Exact dexp derivative flag
parent
fb94e621e0
commit
c2a046cdb0
|
@ -16,6 +16,7 @@
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include <gtsam/navigation/AggregateImuReadings.h>
|
#include <gtsam/navigation/AggregateImuReadings.h>
|
||||||
|
#include <gtsam/navigation/functors.h>
|
||||||
#include <cmath>
|
#include <cmath>
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
@ -52,8 +53,9 @@ static Eigen::Block<constV9, 3, 1> dV(constV9& v) { return v.segment<3>(6); }
|
||||||
|
|
||||||
Vector9 AggregateImuReadings::UpdateEstimate(
|
Vector9 AggregateImuReadings::UpdateEstimate(
|
||||||
const Vector9& zeta, const Vector3& correctedAcc,
|
const Vector9& zeta, const Vector3& correctedAcc,
|
||||||
const Vector3& correctedOmega, double dt, OptionalJacobian<9, 9> A,
|
const Vector3& correctedOmega, double dt, bool useExactDexpDerivative,
|
||||||
OptionalJacobian<9, 3> Ba, OptionalJacobian<9, 3> Bw) {
|
OptionalJacobian<9, 9> A, OptionalJacobian<9, 3> Ba,
|
||||||
|
OptionalJacobian<9, 3> Bw) {
|
||||||
using namespace sugar;
|
using namespace sugar;
|
||||||
|
|
||||||
const Vector3 a_dt = correctedAcc * dt;
|
const Vector3 a_dt = correctedAcc * dt;
|
||||||
|
@ -61,25 +63,36 @@ Vector9 AggregateImuReadings::UpdateEstimate(
|
||||||
|
|
||||||
// Calculate exact mean propagation
|
// Calculate exact mean propagation
|
||||||
Matrix3 D_R_theta;
|
Matrix3 D_R_theta;
|
||||||
const Rot3 R = Rot3::Expmap(dR(zeta), D_R_theta).matrix();
|
const auto theta = dR(zeta);
|
||||||
const Matrix3 invH = D_R_theta.inverse();
|
const Rot3 R = Rot3::Expmap(theta, D_R_theta).matrix();
|
||||||
|
|
||||||
|
Matrix3 D_invHwdt_theta, D_invHwdt_wdt;
|
||||||
|
Vector3 invHwdt;
|
||||||
|
if (useExactDexpDerivative) {
|
||||||
|
invHwdt = correctWithExpmapDerivative(
|
||||||
|
-theta, w_dt, A ? &D_invHwdt_theta : 0, A ? &D_invHwdt_wdt : 0);
|
||||||
|
if (A) D_invHwdt_theta *= -1;
|
||||||
|
} else {
|
||||||
|
const Matrix3 invH = D_R_theta.inverse();
|
||||||
|
invHwdt = invH * w_dt;
|
||||||
|
// First order (small angle) approximation of derivative of invH*w*dt:
|
||||||
|
if (A) D_invHwdt_theta = skewSymmetric(-0.5 * w_dt);
|
||||||
|
if (A) D_invHwdt_wdt = invH;
|
||||||
|
}
|
||||||
|
|
||||||
Matrix3 D_Radt_R, D_Radt_adt;
|
Matrix3 D_Radt_R, D_Radt_adt;
|
||||||
const Vector3 Radt = R.rotate(a_dt, A ? &D_Radt_R : 0, A ? &D_Radt_adt : 0);
|
const Vector3 Radt = R.rotate(a_dt, A ? &D_Radt_R : 0, A ? &D_Radt_adt : 0);
|
||||||
|
|
||||||
Vector9 zeta_plus;
|
Vector9 zeta_plus;
|
||||||
const double dt2 = 0.5 * dt;
|
const double dt2 = 0.5 * dt;
|
||||||
dR(zeta_plus) = dR(zeta) + invH * w_dt;
|
dR(zeta_plus) = dR(zeta) + invHwdt; // theta
|
||||||
dP(zeta_plus) = dP(zeta) + dV(zeta) * dt + Radt * dt2;
|
dP(zeta_plus) = dP(zeta) + dV(zeta) * dt + Radt * dt2; // position
|
||||||
dV(zeta_plus) = dV(zeta) + Radt;
|
dV(zeta_plus) = dV(zeta) + Radt; // velocity
|
||||||
|
|
||||||
if (A) {
|
if (A) {
|
||||||
// Exact derivative of R*a*dt with respect to theta:
|
// Exact derivative of R*a*dt with respect to theta:
|
||||||
const Matrix3 D_Radt_theta = D_Radt_R * D_R_theta;
|
const Matrix3 D_Radt_theta = D_Radt_R * D_R_theta;
|
||||||
|
|
||||||
// First order (small angle) approximation of derivative of invH*w*dt:
|
|
||||||
const Matrix3 D_invHwdt_theta = skewSymmetric(-0.5 * w_dt);
|
|
||||||
|
|
||||||
A->setIdentity();
|
A->setIdentity();
|
||||||
A->block<3, 3>(0, 0) += D_invHwdt_theta;
|
A->block<3, 3>(0, 0) += D_invHwdt_theta;
|
||||||
A->block<3, 3>(3, 0) = D_Radt_theta * dt2;
|
A->block<3, 3>(3, 0) = D_Radt_theta * dt2;
|
||||||
|
@ -87,14 +100,15 @@ Vector9 AggregateImuReadings::UpdateEstimate(
|
||||||
A->block<3, 3>(6, 0) = D_Radt_theta;
|
A->block<3, 3>(6, 0) = D_Radt_theta;
|
||||||
}
|
}
|
||||||
if (Ba) *Ba << Z_3x3, D_Radt_adt* dt* dt2, D_Radt_adt* dt;
|
if (Ba) *Ba << Z_3x3, D_Radt_adt* dt* dt2, D_Radt_adt* dt;
|
||||||
if (Bw) *Bw << invH* dt, Z_3x3, Z_3x3;
|
if (Bw) *Bw << D_invHwdt_wdt* dt, Z_3x3, Z_3x3;
|
||||||
|
|
||||||
return zeta_plus;
|
return zeta_plus;
|
||||||
}
|
}
|
||||||
|
|
||||||
void AggregateImuReadings::integrateMeasurement(const Vector3& measuredAcc,
|
void AggregateImuReadings::integrateMeasurement(const Vector3& measuredAcc,
|
||||||
const Vector3& measuredOmega,
|
const Vector3& measuredOmega,
|
||||||
double dt) {
|
double dt,
|
||||||
|
bool useExactDexpDerivative) {
|
||||||
// Correct measurements
|
// Correct measurements
|
||||||
const Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
|
const Vector3 correctedAcc = measuredAcc - estimatedBias_.accelerometer();
|
||||||
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
|
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
|
||||||
|
@ -102,10 +116,11 @@ void AggregateImuReadings::integrateMeasurement(const Vector3& measuredAcc,
|
||||||
// Do exact mean propagation
|
// Do exact mean propagation
|
||||||
Matrix9 A;
|
Matrix9 A;
|
||||||
Matrix93 Ba, Bw;
|
Matrix93 Ba, Bw;
|
||||||
zeta_ = UpdateEstimate(zeta_, correctedAcc, correctedOmega, dt, A, Ba, Bw);
|
zeta_ = UpdateEstimate(zeta_, correctedAcc, correctedOmega, dt,
|
||||||
|
useExactDexpDerivative, A, Ba, Bw);
|
||||||
|
|
||||||
// propagate uncertainty
|
// propagate uncertainty
|
||||||
// TODO(frank): specialize to diagonal and upper triangular views
|
// TODO(frank): use noiseModel power: covariance is very expensive !
|
||||||
const Matrix3 w = gyroscopeNoiseModel_->covariance() / dt;
|
const Matrix3 w = gyroscopeNoiseModel_->covariance() / dt;
|
||||||
const Matrix3 a = accelerometerNoiseModel_->covariance() / dt;
|
const Matrix3 a = accelerometerNoiseModel_->covariance() / dt;
|
||||||
cov_ = A * cov_ * A.transpose() + Bw * w * Bw.transpose() +
|
cov_ = A * cov_ * A.transpose() + Bw * w * Bw.transpose() +
|
||||||
|
@ -137,7 +152,6 @@ NavState AggregateImuReadings::predict(const NavState& state_i,
|
||||||
|
|
||||||
SharedGaussian AggregateImuReadings::noiseModel() const {
|
SharedGaussian AggregateImuReadings::noiseModel() const {
|
||||||
// Correct for application of retract, by calculating the retract derivative H
|
// Correct for application of retract, by calculating the retract derivative H
|
||||||
// We have inv(Rp'Rp) = H inv(Rz'Rz) H' => Rp = Rz * inv(H)
|
|
||||||
// From NavState::retract:
|
// From NavState::retract:
|
||||||
Matrix3 D_R_theta;
|
Matrix3 D_R_theta;
|
||||||
const Matrix3 iRj = Rot3::Expmap(theta(), D_R_theta).matrix();
|
const Matrix3 iRj = Rot3::Expmap(theta(), D_R_theta).matrix();
|
||||||
|
@ -146,33 +160,10 @@ SharedGaussian AggregateImuReadings::noiseModel() const {
|
||||||
Z_3x3, iRj.transpose(), Z_3x3, //
|
Z_3x3, iRj.transpose(), Z_3x3, //
|
||||||
Z_3x3, Z_3x3, iRj.transpose();
|
Z_3x3, Z_3x3, iRj.transpose();
|
||||||
|
|
||||||
|
// TODO(frank): theta() itself is noisy, so should we not correct for that?
|
||||||
|
|
||||||
Matrix9 HcH = H * cov_ * H.transpose();
|
Matrix9 HcH = H * cov_ * H.transpose();
|
||||||
return noiseModel::Gaussian::Covariance(cov_, false);
|
return noiseModel::Gaussian::Covariance(HcH, false);
|
||||||
|
|
||||||
// // Get covariance on zeta from Bayes Net, which stores P(zeta|bias) as a
|
|
||||||
// // quadratic |R*zeta + S*bias -d|^2
|
|
||||||
// Matrix RS;
|
|
||||||
// Vector d;
|
|
||||||
// boost::tie(RS, d) = posterior_k_->matrix();
|
|
||||||
// // NOTEfrank): R'*R = inv(zetaCov)
|
|
||||||
//
|
|
||||||
// Matrix9 R = RS.block<9, 9>(0, 0);
|
|
||||||
// cout << "R'R" << endl;
|
|
||||||
// cout << (R.transpose() * R).inverse() << endl;
|
|
||||||
// cout << "cov" << endl;
|
|
||||||
// cout << cov << endl;
|
|
||||||
|
|
||||||
// // Rp = R * H.inverse(), implemented blockwise in-place below
|
|
||||||
// // TODO(frank): yet another application of expmap and expmap derivative
|
|
||||||
// // NOTE(frank): makes sense: a change in the j-frame has to be converted
|
|
||||||
// // to a change in the i-frame, byy rotating with iRj. Similarly, a change
|
|
||||||
// // in rotation nRj is mapped to a change in theta via the inverse dexp.
|
|
||||||
// R.block<9, 3>(0, 0) *= D_R_theta.inverse();
|
|
||||||
// R.block<9, 3>(0, 3) *= iRj;
|
|
||||||
// R.block<9, 3>(0, 6) *= iRj;
|
|
||||||
//
|
|
||||||
// // TODO(frank): think of a faster way - implement in noiseModel
|
|
||||||
// return noiseModel::Gaussian::SqrtInformation(R, false);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Matrix9 AggregateImuReadings::preintMeasCov() const {
|
Matrix9 AggregateImuReadings::preintMeasCov() const {
|
||||||
|
|
|
@ -56,9 +56,11 @@ class AggregateImuReadings {
|
||||||
* @param measuredAcc Measured acceleration (in body frame)
|
* @param measuredAcc Measured acceleration (in body frame)
|
||||||
* @param measuredOmega Measured angular velocity (in body frame)
|
* @param measuredOmega Measured angular velocity (in body frame)
|
||||||
* @param dt Time interval between this and the last IMU measurement
|
* @param dt Time interval between this and the last IMU measurement
|
||||||
|
* TODO(frank): put useExactDexpDerivative in params
|
||||||
*/
|
*/
|
||||||
void integrateMeasurement(const Vector3& measuredAcc,
|
void integrateMeasurement(const Vector3& measuredAcc,
|
||||||
const Vector3& measuredOmega, double dt);
|
const Vector3& measuredOmega, double dt,
|
||||||
|
bool useExactDexpDerivative = false);
|
||||||
|
|
||||||
/// Predict state at time j
|
/// Predict state at time j
|
||||||
NavState predict(const NavState& state_i, const Bias& estimatedBias_i,
|
NavState predict(const NavState& state_i, const Bias& estimatedBias_i,
|
||||||
|
@ -72,9 +74,11 @@ class AggregateImuReadings {
|
||||||
Matrix9 preintMeasCov() const;
|
Matrix9 preintMeasCov() const;
|
||||||
|
|
||||||
Vector3 theta() const { return zeta_.head<3>(); }
|
Vector3 theta() const { return zeta_.head<3>(); }
|
||||||
|
|
||||||
static Vector9 UpdateEstimate(const Vector9& zeta,
|
static Vector9 UpdateEstimate(const Vector9& zeta,
|
||||||
const Vector3& correctedAcc,
|
const Vector3& correctedAcc,
|
||||||
const Vector3& correctedOmega, double dt,
|
const Vector3& correctedOmega, double dt,
|
||||||
|
bool useExactDexpDerivative = false,
|
||||||
OptionalJacobian<9, 9> A = boost::none,
|
OptionalJacobian<9, 9> A = boost::none,
|
||||||
OptionalJacobian<9, 3> Ba = boost::none,
|
OptionalJacobian<9, 3> Ba = boost::none,
|
||||||
OptionalJacobian<9, 3> Bw = boost::none);
|
OptionalJacobian<9, 3> Bw = boost::none);
|
||||||
|
|
|
@ -65,7 +65,7 @@ Matrix9 ScenarioRunner::estimateCovariance(double T, size_t N,
|
||||||
Vector9 sum = Vector9::Zero();
|
Vector9 sum = Vector9::Zero();
|
||||||
for (size_t i = 0; i < N; i++) {
|
for (size_t i = 0; i < N; i++) {
|
||||||
auto pim = integrate(T, estimatedBias, true);
|
auto pim = integrate(T, estimatedBias, true);
|
||||||
#if 0
|
#if 1
|
||||||
NavState sampled = predict(pim);
|
NavState sampled = predict(pim);
|
||||||
Vector9 xi = sampled.localCoordinates(prediction);
|
Vector9 xi = sampled.localCoordinates(prediction);
|
||||||
#else
|
#else
|
||||||
|
|
|
@ -170,22 +170,40 @@ TEST(AggregateImuReadings, PredictAcceleration2) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST(AggregateImuReadings, UpdateEstimate) {
|
TEST(AggregateImuReadings, UpdateEstimate1) {
|
||||||
AggregateImuReadings pim(defaultParams());
|
AggregateImuReadings pim(defaultParams());
|
||||||
Matrix9 aH1;
|
Matrix9 aH1;
|
||||||
Matrix93 aH2, aH3;
|
Matrix93 aH2, aH3;
|
||||||
boost::function<Vector9(const Vector9&, const Vector3&, const Vector3&)> f =
|
boost::function<Vector9(const Vector9&, const Vector3&, const Vector3&)> f =
|
||||||
boost::bind(&AggregateImuReadings::UpdateEstimate, _1, _2, _3, kDt,
|
boost::bind(&AggregateImuReadings::UpdateEstimate, _1, _2, _3, kDt, false,
|
||||||
boost::none, boost::none, boost::none);
|
boost::none, boost::none, boost::none);
|
||||||
Vector9 zeta;
|
Vector9 zeta;
|
||||||
zeta << 0.01, 0.02, 0.03, 100, 200, 300, 10, 5, 3;
|
zeta << 0.01, 0.02, 0.03, 100, 200, 300, 10, 5, 3;
|
||||||
const Vector3 acc(0.1, 0.2, 10), omega(0.1, 0.2, 0.3);
|
const Vector3 acc(0.1, 0.2, 10), omega(0.1, 0.2, 0.3);
|
||||||
pim.UpdateEstimate(zeta, acc, omega, kDt, aH1, aH2, aH3);
|
pim.UpdateEstimate(zeta, acc, omega, kDt, false, aH1, aH2, aH3);
|
||||||
EXPECT(assert_equal(numericalDerivative31(f, zeta, acc, omega), aH1, 1e-3));
|
EXPECT(assert_equal(numericalDerivative31(f, zeta, acc, omega), aH1, 1e-3));
|
||||||
EXPECT(assert_equal(numericalDerivative32(f, zeta, acc, omega), aH2, 1e-5));
|
EXPECT(assert_equal(numericalDerivative32(f, zeta, acc, omega), aH2, 1e-5));
|
||||||
EXPECT(assert_equal(numericalDerivative33(f, zeta, acc, omega), aH3, 1e-5));
|
EXPECT(assert_equal(numericalDerivative33(f, zeta, acc, omega), aH3, 1e-5));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
TEST(AggregateImuReadings, UpdateEstimate2) {
|
||||||
|
// Using exact dexp derivatives is more expensive but much more accurate
|
||||||
|
AggregateImuReadings pim(defaultParams());
|
||||||
|
Matrix9 aH1;
|
||||||
|
Matrix93 aH2, aH3;
|
||||||
|
boost::function<Vector9(const Vector9&, const Vector3&, const Vector3&)> f =
|
||||||
|
boost::bind(&AggregateImuReadings::UpdateEstimate, _1, _2, _3, kDt, true,
|
||||||
|
boost::none, boost::none, boost::none);
|
||||||
|
Vector9 zeta;
|
||||||
|
zeta << 0.01, 0.02, 0.03, 100, 200, 300, 10, 5, 3;
|
||||||
|
const Vector3 acc(0.1, 0.2, 10), omega(0.1, 0.2, 0.3);
|
||||||
|
pim.UpdateEstimate(zeta, acc, omega, kDt, true, aH1, aH2, aH3);
|
||||||
|
EXPECT(assert_equal(numericalDerivative31(f, zeta, acc, omega), aH1, 1e-8));
|
||||||
|
EXPECT(assert_equal(numericalDerivative32(f, zeta, acc, omega), aH2, 1e-8));
|
||||||
|
EXPECT(assert_equal(numericalDerivative33(f, zeta, acc, omega), aH3, 1e-9));
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
TestResult tr;
|
TestResult tr;
|
||||||
|
|
Loading…
Reference in New Issue