Merged in feature/pose3_init (pull request #400)

Pose3 Initialization in Python/MATLAB

Approved-by: Luca Carlone <luca.carlone@gatech.edu>
release/4.3a0
Frank Dellaert 2019-03-19 23:00:14 +00:00
commit c53e1ec653
6 changed files with 303 additions and 143 deletions

View File

@ -0,0 +1,35 @@
"""
GTSAM Copyright 2010-2018, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
Authors: Frank Dellaert, et al. (see THANKS for the full author list)
See LICENSE for the license information
Initialize PoseSLAM with Chordal init
Author: Luca Carlone, Frank Dellaert (python port)
"""
# pylint: disable=invalid-name, E1101
from __future__ import print_function
import numpy as np
import gtsam
# Read graph from file
g2oFile = gtsam.findExampleDataFile("pose3example.txt")
is3D = True
graph, initial = gtsam.readG2o(g2oFile, is3D)
# Add prior on the first key. TODO: assumes first key ios z
priorModel = gtsam.noiseModel_Diagonal.Variances(
np.array([1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4]))
firstKey = initial.keys().at(0)
graph.add(gtsam.PriorFactorPose3(0, gtsam.Pose3(), priorModel))
# Initializing Pose3 - chordal relaxation"
initialization = gtsam.InitializePose3.initialize(graph)
print(initialization)

View File

@ -0,0 +1,88 @@
"""
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
Atlanta, Georgia 30332-0415
All Rights Reserved
See LICENSE for the license information
Unit tests for 3D SLAM initialization, using rotation relaxation.
Author: Luca Carlone and Frank Dellaert (Python)
"""
# pylint: disable=invalid-name, E1101, E0611
import unittest
import numpy as np
import gtsam
from gtsam import NonlinearFactorGraph, Point3, Pose3, Rot3, Values
x0, x1, x2, x3 = 0, 1, 2, 3
class TestValues(unittest.TestCase):
def setUp(self):
model = gtsam.noiseModel_Isotropic.Sigma(6, 0.1)
# We consider a small graph:
# symbolic FG
# x2 0 1
# / | \ 1 2
# / | \ 2 3
# x3 | x1 2 0
# \ | / 0 3
# \ | /
# x0
#
p0 = Point3(0, 0, 0)
self.R0 = Rot3.Expmap(np.array([0.0, 0.0, 0.0]))
p1 = Point3(1, 2, 0)
self.R1 = Rot3.Expmap(np.array([0.0, 0.0, 1.570796]))
p2 = Point3(0, 2, 0)
self.R2 = Rot3.Expmap(np.array([0.0, 0.0, 3.141593]))
p3 = Point3(-1, 1, 0)
self.R3 = Rot3.Expmap(np.array([0.0, 0.0, 4.712389]))
pose0 = Pose3(self.R0, p0)
pose1 = Pose3(self.R1, p1)
pose2 = Pose3(self.R2, p2)
pose3 = Pose3(self.R3, p3)
g = NonlinearFactorGraph()
g.add(gtsam.BetweenFactorPose3(x0, x1, pose0.between(pose1), model))
g.add(gtsam.BetweenFactorPose3(x1, x2, pose1.between(pose2), model))
g.add(gtsam.BetweenFactorPose3(x2, x3, pose2.between(pose3), model))
g.add(gtsam.BetweenFactorPose3(x2, x0, pose2.between(pose0), model))
g.add(gtsam.BetweenFactorPose3(x0, x3, pose0.between(pose3), model))
g.add(gtsam.PriorFactorPose3(x0, pose0, model))
self.graph = g
def test_buildPose3graph(self):
pose3graph = gtsam.InitializePose3.buildPose3graph(self.graph)
def test_orientations(self):
pose3Graph = gtsam.InitializePose3.buildPose3graph(self.graph)
initial = gtsam.InitializePose3.computeOrientationsChordal(pose3Graph)
# comparison is up to M_PI, that's why we add some multiples of 2*M_PI
self.assertTrue(initial.atRot3(x0).equals(self.R0, 1e-6))
self.assertTrue(initial.atRot3(x1).equals(self.R1, 1e-6))
self.assertTrue(initial.atRot3(x2).equals(self.R2, 1e-6))
self.assertTrue(initial.atRot3(x3).equals(self.R3, 1e-6))
def test_initializePoses(self):
g2oFile = gtsam.findExampleDataFile("pose3example-grid")
is3D = True
inputGraph, expectedValues = gtsam.readG2o(g2oFile, is3D)
priorModel = gtsam.noiseModel_Unit.Create(6)
inputGraph.add(gtsam.PriorFactorPose3(0, Pose3(), priorModel))
initial = gtsam.InitializePose3.initialize(inputGraph)
# TODO(frank): very loose !!
self.assertTrue(initial.equals(expectedValues, 0.1))
if __name__ == "__main__":
unittest.main()

20
gtsam.h
View File

@ -2523,6 +2523,26 @@ class BetweenFactorPose3s
gtsam::BetweenFactorPose3* at(size_t i) const;
};
#include <gtsam/slam/InitializePose3.h>
class InitializePose3 {
static gtsam::Values computeOrientationsChordal(
const gtsam::NonlinearFactorGraph& pose3Graph);
static gtsam::Values computeOrientationsGradient(
const gtsam::NonlinearFactorGraph& pose3Graph,
const gtsam::Values& givenGuess, size_t maxIter, const bool setRefFrame);
static gtsam::Values computeOrientationsGradient(
const gtsam::NonlinearFactorGraph& pose3Graph,
const gtsam::Values& givenGuess);
static gtsam::NonlinearFactorGraph buildPose3graph(
const gtsam::NonlinearFactorGraph& graph);
static gtsam::Values initializeOrientations(
const gtsam::NonlinearFactorGraph& graph);
static gtsam::Values initialize(const gtsam::NonlinearFactorGraph& graph,
const gtsam::Values& givenGuess,
bool useGradient);
static gtsam::Values initialize(const gtsam::NonlinearFactorGraph& graph);
};
gtsam::BetweenFactorPose3s parse3DFactors(string filename);
pair<gtsam::NonlinearFactorGraph*, gtsam::Values*> load3D(string filename);

