal.Variances(Point3(1e-6, 1e-6, 1e-8))
graph.add(PriorFactorPose2(0, Pose2(), priorModel))
print(graph)
print("Computing LAGO estimate")
estimateLago: Values = gtsam.lago.initialize(graph)
print("done!")
if args.output is None:
estimateLago.print("estimateLago")
else:
outputFile = args.output
print("Writing results to file: ", outputFile)
graphNoKernel = gtsam.NonlinearFactorGraph()
graphNoKernel, initial2 = gtsam.readG2o(g2oFile)
gtsam.writeG2o(graphNoKernel, estimateLago, outputFile)
print("Done! ")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="A 2D Pose SLAM example that reads input from g2o, "
"converts it to a factor graph and does the optimization. "
"Output is written on a file, in g2o format"
)
parser.add_argument("-i", "--input", help="input file g2o format")
parser.add_argument("-o", "--output", help="the path to the output file with optimized graph")
args = parser.parse_args()
run(args)

View File

@ -0,0 +1,38 @@
"""
GTSAM Copyright 2010, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Author: John Lambert (Python)
"""
import unittest
import numpy as np
import gtsam
from gtsam import Point3, Pose2, PriorFactorPose2, Values
class TestLago(unittest.TestCase):
"""Test selected LAGO methods."""
def test_initialize(self) -> None:
"""Smokescreen to ensure LAGO can be imported and run on toy data stored in a g2o file."""
g2oFile = gtsam.findExampleDataFile("noisyToyGraph.txt")
graph = gtsam.NonlinearFactorGraph()
graph, initial = gtsam.readG2o(g2oFile)
# Add prior on the pose having index (key) = 0
priorModel = gtsam.noiseModel.Diagonal.Variances(Point3(1e-6, 1e-6, 1e-8))
graph.add(PriorFactorPose2(0, Pose2(), priorModel))
estimateLago: Values = gtsam.lago.initialize(graph)
assert isinstance(estimateLago, Values)
if __name__ == "__main__":
unittest.main()