Added tests and updated comments regarding using disconnected systems

release/4.3a0
Alex Cunningham 2013-09-09 16:59:04 +00:00
parent ceb9f44c4f
commit bbb6ff90fd
3 changed files with 182 additions and 1 deletions

View File

@ -27,7 +27,6 @@ namespace gtsam {
void ISAM<BAYESTREE>::update_internal(const FactorGraphType& newFactors, Cliques& orphans, const Eliminate& function)
{
// Remove the contaminated part of the Bayes tree
// Throw exception if disconnected
BayesNetType bn;
if (!this->empty()) {
const FastSet<Key> newFactorKeys = newFactors.keys();

View File

@ -6,6 +6,8 @@
#include <CppUnitLite/TestHarness.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/BearingRangeFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearEquality.h>
#include <gtsam/nonlinear/NonlinearISAM.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
@ -66,6 +68,166 @@ TEST(testNonlinearISAM, markov_chain ) {
}
}
/* ************************************************************************* */
TEST(testNonlinearISAM, markov_chain_with_disconnects ) {
int reorder_interval = 2;
NonlinearISAM isamChol(reorder_interval, EliminatePreferCholesky); // create an ISAM object
NonlinearISAM isamQR(reorder_interval, EliminateQR); // create an ISAM object
SharedDiagonal model3 = noiseModel::Diagonal::Sigmas(Vector_(3, 3.0, 3.0, 0.5));
SharedDiagonal model2 = noiseModel::Diagonal::Sigmas(Vector_(2, 2.0, 2.0));
Sampler sampler(model3, 42u);
// create initial graph
Pose2 cur_pose; // start at origin
NonlinearFactorGraph start_factors;
start_factors += NonlinearEquality<Pose2>(0, cur_pose);
Values init;
Values expected;
init.insert(0, cur_pose);
expected.insert(0, cur_pose);
isamChol.update(start_factors, init);
isamQR.update(start_factors, init);
size_t nrPoses = 21;
// create a constrained constellation of landmarks
Key lm1 = nrPoses+1, lm2 = nrPoses+2, lm3 = nrPoses+3;
Point2 landmark1(3., 4.), landmark2(6., 4.), landmark3(6., 9.);
expected.insert(lm1, landmark1);
expected.insert(lm2, landmark2);
expected.insert(lm3, landmark3);
// loop for a period of time to verify memory usage
Pose2 z(1.0, 2.0, 0.1);
for (size_t i=1; i<=nrPoses; ++i) {
NonlinearFactorGraph new_factors;
new_factors += BetweenFactor<Pose2>(i-1, i, z, model3);
Values new_init;
cur_pose = cur_pose.compose(z);
new_init.insert(i, cur_pose.retract(sampler.sample()));
expected.insert(i, cur_pose);
// Add a floating landmark constellation
if (i == 7) {
new_factors += PriorFactor<Point2>(lm1, landmark1, model2);
new_factors += PriorFactor<Point2>(lm2, landmark2, model2);
new_factors += PriorFactor<Point2>(lm3, landmark3, model2);
// Initialize to origin
new_init.insert(lm1, Point2());
new_init.insert(lm2, Point2());
new_init.insert(lm3, Point2());
}
isamChol.update(new_factors, new_init);
isamQR.update(new_factors, new_init);
}
// verify values - all but the last one should be very close
Values actualChol = isamChol.estimate();
for (size_t i=0; i<nrPoses; ++i)
EXPECT(assert_equal(expected.at<Pose2>(i), actualChol.at<Pose2>(i), tol));
Values actualQR = isamQR.estimate();
for (size_t i=0; i<nrPoses; ++i)
EXPECT(assert_equal(expected.at<Pose2>(i), actualQR.at<Pose2>(i), tol));
// Check landmarks
EXPECT(assert_equal(expected.at<Point2>(lm1), actualChol.at<Point2>(lm1), tol));
EXPECT(assert_equal(expected.at<Point2>(lm2), actualChol.at<Point2>(lm2), tol));
EXPECT(assert_equal(expected.at<Point2>(lm3), actualChol.at<Point2>(lm3), tol));
EXPECT(assert_equal(expected.at<Point2>(lm1), actualQR.at<Point2>(lm1), tol));
EXPECT(assert_equal(expected.at<Point2>(lm2), actualQR.at<Point2>(lm2), tol));
EXPECT(assert_equal(expected.at<Point2>(lm3), actualQR.at<Point2>(lm3), tol));
}
/* ************************************************************************* */
TEST(testNonlinearISAM, markov_chain_with_reconnect ) {
int reorder_interval = 2;
NonlinearISAM isamChol(reorder_interval, EliminatePreferCholesky); // create an ISAM object
NonlinearISAM isamQR(reorder_interval, EliminateQR); // create an ISAM object
SharedDiagonal model3 = noiseModel::Diagonal::Sigmas(Vector_(3, 3.0, 3.0, 0.5));
SharedDiagonal model2 = noiseModel::Diagonal::Sigmas(Vector_(2, 2.0, 2.0));
Sampler sampler(model3, 42u);
// create initial graph
Pose2 cur_pose; // start at origin
NonlinearFactorGraph start_factors;
start_factors += NonlinearEquality<Pose2>(0, cur_pose);
Values init;
Values expected;
init.insert(0, cur_pose);
expected.insert(0, cur_pose);
isamChol.update(start_factors, init);
isamQR.update(start_factors, init);
size_t nrPoses = 21;
// create a constrained constellation of landmarks
Key lm1 = nrPoses+1, lm2 = nrPoses+2, lm3 = nrPoses+3;
Point2 landmark1(3., 4.), landmark2(6., 4.), landmark3(6., 9.);
expected.insert(lm1, landmark1);
expected.insert(lm2, landmark2);
expected.insert(lm3, landmark3);
// loop for a period of time to verify memory usage
Pose2 z(1.0, 2.0, 0.1);
for (size_t i=1; i<=nrPoses; ++i) {
NonlinearFactorGraph new_factors;
new_factors += BetweenFactor<Pose2>(i-1, i, z, model3);
Values new_init;
cur_pose = cur_pose.compose(z);
new_init.insert(i, cur_pose.retract(sampler.sample()));
expected.insert(i, cur_pose);
// Add a floating landmark constellation
if (i == 7) {
new_factors += PriorFactor<Point2>(lm1, landmark1, model2);
new_factors += PriorFactor<Point2>(lm2, landmark2, model2);
new_factors += PriorFactor<Point2>(lm3, landmark3, model2);
// Initialize to origin
new_init.insert(lm1, Point2());
new_init.insert(lm2, Point2());
new_init.insert(lm3, Point2());
}
// Reconnect with observation later
if (i == 15) {
new_factors += BearingRangeFactor<Pose2, Point2>(
i, lm1, cur_pose.bearing(landmark1), cur_pose.range(landmark1), model2);
}
isamChol.update(new_factors, new_init);
isamQR.update(new_factors, new_init);
}
// verify values - all but the last one should be very close
Values actualChol = isamChol.estimate();
for (size_t i=0; i<nrPoses; ++i)
EXPECT(assert_equal(expected.at<Pose2>(i), actualChol.at<Pose2>(i), tol));
Values actualQR = isamQR.estimate();
for (size_t i=0; i<nrPoses; ++i)
EXPECT(assert_equal(expected.at<Pose2>(i), actualQR.at<Pose2>(i), tol));
// Check landmarks
EXPECT(assert_equal(expected.at<Point2>(lm1), actualChol.at<Point2>(lm1), tol));
EXPECT(assert_equal(expected.at<Point2>(lm2), actualChol.at<Point2>(lm2), tol));
EXPECT(assert_equal(expected.at<Point2>(lm3), actualChol.at<Point2>(lm3), tol));
EXPECT(assert_equal(expected.at<Point2>(lm1), actualQR.at<Point2>(lm1), tol));
EXPECT(assert_equal(expected.at<Point2>(lm2), actualQR.at<Point2>(lm2), tol));
EXPECT(assert_equal(expected.at<Point2>(lm3), actualQR.at<Point2>(lm3), tol));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */

View File

@ -282,6 +282,26 @@ TEST(NonlinearOptimizer, MoreOptimizationWithHuber) {
EXPECT(assert_equal(expected, DoglegOptimizer(fg, init).optimize()));
}
/* ************************************************************************* */
TEST(NonlinearOptimizer, disconnected_graph) {
Values expected;
expected.insert(X(1), Pose2(0.,0.,0.));
expected.insert(X(2), Pose2(1.5,0.,0.));
expected.insert(X(3), Pose2(3.0,0.,0.));
Values init;
init.insert(X(1), Pose2(0.,0.,0.));
init.insert(X(2), Pose2(0.,0.,0.));
init.insert(X(3), Pose2(0.,0.,0.));
NonlinearFactorGraph graph;
graph += PriorFactor<Pose2>(X(1), Pose2(0.,0.,0.), noiseModel::Isotropic::Sigma(3,1));
graph += BetweenFactor<Pose2>(X(1),X(2), Pose2(1.5,0.,0.), noiseModel::Isotropic::Sigma(3,1));
graph += PriorFactor<Pose2>(X(3), Pose2(3.,0.,0.), noiseModel::Isotropic::Sigma(3,1));
EXPECT(assert_equal(expected, LevenbergMarquardtOptimizer(graph, init).optimize()));
}
/* ************************************************************************* */
int main() {
TestResult tr;