View File

@ -16,7 +16,7 @@
* @date August, 2014
*/
#include <gtsam/slam/InitializePose3.h>
#include <gtsam/slam/InitializePose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
@ -29,69 +29,65 @@
using namespace std;
namespace gtsam {
namespace InitializePose3 {
static const Matrix I9 = I_9x9;
static const Vector zero9 = Vector::Zero(9);
static const Matrix zero33 = Z_3x3;
static const Key keyAnchor = symbol('Z', 9999999);
static const Key kAnchorKey = symbol('Z', 9999999);
/* ************************************************************************* */
GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g) {
GaussianFactorGraph InitializePose3::buildLinearOrientationGraph(const NonlinearFactorGraph& g) {
GaussianFactorGraph linearGraph;
noiseModel::Unit::shared_ptr model = noiseModel::Unit::Create(9);
for(const boost::shared_ptr<NonlinearFactor>& factor: g) {
for(const auto& factor: g) {
Matrix3 Rij;
double rotationPrecision = 1.0;
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between)
auto pose3Between = boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between){
Rij = pose3Between->measured().rotation().matrix();
else
std::cout << "Error in buildLinearOrientationGraph" << std::endl;
Vector precisions = Vector::Zero(6);
precisions[0] = 1.0; // vector of all zeros except first entry equal to 1
pose3Between->noiseModel()->whitenInPlace(precisions); // gets marginal precision of first variable
rotationPrecision = precisions[0]; // rotations first
}else{
cout << "Error in buildLinearOrientationGraph" << endl;
}
const KeyVector& keys = factor->keys();
const auto& keys = factor->keys();
Key key1 = keys[0], key2 = keys[1];
Matrix M9 = Z_9x9;
M9.block(0,0,3,3) = Rij;
M9.block(3,3,3,3) = Rij;
M9.block(6,6,3,3) = Rij;
linearGraph.add(key1, -I9, key2, M9, zero9, model);
linearGraph.add(key1, -I_9x9, key2, M9, Z_9x1, noiseModel::Isotropic::Precision(9, rotationPrecision));
}
// prior on the anchor orientation
linearGraph.add(keyAnchor, I9, (Vector(9) << 1.0, 0.0, 0.0,/* */ 0.0, 1.0, 0.0, /* */ 0.0, 0.0, 1.0).finished(), model);
linearGraph.add(
kAnchorKey, I_9x9,
(Vector(9) << 1.0, 0.0, 0.0, /* */ 0.0, 1.0, 0.0, /* */ 0.0, 0.0, 1.0)
.finished(),
noiseModel::Isotropic::Precision(9, 1));
return linearGraph;
}
/* ************************************************************************* */
// Transform VectorValues into valid Rot3
Values normalizeRelaxedRotations(const VectorValues& relaxedRot3) {
Values InitializePose3::normalizeRelaxedRotations(
const VectorValues& relaxedRot3) {
gttic(InitializePose3_computeOrientationsChordal);
Matrix ppm = Z_3x3; // plus plus minus
ppm(0,0) = 1; ppm(1,1) = 1; ppm(2,2) = -1;
Values validRot3;
for(const VectorValues::value_type& it: relaxedRot3) {
for(const auto& it: relaxedRot3) {
Key key = it.first;
if (key != keyAnchor) {
const Vector& rotVector = it.second;
Matrix3 rotMat;
rotMat(0,0) = rotVector(0); rotMat(0,1) = rotVector(1); rotMat(0,2) = rotVector(2);
rotMat(1,0) = rotVector(3); rotMat(1,1) = rotVector(4); rotMat(1,2) = rotVector(5);
rotMat(2,0) = rotVector(6); rotMat(2,1) = rotVector(7); rotMat(2,2) = rotVector(8);
if (key != kAnchorKey) {
Matrix3 R; R << it.second;
Matrix U, V; Vector s;
svd(rotMat, U, s, V);
svd(R.transpose(), U, s, V);
Matrix3 normalizedRotMat = U * V.transpose();
// std::cout << "rotMat \n" << rotMat << std::endl;
// std::cout << "U V' \n" << U * V.transpose() << std::endl;
// std::cout << "V \n" << V << std::endl;
if(normalizedRotMat.determinant() < 0)
normalizedRotMat = U * ppm * V.transpose();
@ -103,32 +99,29 @@ Values normalizeRelaxedRotations(const VectorValues& relaxedRot3) {
}
/* ************************************************************************* */
// Select the subgraph of betweenFactors and transforms priors into between wrt a fictitious node
NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph) {
NonlinearFactorGraph InitializePose3::buildPose3graph(const NonlinearFactorGraph& graph) {
gttic(InitializePose3_buildPose3graph);
NonlinearFactorGraph pose3Graph;
for(const boost::shared_ptr<NonlinearFactor>& factor: graph) {
for(const auto& factor: graph) {
// recast to a between on Pose3
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
const auto pose3Between = boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between)
pose3Graph.add(pose3Between);
// recast PriorFactor<Pose3> to BetweenFactor<Pose3>
boost::shared_ptr<PriorFactor<Pose3> > pose3Prior =
boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
const auto pose3Prior = boost::dynamic_pointer_cast<PriorFactor<Pose3> >(factor);
if (pose3Prior)
pose3Graph.emplace_shared<BetweenFactor<Pose3> >(keyAnchor, pose3Prior->keys()[0],
pose3Graph.emplace_shared<BetweenFactor<Pose3> >(kAnchorKey, pose3Prior->keys()[0],
pose3Prior->prior(), pose3Prior->noiseModel());
}
return pose3Graph;
}
/* ************************************************************************* */
// Return the orientations of a graph including only BetweenFactors<Pose3>
Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph) {
Values InitializePose3::computeOrientationsChordal(
const NonlinearFactorGraph& pose3Graph) {
gttic(InitializePose3_computeOrientationsChordal);
// regularize measurements and plug everything in a factor graph
@ -142,14 +135,15 @@ Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph) {
}
/* ************************************************************************* */
// Return the orientations of a graph including only BetweenFactors<Pose3>
Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const Values& givenGuess, const size_t maxIter, const bool setRefFrame) {
Values InitializePose3::computeOrientationsGradient(
const NonlinearFactorGraph& pose3Graph, const Values& givenGuess,
const size_t maxIter, const bool setRefFrame) {
gttic(InitializePose3_computeOrientationsGradient);
// this works on the inverse rotations, according to Tron&Vidal,2011
Values inverseRot;
inverseRot.insert(keyAnchor, Rot3());
for(const Values::ConstKeyValuePair& key_value: givenGuess) {
inverseRot.insert(kAnchorKey, Rot3());
for(const auto& key_value: givenGuess) {
Key key = key_value.key;
const Pose3& pose = givenGuess.at<Pose3>(key);
inverseRot.insert(key, pose.rotation().inverse());
@ -164,9 +158,9 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
// calculate max node degree & allocate gradient
size_t maxNodeDeg = 0;
VectorValues grad;
for(const Values::ConstKeyValuePair& key_value: inverseRot) {
for(const auto& key_value: inverseRot) {
Key key = key_value.key;
grad.insert(key,Vector3::Zero());
grad.insert(key,Z_3x1);
size_t currNodeDeg = (adjEdgesMap.at(key)).size();
if(currNodeDeg > maxNodeDeg)
maxNodeDeg = currNodeDeg;
@ -180,42 +174,37 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
double mu_max = maxNodeDeg * rho;
double stepsize = 2/mu_max; // = 1/(a b dG)
std::cout <<" b " << b <<" f0 " << f0 <<" a " << a <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
double maxGrad;
// gradient iterations
size_t it;
for(it=0; it < maxIter; it++){
for (it = 0; it < maxIter; it++) {
//////////////////////////////////////////////////////////////////////////
// compute the gradient at each node
//std::cout << "it " << it <<" b " << b <<" f0 " << f0 <<" a " << a
// <<" rho " << rho <<" stepsize " << stepsize << " maxNodeDeg "<< maxNodeDeg << std::endl;
maxGrad = 0;
for(const Values::ConstKeyValuePair& key_value: inverseRot) {
for (const auto& key_value : inverseRot) {
Key key = key_value.key;
//std::cout << "---------------------------key " << DefaultKeyFormatter(key) << std::endl;
Vector gradKey = Vector3::Zero();
Vector gradKey = Z_3x1;
// collect the gradient for each edge incident on key
for(const size_t& factorId: adjEdgesMap.at(key)){
for (const size_t& factorId : adjEdgesMap.at(key)) {
Rot3 Rij = factorId2RotMap.at(factorId);
Rot3 Ri = inverseRot.at<Rot3>(key);
if( key == (pose3Graph.at(factorId))->keys()[0] ){
Key key1 = (pose3Graph.at(factorId))->keys()[1];
auto factor = pose3Graph.at(factorId);
const auto& keys = factor->keys();
if (key == keys[0]) {
Key key1 = keys[1];
Rot3 Rj = inverseRot.at<Rot3>(key1);
gradKey = gradKey + gradientTron(Ri, Rij * Rj, a, b);
//std::cout << "key1 " << DefaultKeyFormatter(key1) << " gradientTron(Ri, Rij * Rj, a, b) \n " << gradientTron(Ri, Rij * Rj, a, b) << std::endl;
}else if( key == (pose3Graph.at(factorId))->keys()[1] ){
Key key0 = (pose3Graph.at(factorId))->keys()[0];
gradKey = gradKey + gradientTron(Ri, Rij * Rj, a, b);
} else if (key == keys[1]) {
Key key0 = keys[0];
Rot3 Rj = inverseRot.at<Rot3>(key0);
gradKey = gradKey + gradientTron(Ri, Rij.between(Rj), a, b);
//std::cout << "key0 " << DefaultKeyFormatter(key0) << " gradientTron(Ri, Rij.inverse() * Rj, a, b) \n " << gradientTron(Ri, Rij.between(Rj), a, b) << std::endl;
}else{
std::cout << "Error in gradient computation" << std::endl;
} else {
cout << "Error in gradient computation" << endl;
}
} // end of i-th gradient computation
grad.at(key) = stepsize * gradKey;
} // end of i-th gradient computation
grad.at(key) = stepsize * gradKey;
double normGradKey = (gradKey).norm();
//std::cout << "key " << DefaultKeyFormatter(key) <<" \n grad \n" << grad.at(key) << std::endl;
if(normGradKey>maxGrad)
maxGrad = normGradKey;
} // end of loop over nodes
@ -230,14 +219,12 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
break;
} // enf of gradient iterations
std::cout << "nr of gradient iterations " << it << "maxGrad " << maxGrad << std::endl;
// Return correct rotations
const Rot3& Rref = inverseRot.at<Rot3>(keyAnchor); // This will be set to the identity as so far we included no prior
const Rot3& Rref = inverseRot.at<Rot3>(kAnchorKey); // This will be set to the identity as so far we included no prior
Values estimateRot;
for(const Values::ConstKeyValuePair& key_value: inverseRot) {
for(const auto& key_value: inverseRot) {
Key key = key_value.key;
if (key != keyAnchor) {
if (key != kAnchorKey) {
const Rot3& R = inverseRot.at<Rot3>(key);
if(setRefFrame)
estimateRot.insert(key, Rref.compose(R.inverse()));
@ -249,11 +236,11 @@ Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph, const
}
/* ************************************************************************* */
void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap, const NonlinearFactorGraph& pose3Graph){
void InitializePose3::createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
const NonlinearFactorGraph& pose3Graph) {
size_t factorId = 0;
for(const boost::shared_ptr<NonlinearFactor>& factor: pose3Graph) {
boost::shared_ptr<BetweenFactor<Pose3> > pose3Between =
boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
for(const auto& factor: pose3Graph) {
auto pose3Between = boost::dynamic_pointer_cast<BetweenFactor<Pose3> >(factor);
if (pose3Between){
Rot3 Rij = pose3Between->measured().rotation();
factorId2RotMap.insert(pair<Key, Rot3 >(factorId,Rij));
@ -275,14 +262,14 @@ void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
adjEdgesMap.insert(pair<Key, vector<size_t> >(key2, edge_id));
}
}else{
std::cout << "Error in computeOrientationsGradient" << std::endl;
cout << "Error in createSymbolicGraph" << endl;
}
factorId++;
}
}
/* ************************************************************************* */
Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b) {
Vector3 InitializePose3::gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b) {
Vector3 logRot = Rot3::Logmap(R1.between(R2));
double th = logRot.norm();
@ -292,10 +279,10 @@ Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const doubl
th = logRot.norm();
}
// exclude small or invalid rotations
if (th > 1e-5 && th == th){ // nonzero valid rotations
if (th > 1e-5 && th == th) { // nonzero valid rotations
logRot = logRot / th;
}else{
logRot = Vector3::Zero();
} else {
logRot = Z_3x1;
th = 0.0;
}
@ -304,8 +291,7 @@ Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const doubl
}
/* ************************************************************************* */
Values initializeOrientations(const NonlinearFactorGraph& graph) {
Values InitializePose3::initializeOrientations(const NonlinearFactorGraph& graph) {
// We "extract" the Pose3 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
@ -315,29 +301,30 @@ Values initializeOrientations(const NonlinearFactorGraph& graph) {
}
///* ************************************************************************* */
Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
Values InitializePose3::computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
gttic(InitializePose3_computePoses);
// put into Values structure
Values initialPose;
for(const Values::ConstKeyValuePair& key_value: initialRot){
for (const auto& key_value : initialRot) {
Key key = key_value.key;
const Rot3& rot = initialRot.at<Rot3>(key);
Pose3 initializedPose = Pose3(rot, Point3(0, 0, 0));
initialPose.insert(key, initializedPose);
}
// add prior
noiseModel::Unit::shared_ptr priorModel = noiseModel::Unit::Create(6);
initialPose.insert(keyAnchor, Pose3());
pose3graph.emplace_shared<PriorFactor<Pose3> >(keyAnchor, Pose3(), priorModel);
initialPose.insert(kAnchorKey, Pose3());
pose3graph.emplace_shared<PriorFactor<Pose3> >(kAnchorKey, Pose3(), priorModel);
// Create optimizer
GaussNewtonParams params;
bool singleIter = true;
if(singleIter){
if (singleIter) {
params.maxIterations = 1;
}else{
std::cout << " \n\n\n\n performing more than 1 GN iterations \n\n\n" <<std::endl;
} else {
cout << " \n\n\n\n performing more than 1 GN iterations \n\n\n" << endl;
params.setVerbosity("TERMINATION");
}
GaussNewtonOptimizer optimizer(pose3graph, initialPose, params);
@ -345,9 +332,9 @@ Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
// put into Values structure
Values estimate;
for(const Values::ConstKeyValuePair& key_value: GNresult) {
for (const auto& key_value : GNresult) {
Key key = key_value.key;
if (key != keyAnchor) {
if (key != kAnchorKey) {
const Pose3& pose = GNresult.at<Pose3>(key);
estimate.insert(key, pose);
}
@ -356,22 +343,9 @@ Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot) {
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph) {
Values InitializePose3::initialize(const NonlinearFactorGraph& graph, const Values& givenGuess,
bool useGradient) {
gttic(InitializePose3_initialize);
// We "extract" the Pose3 subgraph of the original graph: this
// is done to properly model priors and avoiding operating on a larger graph
NonlinearFactorGraph pose3Graph = buildPose3graph(graph);
// Get orientations from relative orientation measurements
Values valueRot3 = computeOrientationsChordal(pose3Graph);
// Compute the full poses (1 GN iteration on full poses)
return computePoses(pose3Graph, valueRot3);
}
/* ************************************************************************* */
Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient) {
Values initialValues;
// We "extract" the Pose3 subgraph of the original graph: this
@ -380,27 +354,18 @@ Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, b
// Get orientations from relative orientation measurements
Values orientations;
if(useGradient)
if (useGradient)
orientations = computeOrientationsGradient(pose3Graph, givenGuess);
else
orientations = computeOrientationsChordal(pose3Graph);
// orientations.print("orientations\n");
// Compute the full poses (1 GN iteration on full poses)
return computePoses(pose3Graph, orientations);
// for(const Values::ConstKeyValuePair& key_value: orientations) {
// Key key = key_value.key;
// if (key != keyAnchor) {
// const Point3& pos = givenGuess.at<Pose3>(key).translation();
// const Rot3& rot = orientations.at<Rot3>(key);
// Pose3 initializedPoses = Pose3(rot, pos);
// initialValues.insert(key, initializedPoses);
// }
// }
// return initialValues;
}
} // end of namespace lago
} // end of namespace gtsam
/* ************************************************************************* */
Values InitializePose3::initialize(const NonlinearFactorGraph& graph) {
return initialize(graph, Values(), false);
}
} // namespace gtsam

