comments only
parent
97e18452c3
commit
b9b8250f36
|
@ -30,44 +30,100 @@
|
|||
#include <gtsam/nonlinear/LieValues-inl.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph-inl.h>
|
||||
#include <gtsam/nonlinear/NonlinearOptimization-inl.h>
|
||||
|
||||
/*
|
||||
* TODO: make factors independent of Values
|
||||
* TODO: get rid of excessive shared pointer stuff: mostly gone
|
||||
* TODO: make toplevel documentation
|
||||
* TODO: investigate whether we can just use ints as keys: will occur for linear, not nonlinear
|
||||
* TODO: Clean up nonlinear optimization API
|
||||
*/
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
typedef TypedSymbol<Rot2, 'x'> Key;
|
||||
typedef LieValues<Key> Values;
|
||||
typedef NonlinearFactorGraph<Values> Graph;
|
||||
typedef NonlinearOptimizer<Graph,Values> Optimizer;
|
||||
/**
|
||||
* Step 1: Setup basic types for optimization of a single variable type
|
||||
* This can be considered to be specifying the domain of the problem we wish
|
||||
* to solve. In this case, we will create a very simple domain that operates
|
||||
* on variables of a specific type, in this case, Rot2.
|
||||
*
|
||||
* To create a domain:
|
||||
* - variable types need to have a key defined to act as a label in graphs
|
||||
* - a "Values" structure needs to be defined to store the system state
|
||||
* - a graph container acting on a given Values
|
||||
*
|
||||
* In a typical scenario, these typedefs could be placed in a header
|
||||
* file and reused between projects.
|
||||
*/
|
||||
typedef TypedSymbol<Rot2, 'x'> Key; /// Variable labels for a specific type
|
||||
typedef LieValues<Key> Values; /// Class to store values - acts as a state for the system
|
||||
typedef NonlinearFactorGraph<Values> Graph; /// Graph container for constraints - needs to know type of variables
|
||||
|
||||
const double degree = M_PI / 180;
|
||||
|
||||
int main() {
|
||||
|
||||
// optimize a unary factor on rotation 1
|
||||
/**
|
||||
* This example will perform a relatively trivial optimization on
|
||||
* a single variable with a single factor.
|
||||
*/
|
||||
|
||||
// Create a factor
|
||||
Rot2 prior1 = Rot2::fromAngle(30 * degree);
|
||||
prior1.print("goal angle");
|
||||
SharedDiagonal model1 = noiseModel::Isotropic::Sigma(1, 1 * degree);
|
||||
Key key1(1);
|
||||
PriorFactor<Values, Key> factor1(key1, prior1, model1);
|
||||
/**
|
||||
* Step 2: create a factor on to express a unary constraint
|
||||
* The "prior" in this case is the measurement from a sensor,
|
||||
* with a model of the noise on the measurement.
|
||||
*
|
||||
* The "Key" created here is a label used to associate parts of the
|
||||
* state (stored in "Values") with particular factors. They require
|
||||
* an index to allow for lookup, and should be unique.
|
||||
*
|
||||
* In general, creating a factor requires:
|
||||
* - A key or set of keys labeling the variables that are acted upon
|
||||
* - A measurement value
|
||||
* - A measurement model with the correct dimensionality for the factor
|
||||
*/
|
||||
Rot2 prior = Rot2::fromAngle(30 * degree);
|
||||
prior.print("goal angle");
|
||||
SharedDiagonal model = noiseModel::Isotropic::Sigma(1, 1 * degree);
|
||||
Key key(1);
|
||||
PriorFactor<Values, Key> factor(key, prior, model);
|
||||
|
||||
// Create a factor graph
|
||||
/**
|
||||
* Step 3: create a graph container and add the factor to it
|
||||
* Before optimizing, all factors need to be added to a Graph container,
|
||||
* which provides the necessary top-level functionality for defining a
|
||||
* system of constraints.
|
||||
*
|
||||
* In this case, there is only one factor, but in a practical scenario,
|
||||
* many more factors would be added.
|
||||
*/
|
||||
Graph graph;
|
||||
graph.add(factor1);
|
||||
graph.print("full graph") ;
|
||||
graph.add(factor);
|
||||
graph.print("full graph");
|
||||
|
||||
// and an initial estimate
|
||||
/**
|
||||
* Step 4: create an initial estimate
|
||||
* An initial estimate of the solution for the system is necessary to
|
||||
* start optimization. This system state is the "Values" structure,
|
||||
* which is similar in structure to a STL map, in that it maps
|
||||
* keys (the label created in step 1) to specific values.
|
||||
*
|
||||
* The initial estimate provided to optimization will be used as
|
||||
* a linearization point for optimization, so it is important that
|
||||
* all of the variables in the graph have a corresponding value in
|
||||
* this structure.
|
||||
*/
|
||||
Values initial;
|
||||
initial.insert(key1, Rot2::fromAngle(20 * degree));
|
||||
initial.insert(key, Rot2::fromAngle(20 * degree));
|
||||
initial.print("initial estimate");
|
||||
|
||||
/**
|
||||
* Step 5: optimize
|
||||
* After formulating the problem with a graph of constraints
|
||||
* and an initial estimate, executing optimization is as simple
|
||||
* as calling a general optimization function with the graph and
|
||||
* initial estimate. This will yield a new Values structure
|
||||
* with the final state of the optimization.
|
||||
*/
|
||||
Values result = optimize<Graph, Values>(graph, initial);
|
||||
result.print("final result");
|
||||
|
||||
|
|
Loading…
Reference in New Issue