removed ground truth; set ang in deg and convert to rad for Pose3iSAM2
parent
e31beee22b
commit
c51a1a2309
|
@ -8,7 +8,7 @@ See LICENSE for the license information
|
|||
|
||||
Pose SLAM example using iSAM2 in 3D space.
|
||||
Author: Jerred Chen
|
||||
Modelled after version by:
|
||||
Modeled after version by:
|
||||
- VisualISAM2Example by: Duy-Nguyen Ta (C++), Frank Dellaert (Python)
|
||||
- Pose2SLAMExample by: Alex Cunningham (C++), Kevin Deng & Frank Dellaert (Python)
|
||||
"""
|
||||
|
@ -20,12 +20,8 @@ import matplotlib.pyplot as plt
|
|||
|
||||
def report_on_progress(graph: gtsam.NonlinearFactorGraph, current_estimate: gtsam.Values,
|
||||
key: int):
|
||||
"""Print and plot incremental progress of the robot for 2D Pose SLAM using iSAM2.
|
||||
"""Print and plot incremental progress of the robot for 2D Pose SLAM using iSAM2."""
|
||||
|
||||
Based on version by:
|
||||
- Ellon Paiva (Python),
|
||||
- Duy Nguyen Ta and Frank Dellaert (MATLAB)
|
||||
"""
|
||||
# Print the current estimates computed using iSAM2.
|
||||
print("*"*50 + f"\nInference after State {key+1}:\n")
|
||||
print(current_estimate)
|
||||
|
@ -49,8 +45,6 @@ def report_on_progress(graph: gtsam.NonlinearFactorGraph, current_estimate: gtsa
|
|||
axes.set_zlim3d(-30, 45)
|
||||
plt.pause(1)
|
||||
|
||||
return marginals
|
||||
|
||||
def createPoses():
|
||||
"""Creates ground truth poses of the robot."""
|
||||
P0 = np.array([[1, 0, 0, 0],
|
||||
|
@ -78,34 +72,27 @@ def createPoses():
|
|||
return [gtsam.Pose3(P0), gtsam.Pose3(P1), gtsam.Pose3(P2),
|
||||
gtsam.Pose3(P3), gtsam.Pose3(P4), gtsam.Pose3(P5)]
|
||||
|
||||
def vector6(x, y, z, a, b, c):
|
||||
"""Create a 6D double numpy array."""
|
||||
return np.array([x, y, z, a, b, c], dtype=float)
|
||||
|
||||
def determine_loop_closure(odom: np.ndarray, current_estimate: gtsam.Values,
|
||||
key: int, xyz_tol=0.6, rot_tol=0.3) -> int:
|
||||
def determine_loop_closure(odom_tf: gtsam.Pose3, current_estimate: gtsam.Values,
|
||||
key: int, xyz_tol=0.6, rot_tol=17) -> int:
|
||||
"""Simple brute force approach which iterates through previous states
|
||||
and checks for loop closure.
|
||||
|
||||
Args:
|
||||
odom: Vector representing noisy odometry transformation measurement in the body frame,
|
||||
where the vector represents [roll, pitch, yaw, x, y, z].
|
||||
odom_tf: The noisy odometry transformation measurement in the body frame.
|
||||
current_estimate: The current estimates computed by iSAM2.
|
||||
key: Key corresponding to the current state estimate of the robot.
|
||||
xyz_tol: Optional argument for the translational tolerance.
|
||||
rot_tol: Optional argument for the rotational tolerance.
|
||||
xyz_tol: Optional argument for the translational tolerance, in meters.
|
||||
rot_tol: Optional argument for the rotational tolerance, in degrees.
|
||||
Returns:
|
||||
k: The key of the state which is helping add the loop closure constraint.
|
||||
If loop closure is not found, then None is returned.
|
||||
"""
|
||||
if current_estimate:
|
||||
rot = gtsam.Rot3.RzRyRx(odom[:3])
|
||||
odom_tf = gtsam.Pose3(rot, odom[3:6].reshape(-1,1))
|
||||
prev_est = current_estimate.atPose3(key+1)
|
||||
curr_est = prev_est.transformPoseFrom(odom_tf)
|
||||
curr_est = prev_est.compose(odom_tf)
|
||||
for k in range(1, key+1):
|
||||
pose = current_estimate.atPose3(k)
|
||||
if (abs(pose.matrix()[:3,:3] - curr_est.matrix()[:3,:3]) <= rot_tol).all() and \
|
||||
if (abs(pose.matrix()[:3,:3] - curr_est.matrix()[:3,:3]) <= rot_tol*np.pi/180).all() and \
|
||||
(abs(pose.matrix()[:3,3] - curr_est.matrix()[:3,3]) <= xyz_tol).all():
|
||||
return k
|
||||
|
||||
|
@ -114,11 +101,33 @@ def Pose3_ISAM2_example():
|
|||
loop closure detection."""
|
||||
plt.ion()
|
||||
|
||||
# Declare the 3D translational standard deviations of the prior factor's Gaussian model, in meters.
|
||||
prior_xyz_sigma = 0.3
|
||||
|
||||
# Declare the 3D rotational standard deviations of the prior factor's Gaussian model, in degrees.
|
||||
prior_rpy_sigma = 5
|
||||
|
||||
# Declare the 3D translational standard deviations of the odometry factor's Gaussian model, in meters.
|
||||
odometry_xyz_sigma = 0.2
|
||||
|
||||
# Declare the 3D rotational standard deviations of the odometry factor's Gaussian model, in degrees.
|
||||
odometry_rpy_sigma = 5
|
||||
|
||||
# Although this example only uses linear measurements and Gaussian noise models, it is important
|
||||
# to note that iSAM2 can be utilized to its full potential during nonlinear optimization. This example
|
||||
# simply showcases how iSAM2 may be applied to a Pose2 SLAM problem.
|
||||
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector6(0.1, 0.1, 0.1, 0.3, 0.3, 0.3))
|
||||
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(vector6(0.1, 0.1, 0.1, 0.2, 0.2, 0.2))
|
||||
PRIOR_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([prior_rpy_sigma*np.pi/180,
|
||||
prior_rpy_sigma*np.pi/180,
|
||||
prior_rpy_sigma*np.pi/180,
|
||||
prior_xyz_sigma,
|
||||
prior_xyz_sigma,
|
||||
prior_xyz_sigma]))
|
||||
ODOMETRY_NOISE = gtsam.noiseModel.Diagonal.Sigmas(np.array([odometry_rpy_sigma*np.pi/180,
|
||||
odometry_rpy_sigma*np.pi/180,
|
||||
odometry_rpy_sigma*np.pi/180,
|
||||
odometry_xyz_sigma,
|
||||
odometry_xyz_sigma,
|
||||
odometry_xyz_sigma]))
|
||||
|
||||
# Create a Nonlinear factor graph as well as the data structure to hold state estimates.
|
||||
graph = gtsam.NonlinearFactorGraph()
|
||||
|
@ -154,38 +163,36 @@ def Pose3_ISAM2_example():
|
|||
current_estimate = initial_estimate
|
||||
for i in range(len(odometry_tf)):
|
||||
|
||||
# Obtain "ground truth" transformation between the current pose and the previous pose.
|
||||
true_odometry = odometry_tf[i]
|
||||
|
||||
# Obtain the noisy translation and rotation that is received by the robot and corrupted by gaussian noise.
|
||||
noisy_odometry = noisy_measurements[i]
|
||||
|
||||
# Compute the noisy odometry transformation according to the xyz translation and roll-pitch-yaw rotation.
|
||||
noisy_tf = gtsam.Pose3(gtsam.Rot3.RzRyRx(noisy_odometry[:3]), noisy_odometry[3:6].reshape(-1,1))
|
||||
|
||||
# Determine if there is loop closure based on the odometry measurement and the previous estimate of the state.
|
||||
loop = determine_loop_closure(noisy_odometry, current_estimate, i)
|
||||
loop = determine_loop_closure(noisy_tf, current_estimate, i, xyz_tol=18, rot_tol=30)
|
||||
|
||||
# Add a binary factor in between two existing states if loop closure is detected.
|
||||
# Otherwise, add a binary factor between a newly observed state and the previous state.
|
||||
# Note that the true odometry measurement is used in the factor instead of the noisy odometry measurement.
|
||||
# This is only to maintain the example consistent for each run. In practice, the noisy odometry measurement is used.
|
||||
if loop:
|
||||
graph.push_back(gtsam.BetweenFactorPose3(i + 1, loop, true_odometry, ODOMETRY_NOISE))
|
||||
graph.push_back(gtsam.BetweenFactorPose3(i + 1, loop, noisy_tf, ODOMETRY_NOISE))
|
||||
else:
|
||||
graph.push_back(gtsam.BetweenFactorPose3(i + 1, i + 2, true_odometry, ODOMETRY_NOISE))
|
||||
graph.push_back(gtsam.BetweenFactorPose3(i + 1, i + 2, noisy_tf, ODOMETRY_NOISE))
|
||||
|
||||
# Compute and insert the initialization estimate for the current pose using the noisy odometry measurement.
|
||||
noisy_tf = gtsam.Pose3(gtsam.Rot3.RzRyRx(noisy_odometry[:3]), noisy_odometry[3:6].reshape(-1,1))
|
||||
computed_estimate = current_estimate.atPose3(i + 1).compose(noisy_tf)
|
||||
initial_estimate.insert(i + 2, computed_estimate)
|
||||
noisy_estimate = current_estimate.atPose3(i + 1).compose(noisy_tf)
|
||||
initial_estimate.insert(i + 2, noisy_estimate)
|
||||
|
||||
# Perform incremental update to iSAM2's internal Bayes tree, optimizing only the affected variables.
|
||||
isam.update(graph, initial_estimate)
|
||||
current_estimate = isam.calculateEstimate()
|
||||
|
||||
# Report all current state estimates from the iSAM2 optimization.
|
||||
marginals = report_on_progress(graph, current_estimate, i)
|
||||
report_on_progress(graph, current_estimate, i)
|
||||
initial_estimate.clear()
|
||||
|
||||
# Print the final covariance matrix for each pose after completing inference.
|
||||
marginals = gtsam.Marginals(graph, current_estimate)
|
||||
i = 1
|
||||
while current_estimate.exists(i):
|
||||
print(f"X{i} covariance:\n{marginals.marginalCovariance(i)}\n")
|
||||
|
|
Loading…
Reference in New Issue