remove unused methods
							parent
							
								
									9cacb9876e
								
							
						
					
					
						commit
						c6e9bfc824
					
				|  | @ -141,18 +141,6 @@ bool DiscreteTableConditional::equals(const DiscreteFactor& other, | |||
|   } | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************** */ | ||||
| TableFactor::shared_ptr DiscreteTableConditional::likelihood( | ||||
|     const DiscreteValues& frontalValues) const { | ||||
|   throw std::runtime_error("Likelihood not implemented"); | ||||
| } | ||||
| 
 | ||||
| /* ****************************************************************************/ | ||||
| TableFactor::shared_ptr DiscreteTableConditional::likelihood( | ||||
|     size_t frontal) const { | ||||
|   throw std::runtime_error("Likelihood not implemented"); | ||||
| } | ||||
| 
 | ||||
| /* ****************************************************************************/ | ||||
| DiscreteConditional::shared_ptr DiscreteTableConditional::max( | ||||
|     const Ordering& keys) const { | ||||
|  | @ -180,26 +168,4 @@ DiscreteConditional::shared_ptr DiscreteTableConditional::prune( | |||
|       this->nrFrontals(), this->discreteKeys(), pruned.sparseTable()); | ||||
| } | ||||
| 
 | ||||
| /* ************************************************************************** */ | ||||
| size_t DiscreteTableConditional::argmax( | ||||
|     const DiscreteValues& parentsValues) const { | ||||
|   // Initialize
 | ||||
|   size_t maxValue = 0; | ||||
|   double maxP = 0; | ||||
|   DiscreteValues values = parentsValues; | ||||
| 
 | ||||
|   assert(nrFrontals() == 1); | ||||
|   Key j = firstFrontalKey(); | ||||
|   for (size_t value = 0; value < cardinality(j); value++) { | ||||
|     values[j] = value; | ||||
|     double pValueS = (*this)(values); | ||||
|     // Update MPE solution if better
 | ||||
|     if (pValueS > maxP) { | ||||
|       maxP = pValueS; | ||||
|       maxValue = value; | ||||
|     } | ||||
|   } | ||||
|   return maxValue; | ||||
| } | ||||
| 
 | ||||
| }  // namespace gtsam
 | ||||
|  |  | |||
|  | @ -158,28 +158,8 @@ class GTSAM_EXPORT DiscreteTableConditional : public DiscreteConditional { | |||
|   /// @name Standard Interface
 | ||||
|   /// @{
 | ||||
| 
 | ||||
|   /// Log-probability is just -error(x).
 | ||||
|   double logProbability(const DiscreteValues& x) const { return -error(x); } | ||||
| 
 | ||||
|   /// print index signature only
 | ||||
|   void printSignature( | ||||
|       const std::string& s = "Discrete Conditional: ", | ||||
|       const KeyFormatter& formatter = DefaultKeyFormatter) const { | ||||
|     static_cast<const BaseConditional*>(this)->print(s, formatter); | ||||
|   } | ||||
| 
 | ||||
|   /** Convert to a likelihood factor by providing value before bar. */ | ||||
|   TableFactor::shared_ptr likelihood(const DiscreteValues& frontalValues) const; | ||||
| 
 | ||||
|   /** Single variable version of likelihood. */ | ||||
|   TableFactor::shared_ptr likelihood(size_t frontal) const; | ||||
| 
 | ||||
|   /**
 | ||||
|    * @brief Return assignment for single frontal variable that maximizes value. | ||||
|    * @param parentsValues Known assignments for the parents. | ||||
|    * @return maximizing assignment for the frontal variable. | ||||
|    */ | ||||
|   size_t argmax(const DiscreteValues& parentsValues = DiscreteValues()) const; | ||||
|   /// Return the underlying TableFactor
 | ||||
|   TableFactor table() const { return table_; } | ||||
| 
 | ||||
|   /**
 | ||||
|    * @brief Create new conditional by maximizing over all | ||||
|  | @ -195,29 +175,6 @@ class GTSAM_EXPORT DiscreteTableConditional : public DiscreteConditional { | |||
|   /// @name Advanced Interface
 | ||||
|   /// @{
 | ||||
| 
 | ||||
|   /// Return all assignments for frontal variables.
 | ||||
|   std::vector<DiscreteValues> frontalAssignments() const; | ||||
| 
 | ||||
|   /// Return all assignments for frontal *and* parent variables.
 | ||||
|   std::vector<DiscreteValues> allAssignments() const; | ||||
| 
 | ||||
|   /// @}
 | ||||
|   /// @name HybridValues methods.
 | ||||
|   /// @{
 | ||||
| 
 | ||||
|   using BaseConditional::operator();  ///< HybridValues version
 | ||||
| 
 | ||||
|   /**
 | ||||
|    * Calculate log-probability log(evaluate(x)) for HybridValues `x`. | ||||
|    * This is actually just -error(x). | ||||
|    */ | ||||
|   double logProbability(const HybridValues& x) const override { | ||||
|     return -error(x); | ||||
|   } | ||||
| 
 | ||||
|   /// Return the underlying TableFactor
 | ||||
|   TableFactor table() const { return table_; } | ||||
| 
 | ||||
|   /// Evaluate the conditional given the values.
 | ||||
|   virtual double evaluate(const Assignment<Key>& values) const override { | ||||
|     return table_.evaluate(values); | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue