Merge pull request #1542 from borglab/decisiontree-improvements

release/4.3a0
Varun Agrawal 2023-06-28 13:17:59 -04:00 committed by GitHub
commit b86696a00c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 381 additions and 84 deletions

View File

@ -19,6 +19,7 @@ option(GTSAM_FORCE_STATIC_LIB "Force gtsam to be a static library,
option(GTSAM_USE_QUATERNIONS "Enable/Disable using an internal Quaternion representation for rotations instead of rotation matrices. If enable, Rot3::EXPMAP is enforced by default." OFF)
option(GTSAM_POSE3_EXPMAP "Enable/Disable using Pose3::EXPMAP as the default mode. If disabled, Pose3::FIRST_ORDER will be used." ON)
option(GTSAM_ROT3_EXPMAP "Ignore if GTSAM_USE_QUATERNIONS is OFF (Rot3::EXPMAP by default). Otherwise, enable Rot3::EXPMAP, or if disabled, use Rot3::CAYLEY." ON)
option(GTSAM_DT_MERGING "Enable/Disable merging of equal leaf nodes in DecisionTrees. This leads to significant speed up and memory savings." ON)
option(GTSAM_ENABLE_CONSISTENCY_CHECKS "Enable/Disable expensive consistency checks" OFF)
option(GTSAM_ENABLE_MEMORY_SANITIZER "Enable/Disable memory sanitizer" OFF)
option(GTSAM_WITH_TBB "Use Intel Threaded Building Blocks (TBB) if available" ON)

View File

@ -90,6 +90,7 @@ print_enabled_config(${GTSAM_ENABLE_CONSISTENCY_CHECKS} "Runtime consistency c
print_enabled_config(${GTSAM_ENABLE_MEMORY_SANITIZER} "Build with Memory Sanitizer ")
print_enabled_config(${GTSAM_ROT3_EXPMAP} "Rot3 retract is full ExpMap ")
print_enabled_config(${GTSAM_POSE3_EXPMAP} "Pose3 retract is full ExpMap ")
print_enabled_config(${GTSAM_DT_MERGING} "Enable branch merging in DecisionTree")
print_enabled_config(${GTSAM_ALLOW_DEPRECATED_SINCE_V43} "Allow features deprecated in GTSAM 4.3")
print_enabled_config(${GTSAM_SUPPORT_NESTED_DISSECTION} "Metis-based Nested Dissection ")
print_enabled_config(${GTSAM_TANGENT_PREINTEGRATION} "Use tangent-space preintegration")

View File

@ -39,6 +39,9 @@
#cmakedefine GTSAM_ROT3_EXPMAP
#endif
// Whether to enable merging of equal leaf nodes in the Discrete Decision Tree.
#cmakedefine GTSAM_DT_MERGING
// Whether we are using TBB (if TBB was found and GTSAM_WITH_TBB is enabled in CMake)
#cmakedefine GTSAM_USE_TBB

View File

@ -93,7 +93,8 @@ namespace gtsam {
/// print
void print(const std::string& s, const LabelFormatter& labelFormatter,
const ValueFormatter& valueFormatter) const override {
std::cout << s << " Leaf " << valueFormatter(constant_) << std::endl;
std::cout << s << " Leaf [" << nrAssignments() << "]"
<< valueFormatter(constant_) << std::endl;
}
/** Write graphviz format to stream `os`. */
@ -136,7 +137,9 @@ namespace gtsam {
// Applying binary operator to two leaves results in a leaf
NodePtr apply_g_op_fL(const Leaf& fL, const Binary& op) const override {
// fL op gL
NodePtr h(new Leaf(op(fL.constant_, constant_), nrAssignments_));
// TODO(Varun) nrAssignments setting is not correct.
// Depending on f and g, the nrAssignments can be different. This is a bug!
NodePtr h(new Leaf(op(fL.constant_, constant_), fL.nrAssignments()));
return h;
}
@ -198,48 +201,57 @@ namespace gtsam {
#endif
}
/// If all branches of a choice node f are the same, just return a branch.
static NodePtr Unique(const ChoicePtr& f) {
#ifndef GTSAM_DT_NO_PRUNING
// If all the branches are the same, we can merge them into one
if (f->allSame_) {
assert(f->branches().size() > 0);
NodePtr f0 = f->branches_[0];
size_t nrAssignments = 0;
for(auto branch: f->branches()) {
if (auto leaf = std::dynamic_pointer_cast<const Leaf>(branch)) {
nrAssignments += leaf->nrAssignments();
}
}
NodePtr newLeaf(
new Leaf(std::dynamic_pointer_cast<const Leaf>(f0)->constant(),
nrAssignments));
return newLeaf;
} else
// Else we recurse
#endif
{
// Make non-const copy
auto ff = std::make_shared<Choice>(f->label(), f->nrChoices());
/**
* @brief Merge branches with equal leaf values for every choice node in a
* decision tree. If all branches are the same (i.e. have the same leaf
* value), replace the choice node with the equivalent leaf node.
*
* This function applies the branch merging (if enabled) recursively on the
* decision tree represented by the root node passed in as the argument. It
* recurses to the leaf nodes and merges branches with equal leaf values in
* a bottom-up fashion.
*
* Thus, if all branches of a choice node `f` are the same,
* just return a single branch at each recursion step.
*
* @param node The root node of the decision tree.
* @return NodePtr
*/
static NodePtr Unique(const NodePtr& node) {
if (auto choice = std::dynamic_pointer_cast<const Choice>(node)) {
// Choice node, we recurse!
// Make non-const copy so we can update
auto f = std::make_shared<Choice>(choice->label(), choice->nrChoices());
// Iterate over all the branches
for (size_t i = 0; i < f->nrChoices(); i++) {
auto branch = f->branches_[i];
if (auto leaf = std::dynamic_pointer_cast<const Leaf>(branch)) {
// Leaf node, simply assign
ff->push_back(branch);
} else if (auto choice =
std::dynamic_pointer_cast<const Choice>(branch)) {
// Choice node, we recurse
ff->push_back(Unique(choice));
}
for (size_t i = 0; i < choice->nrChoices(); i++) {
auto branch = choice->branches_[i];
f->push_back(Unique(branch));
}
return ff;
#ifdef GTSAM_DT_MERGING
// If all the branches are the same, we can merge them into one
if (f->allSame_) {
assert(f->branches().size() > 0);
NodePtr f0 = f->branches_[0];
// Compute total number of assignments
size_t nrAssignments = 0;
for (auto branch : f->branches()) {
if (auto leaf = std::dynamic_pointer_cast<const Leaf>(branch)) {
nrAssignments += leaf->nrAssignments();
}
}
NodePtr newLeaf(
new Leaf(std::dynamic_pointer_cast<const Leaf>(f0)->constant(),
nrAssignments));
return newLeaf;
}
#endif
return f;
} else {
// Leaf node, return as is
return node;
}
}
@ -486,13 +498,11 @@ namespace gtsam {
// DecisionTree
/****************************************************************************/
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree() {
}
DecisionTree<L, Y>::DecisionTree() {}
template<typename L, typename Y>
DecisionTree<L, Y>::DecisionTree(const NodePtr& root) :
root_(root) {
}
root_(root) {}
/****************************************************************************/
template<typename L, typename Y>
@ -608,7 +618,8 @@ namespace gtsam {
auto choiceOnLabel = std::make_shared<Choice>(label, end - begin);
for (Iterator it = begin; it != end; it++)
choiceOnLabel->push_back(it->root_);
return Choice::Unique(choiceOnLabel);
// If no reordering, no need to call Choice::Unique
return choiceOnLabel;
} else {
// Set up a new choice on the highest label
auto choiceOnHighestLabel =
@ -737,7 +748,7 @@ namespace gtsam {
for (auto&& branch : choice->branches()) {
functions.emplace_back(convertFrom<M, X>(branch, L_of_M, Y_of_X));
}
return LY::compose(functions.begin(), functions.end(), newLabel);
return Choice::Unique(LY::compose(functions.begin(), functions.end(), newLabel));
}
/****************************************************************************/

View File

@ -307,7 +307,7 @@ namespace gtsam {
// Get the probabilities in the decision tree so we can threshold.
std::vector<double> probabilities;
this->visitLeaf([&](const Leaf& leaf) {
size_t nrAssignments = leaf.nrAssignments();
const size_t nrAssignments = leaf.nrAssignments();
double prob = leaf.constant();
probabilities.insert(probabilities.end(), nrAssignments, prob);
});

View File

@ -20,7 +20,6 @@
#include <gtsam/discrete/DiscreteKey.h> // make sure we have traits
#include <gtsam/discrete/DiscreteValues.h>
// headers first to make sure no missing headers
//#define GTSAM_DT_NO_PRUNING
#include <gtsam/discrete/AlgebraicDecisionTree.h>
#include <gtsam/discrete/DecisionTree-inl.h> // for convert only
#define DISABLE_TIMING
@ -179,7 +178,11 @@ TEST(ADT, joint) {
dot(joint, "Asia-ASTLBEX");
joint = apply(joint, pD, &mul);
dot(joint, "Asia-ASTLBEXD");
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(346, muls);
#else
EXPECT_LONGS_EQUAL(508, muls);
#endif
gttoc_(asiaJoint);
tictoc_getNode(asiaJointNode, asiaJoint);
elapsed = asiaJointNode->secs() + asiaJointNode->wall();
@ -240,7 +243,11 @@ TEST(ADT, inference) {
dot(joint, "Joint-Product-ASTLBEX");
joint = apply(joint, pD, &mul);
dot(joint, "Joint-Product-ASTLBEXD");
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(370, (long)muls); // different ordering
#else
EXPECT_LONGS_EQUAL(508, (long)muls); // different ordering
#endif
gttoc_(asiaProd);
tictoc_getNode(asiaProdNode, asiaProd);
elapsed = asiaProdNode->secs() + asiaProdNode->wall();
@ -258,7 +265,11 @@ TEST(ADT, inference) {
dot(marginal, "Joint-Sum-ADBLE");
marginal = marginal.combine(E, &add_);
dot(marginal, "Joint-Sum-ADBL");
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(161, (long)adds);
#else
EXPECT_LONGS_EQUAL(240, (long)adds);
#endif
gttoc_(asiaSum);
tictoc_getNode(asiaSumNode, asiaSum);
elapsed = asiaSumNode->secs() + asiaSumNode->wall();
@ -296,7 +307,11 @@ TEST(ADT, factor_graph) {
fg = apply(fg, pX, &mul);
fg = apply(fg, pD, &mul);
dot(fg, "FactorGraph");
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(158, (long)muls);
#else
EXPECT_LONGS_EQUAL(188, (long)muls);
#endif
gttoc_(asiaFG);
tictoc_getNode(asiaFGNode, asiaFG);
elapsed = asiaFGNode->secs() + asiaFGNode->wall();
@ -315,7 +330,11 @@ TEST(ADT, factor_graph) {
dot(fg, "Marginalized-3E");
fg = fg.combine(L, &add_);
dot(fg, "Marginalized-2L");
#ifdef GTSAM_DT_MERGING
LONGS_EQUAL(49, adds);
#else
LONGS_EQUAL(62, adds);
#endif
gttoc_(marg);
tictoc_getNode(margNode, marg);
elapsed = margNode->secs() + margNode->wall();

View File

@ -18,7 +18,6 @@
*/
// #define DT_DEBUG_MEMORY
// #define GTSAM_DT_NO_PRUNING
#define DISABLE_DOT
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
@ -192,7 +191,11 @@ TEST(DecisionTree, example) {
// Test choose 0
DT actual0 = notba.choose(A, 0);
#ifdef GTSAM_DT_MERGING
EXPECT(assert_equal(DT(0.0), actual0));
#else
// EXPECT(assert_equal(DT({0.0, 0.0}), actual0));
#endif
DOT(actual0);
// Test choose 1
@ -333,9 +336,11 @@ TEST(DecisionTree, NrAssignments) {
EXPECT_LONGS_EQUAL(8, tree.nrAssignments());
#ifdef GTSAM_DT_MERGING
EXPECT(tree.root_->isLeaf());
auto leaf = std::dynamic_pointer_cast<const DT::Leaf>(tree.root_);
EXPECT_LONGS_EQUAL(8, leaf->nrAssignments());
#endif
DT tree2({C, B, A}, "1 1 1 2 3 4 5 5");
/* The tree is
@ -358,6 +363,8 @@ TEST(DecisionTree, NrAssignments) {
CHECK(root);
auto choice0 = std::dynamic_pointer_cast<const DT::Choice>(root->branches()[0]);
CHECK(choice0);
#ifdef GTSAM_DT_MERGING
EXPECT(choice0->branches()[0]->isLeaf());
auto choice00 = std::dynamic_pointer_cast<const DT::Leaf>(choice0->branches()[0]);
CHECK(choice00);
@ -371,6 +378,7 @@ TEST(DecisionTree, NrAssignments) {
CHECK(choice11);
EXPECT(choice11->isLeaf());
EXPECT_LONGS_EQUAL(2, choice11->nrAssignments());
#endif
}
/* ************************************************************************** */
@ -412,27 +420,61 @@ TEST(DecisionTree, VisitWithPruned) {
};
tree.visitWith(func);
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(6, choices.size());
#else
EXPECT_LONGS_EQUAL(8, choices.size());
#endif
Assignment<string> expectedAssignment;
#ifdef GTSAM_DT_MERGING
expectedAssignment = {{"B", 0}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(0));
#else
expectedAssignment = {{"A", 0}, {"B", 0}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(0));
#endif
#ifdef GTSAM_DT_MERGING
expectedAssignment = {{"A", 0}, {"B", 1}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(1));
#else
expectedAssignment = {{"A", 1}, {"B", 0}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(1));
#endif
#ifdef GTSAM_DT_MERGING
expectedAssignment = {{"A", 1}, {"B", 1}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(2));
#else
expectedAssignment = {{"A", 0}, {"B", 1}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(2));
#endif
#ifdef GTSAM_DT_MERGING
expectedAssignment = {{"B", 0}, {"C", 1}};
EXPECT(expectedAssignment == choices.at(3));
#else
expectedAssignment = {{"A", 1}, {"B", 1}, {"C", 0}};
EXPECT(expectedAssignment == choices.at(3));
#endif
#ifdef GTSAM_DT_MERGING
expectedAssignment = {{"A", 0}, {"B", 1}, {"C", 1}};
EXPECT(expectedAssignment == choices.at(4));
#else
expectedAssignment = {{"A", 0}, {"B", 0}, {"C", 1}};
EXPECT(expectedAssignment == choices.at(4));
#endif
#ifdef GTSAM_DT_MERGING
expectedAssignment = {{"A", 1}, {"B", 1}, {"C", 1}};
EXPECT(expectedAssignment == choices.at(5));
#else
expectedAssignment = {{"A", 1}, {"B", 0}, {"C", 1}};
EXPECT(expectedAssignment == choices.at(5));
#endif
}
/* ************************************************************************** */
@ -443,7 +485,11 @@ TEST(DecisionTree, fold) {
DT tree(B, DT(A, 1, 1), DT(A, 2, 3));
auto add = [](const int& y, double x) { return y + x; };
double sum = tree.fold(add, 0.0);
EXPECT_DOUBLES_EQUAL(6.0, sum, 1e-9); // Note, not 7, due to pruning!
#ifdef GTSAM_DT_MERGING
EXPECT_DOUBLES_EQUAL(6.0, sum, 1e-9); // Note, not 7, due to merging!
#else
EXPECT_DOUBLES_EQUAL(7.0, sum, 1e-9);
#endif
}
/* ************************************************************************** */
@ -495,9 +541,14 @@ TEST(DecisionTree, threshold) {
auto threshold = [](int value) { return value < 5 ? 0 : value; };
DT thresholded(tree, threshold);
#ifdef GTSAM_DT_MERGING
// Check number of leaves equal to zero now = 2
// Note: it is 2, because the pruned branches are counted as 1!
EXPECT_LONGS_EQUAL(2, thresholded.fold(count, 0));
#else
// if GTSAM_DT_MERGING is disabled, the count will be larger
EXPECT_LONGS_EQUAL(5, thresholded.fold(count, 0));
#endif
}
/* ************************************************************************** */
@ -533,8 +584,13 @@ TEST(DecisionTree, ApplyWithAssignment) {
};
DT prunedTree2 = prunedTree.apply(counter);
#ifdef GTSAM_DT_MERGING
// Check if apply doesn't enumerate all leaves.
EXPECT_LONGS_EQUAL(5, count);
#else
// if GTSAM_DT_MERGING is disabled, the count will be full
EXPECT_LONGS_EQUAL(8, count);
#endif
}
/* ************************************************************************** */

View File

@ -15,17 +15,20 @@
* @author Duy-Nguyen Ta
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteBayesTree.h>
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteFactor.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteBayesTree.h>
#include <gtsam/inference/BayesNet.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/inference/Symbol.h>
using namespace std;
using namespace gtsam;
using symbol_shorthand::M;
/* ************************************************************************* */
TEST_UNSAFE(DiscreteFactorGraph, debugScheduler) {
DiscreteKey PC(0, 4), ME(1, 4), AI(2, 4), A(3, 3);
@ -345,6 +348,120 @@ TEST(DiscreteFactorGraph, markdown) {
values[1] = 0;
EXPECT_DOUBLES_EQUAL(0.3, graph[0]->operator()(values), 1e-9);
}
TEST(DiscreteFactorGraph, NrAssignments) {
#ifdef GTSAM_DT_MERGING
string expected_dfg = R"(
size: 2
factor 0: f[ (m0,2), (m1,2), (m2,2), ]
Choice(m2)
0 Choice(m1)
0 0 Leaf [2] 0
0 1 Choice(m0)
0 1 0 Leaf [1]0.27527634
0 1 1 Leaf [1] 0
1 Choice(m1)
1 0 Leaf [2] 0
1 1 Choice(m0)
1 1 0 Leaf [1]0.44944733
1 1 1 Leaf [1]0.27527634
factor 1: f[ (m0,2), (m1,2), (m2,2), (m3,2), ]
Choice(m3)
0 Choice(m2)
0 0 Choice(m1)
0 0 0 Leaf [2] 1
0 0 1 Leaf [2]0.015366387
0 1 Choice(m1)
0 1 0 Leaf [2] 1
0 1 1 Choice(m0)
0 1 1 0 Leaf [1] 1
0 1 1 1 Leaf [1]0.015365663
1 Choice(m2)
1 0 Choice(m1)
1 0 0 Leaf [2] 1
1 0 1 Choice(m0)
1 0 1 0 Leaf [1]0.0094115739
1 0 1 1 Leaf [1]0.0094115652
1 1 Choice(m1)
1 1 0 Leaf [2] 1
1 1 1 Choice(m0)
1 1 1 0 Leaf [1] 1
1 1 1 1 Leaf [1]0.009321081
)";
#else
string expected_dfg = R"(
size: 2
factor 0: f[ (m0,2), (m1,2), (m2,2), ]
Choice(m2)
0 Choice(m1)
0 0 Choice(m0)
0 0 0 Leaf [1] 0
0 0 1 Leaf [1] 0
0 1 Choice(m0)
0 1 0 Leaf [1]0.27527634
0 1 1 Leaf [1]0.44944733
1 Choice(m1)
1 0 Choice(m0)
1 0 0 Leaf [1] 0
1 0 1 Leaf [1] 0
1 1 Choice(m0)
1 1 0 Leaf [1] 0
1 1 1 Leaf [1]0.27527634
factor 1: f[ (m0,2), (m1,2), (m2,2), (m3,2), ]
Choice(m3)
0 Choice(m2)
0 0 Choice(m1)
0 0 0 Choice(m0)
0 0 0 0 Leaf [1] 1
0 0 0 1 Leaf [1] 1
0 0 1 Choice(m0)
0 0 1 0 Leaf [1]0.015366387
0 0 1 1 Leaf [1]0.015366387
0 1 Choice(m1)
0 1 0 Choice(m0)
0 1 0 0 Leaf [1] 1
0 1 0 1 Leaf [1] 1
0 1 1 Choice(m0)
0 1 1 0 Leaf [1] 1
0 1 1 1 Leaf [1]0.015365663
1 Choice(m2)
1 0 Choice(m1)
1 0 0 Choice(m0)
1 0 0 0 Leaf [1] 1
1 0 0 1 Leaf [1] 1
1 0 1 Choice(m0)
1 0 1 0 Leaf [1]0.0094115739
1 0 1 1 Leaf [1]0.0094115652
1 1 Choice(m1)
1 1 0 Choice(m0)
1 1 0 0 Leaf [1] 1
1 1 0 1 Leaf [1] 1
1 1 1 Choice(m0)
1 1 1 0 Leaf [1] 1
1 1 1 1 Leaf [1]0.009321081
)";
#endif
DiscreteKeys d0{{M(0), 2}, {M(1), 2}, {M(2), 2}};
std::vector<double> p0 = {0, 0, 0.17054468, 0.27845056, 0, 0, 0, 0.17054468};
AlgebraicDecisionTree<Key> dt(d0, p0);
//TODO(Varun) Passing ADT to DiscreteConditional causes nrAssignments to get messed up
// Issue seems to be in DecisionTreeFactor.cpp L104
DiscreteConditional f0(3, DecisionTreeFactor(d0, dt));
DiscreteKeys d1{{M(0), 2}, {M(1), 2}, {M(2), 2}, {M(3), 2}};
std::vector<double> p1 = {
1, 1, 1, 1, 0.015366387, 0.0094115739, 1, 1,
1, 1, 1, 1, 0.015366387, 0.0094115652, 0.015365663, 0.009321081};
DecisionTreeFactor f1(d1, p1);
DiscreteFactorGraph dfg;
dfg.add(f0);
dfg.add(f1);
EXPECT(assert_print_equal(expected_dfg, dfg));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -173,8 +173,7 @@ VectorValues HybridBayesTree::optimize(const DiscreteValues& assignment) const {
/* ************************************************************************* */
void HybridBayesTree::prune(const size_t maxNrLeaves) {
auto decisionTree =
this->roots_.at(0)->conditional()->asDiscrete();
auto decisionTree = this->roots_.at(0)->conditional()->asDiscrete();
DecisionTreeFactor prunedDecisionTree = decisionTree->prune(maxNrLeaves);
decisionTree->root_ = prunedDecisionTree.root_;

View File

@ -70,8 +70,7 @@ Ordering HybridGaussianISAM::GetOrdering(
/* ************************************************************************* */
void HybridGaussianISAM::updateInternal(
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const std::optional<size_t>& maxNrLeaves,
HybridBayesTree::Cliques* orphans, const std::optional<size_t>& maxNrLeaves,
const std::optional<Ordering>& ordering,
const HybridBayesTree::Eliminate& function) {
// Remove the contaminated part of the Bayes tree
@ -101,8 +100,8 @@ void HybridGaussianISAM::updateInternal(
}
// eliminate all factors (top, added, orphans) into a new Bayes tree
HybridBayesTree::shared_ptr bayesTree =
factors.eliminateMultifrontal(elimination_ordering, function, std::cref(index));
HybridBayesTree::shared_ptr bayesTree = factors.eliminateMultifrontal(
elimination_ordering, function, std::cref(index));
if (maxNrLeaves) {
bayesTree->prune(*maxNrLeaves);

View File

@ -191,7 +191,7 @@ class MixtureFactor : public HybridFactor {
std::cout << "\nMixtureFactor\n";
auto valueFormatter = [](const sharedFactor& v) {
if (v) {
return "Nonlinear factor on " + std::to_string(v->size()) + " keys";
return " Nonlinear factor on " + std::to_string(v->size()) + " keys";
} else {
return std::string("nullptr");
}

View File

@ -108,7 +108,7 @@ TEST(GaussianMixtureFactor, Printing) {
std::string expected =
R"(Hybrid [x1 x2; 1]{
Choice(1)
0 Leaf :
0 Leaf [1]:
A[x1] = [
0;
0
@ -120,7 +120,7 @@ TEST(GaussianMixtureFactor, Printing) {
b = [ 0 0 ]
No noise model
1 Leaf :
1 Leaf [1]:
A[x1] = [
0;
0

View File

@ -288,8 +288,12 @@ TEST(HybridBayesNet, UpdateDiscreteConditionals) {
std::make_shared<DecisionTreeFactor>(
discreteConditionals->prune(maxNrLeaves));
#ifdef GTSAM_DT_MERGING
EXPECT_LONGS_EQUAL(maxNrLeaves + 2 /*2 zero leaves*/,
prunedDecisionTree->nrLeaves());
#else
EXPECT_LONGS_EQUAL(8 /*full tree*/, prunedDecisionTree->nrLeaves());
#endif
auto original_discrete_conditionals = *(posterior->at(4)->asDiscrete());