View File

@ -20,40 +20,68 @@
#pragma once
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/inference/graph.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/inference/graph.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
namespace gtsam {
typedef std::map<Key, std::vector<size_t> > KeyVectorMap;
typedef std::map<Key, Rot3 > KeyRotMap;
typedef std::map<Key, Rot3> KeyRotMap;
namespace InitializePose3 {
struct GTSAM_EXPORT InitializePose3 {
static GaussianFactorGraph buildLinearOrientationGraph(
const NonlinearFactorGraph& g);
GTSAM_EXPORT GaussianFactorGraph buildLinearOrientationGraph(const NonlinearFactorGraph& g);
static Values normalizeRelaxedRotations(const VectorValues& relaxedRot3);
GTSAM_EXPORT Values normalizeRelaxedRotations(const VectorValues& relaxedRot3);
/**
* Return the orientations of a graph including only BetweenFactors<Pose3>
*/
static Values computeOrientationsChordal(
const NonlinearFactorGraph& pose3Graph);
GTSAM_EXPORT Values computeOrientationsChordal(const NonlinearFactorGraph& pose3Graph);
/**
* Return the orientations of a graph including only BetweenFactors<Pose3>
*/
static Values computeOrientationsGradient(
const NonlinearFactorGraph& pose3Graph, const Values& givenGuess,
size_t maxIter = 10000, const bool setRefFrame = true);
GTSAM_EXPORT Values computeOrientationsGradient(const NonlinearFactorGraph& pose3Graph,
const Values& givenGuess, size_t maxIter = 10000, const bool setRefFrame = true);
static void createSymbolicGraph(KeyVectorMap& adjEdgesMap,
KeyRotMap& factorId2RotMap,
const NonlinearFactorGraph& pose3Graph);
GTSAM_EXPORT void createSymbolicGraph(KeyVectorMap& adjEdgesMap, KeyRotMap& factorId2RotMap,
const NonlinearFactorGraph& pose3Graph);
static Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a,
const double b);
GTSAM_EXPORT Vector3 gradientTron(const Rot3& R1, const Rot3& R2, const double a, const double b);
/**
* Select the subgraph of betweenFactors and transforms priors into between
* wrt a fictitious node
*/
static NonlinearFactorGraph buildPose3graph(
const NonlinearFactorGraph& graph);
GTSAM_EXPORT NonlinearFactorGraph buildPose3graph(const NonlinearFactorGraph& graph);
static Values computePoses(NonlinearFactorGraph& pose3graph,
Values& initialRot);
GTSAM_EXPORT Values computePoses(NonlinearFactorGraph& pose3graph, Values& initialRot);
/**
* "extract" the Pose3 subgraph of the original graph, get orientations from
* relative orientation measurements using chordal method.
*/
static Values initializeOrientations(const NonlinearFactorGraph& graph);
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph);
/**
* "extract" the Pose3 subgraph of the original graph, get orientations from
* relative orientation measurements (using either gradient or chordal
* method), and finish up with 1 GN iteration on full poses.
*/
static Values initialize(const NonlinearFactorGraph& graph,
const Values& givenGuess, bool useGradient = false);
GTSAM_EXPORT Values initialize(const NonlinearFactorGraph& graph, const Values& givenGuess, bool useGradient = false);
} // end of namespace lago
} // end of namespace gtsam
/// Calls initialize above using Chordal method.
static Values initialize(const NonlinearFactorGraph& graph);
};
} // end of namespace gtsam

View File

@ -70,6 +70,17 @@ NonlinearFactorGraph graph() {
g.add(PriorFactor<Pose3>(x0, pose0, model));
return g;
}
NonlinearFactorGraph graph2() {
NonlinearFactorGraph g;
g.add(BetweenFactor<Pose3>(x0, x1, pose0.between(pose1), noiseModel::Isotropic::Precision(6, 1.0)));
g.add(BetweenFactor<Pose3>(x1, x2, pose1.between(pose2), noiseModel::Isotropic::Precision(6, 1.0)));
g.add(BetweenFactor<Pose3>(x2, x3, pose2.between(pose3), noiseModel::Isotropic::Precision(6, 1.0)));
g.add(BetweenFactor<Pose3>(x2, x0, Pose3(Rot3::Ypr(0.1,0,0.1), Point3()), noiseModel::Isotropic::Precision(6, 0.0))); // random pose, but zero information
g.add(BetweenFactor<Pose3>(x0, x3, Pose3(Rot3::Ypr(0.5,-0.2,0.2), Point3(10,20,30)), noiseModel::Isotropic::Precision(6, 0.0))); // random pose, but zero informatoin
g.add(PriorFactor<Pose3>(x0, pose0, model));
return g;
}
}
/* *************************************************************************** */
@ -91,6 +102,19 @@ TEST( InitializePose3, orientations ) {
EXPECT(assert_equal(simple::R3, initial.at<Rot3>(x3), 1e-6));
}
/* *************************************************************************** */
TEST( InitializePose3, orientationsPrecisions ) {
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph2());
Values initial = InitializePose3::computeOrientationsChordal(pose3Graph);
// comparison is up to M_PI, that's why we add some multiples of 2*M_PI
EXPECT(assert_equal(simple::R0, initial.at<Rot3>(x0), 1e-6));
EXPECT(assert_equal(simple::R1, initial.at<Rot3>(x1), 1e-6));
EXPECT(assert_equal(simple::R2, initial.at<Rot3>(x2), 1e-6));
EXPECT(assert_equal(simple::R3, initial.at<Rot3>(x3), 1e-6));
}
/* *************************************************************************** */
TEST( InitializePose3, orientationsGradientSymbolicGraph ) {
NonlinearFactorGraph pose3Graph = InitializePose3::buildPose3graph(simple::graph());