View File

@ -481,6 +481,7 @@ TEST(HybridFactorGraph, Printing) {
const auto [hybridBayesNet, remainingFactorGraph] =
linearizedFactorGraph.eliminatePartialSequential(ordering);
#ifdef GTSAM_DT_MERGING
string expected_hybridFactorGraph = R"(
size: 7
factor 0:
@ -492,7 +493,7 @@ factor 0:
factor 1:
Hybrid [x0 x1; m0]{
Choice(m0)
0 Leaf :
0 Leaf [1]:
A[x0] = [
-1
]
@ -502,7 +503,7 @@ Hybrid [x0 x1; m0]{
b = [ -1 ]
No noise model
1 Leaf :
1 Leaf [1]:
A[x0] = [
-1
]
@ -516,7 +517,7 @@ Hybrid [x0 x1; m0]{
factor 2:
Hybrid [x1 x2; m1]{
Choice(m1)
0 Leaf :
0 Leaf [1]:
A[x1] = [
-1
]
@ -526,7 +527,7 @@ Hybrid [x1 x2; m1]{
b = [ -1 ]
No noise model
1 Leaf :
1 Leaf [1]:
A[x1] = [
-1
]
@ -550,18 +551,104 @@ factor 4:
b = [ -10 ]
No noise model
factor 5: P( m0 ):
Leaf 0.5
Leaf [2] 0.5
factor 6: P( m1 | m0 ):
Choice(m1)
0 Choice(m0)
0 0 Leaf 0.33333333
0 1 Leaf 0.6
0 0 Leaf [1]0.33333333
0 1 Leaf [1] 0.6
1 Choice(m0)
1 0 Leaf 0.66666667
1 1 Leaf 0.4
1 0 Leaf [1]0.66666667
1 1 Leaf [1] 0.4
)";
#else
string expected_hybridFactorGraph = R"(
size: 7
factor 0:
A[x0] = [
10
]
b = [ -10 ]
No noise model
factor 1:
Hybrid [x0 x1; m0]{
Choice(m0)
0 Leaf [1]:
A[x0] = [
-1
]
A[x1] = [
1
]
b = [ -1 ]
No noise model
1 Leaf [1]:
A[x0] = [
-1
]
A[x1] = [
1
]
b = [ -0 ]
No noise model
}
factor 2:
Hybrid [x1 x2; m1]{
Choice(m1)
0 Leaf [1]:
A[x1] = [
-1
]
A[x2] = [
1
]
b = [ -1 ]
No noise model
1 Leaf [1]:
A[x1] = [
-1
]
A[x2] = [
1
]
b = [ -0 ]
No noise model
}
factor 3:
A[x1] = [
10
]
b = [ -10 ]
No noise model
factor 4:
A[x2] = [
10
]
b = [ -10 ]
No noise model
factor 5: P( m0 ):
Choice(m0)
0 Leaf [1] 0.5
1 Leaf [1] 0.5
factor 6: P( m1 | m0 ):
Choice(m1)
0 Choice(m0)
0 0 Leaf [1]0.33333333
0 1 Leaf [1] 0.6
1 Choice(m0)
1 0 Leaf [1]0.66666667
1 1 Leaf [1] 0.4
)";
#endif
EXPECT(assert_print_equal(expected_hybridFactorGraph, linearizedFactorGraph));
// Expected output for hybridBayesNet.
@ -570,13 +657,13 @@ size: 3
conditional 0: Hybrid P( x0 | x1 m0)
Discrete Keys = (m0, 2),
Choice(m0)
0 Leaf p(x0 | x1)
0 Leaf [1] p(x0 | x1)
R = [ 10.0499 ]
S[x1] = [ -0.0995037 ]
d = [ -9.85087 ]
No noise model
1 Leaf p(x0 | x1)
1 Leaf [1] p(x0 | x1)
R = [ 10.0499 ]
S[x1] = [ -0.0995037 ]
d = [ -9.95037 ]
@ -586,26 +673,26 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
Discrete Keys = (m0, 2), (m1, 2),
Choice(m1)
0 Choice(m0)
0 0 Leaf p(x1 | x2)
0 0 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -9.99901 ]
No noise model
0 1 Leaf p(x1 | x2)
0 1 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -9.90098 ]
No noise model
1 Choice(m0)
1 0 Leaf p(x1 | x2)
1 0 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -10.098 ]
No noise model
1 1 Leaf p(x1 | x2)
1 1 Leaf [1] p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -10 ]
@ -615,14 +702,14 @@ conditional 2: Hybrid P( x2 | m0 m1)
Discrete Keys = (m0, 2), (m1, 2),
Choice(m1)
0 Choice(m0)
0 0 Leaf p(x2)
0 0 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.1489 ]
mean: 1 elements
x2: -1.0099
No noise model
0 1 Leaf p(x2)
0 1 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.1479 ]
mean: 1 elements
@ -630,14 +717,14 @@ conditional 2: Hybrid P( x2 | m0 m1)
No noise model
1 Choice(m0)
1 0 Leaf p(x2)
1 0 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.0504 ]
mean: 1 elements
x2: -1.0001
No noise model
1 1 Leaf p(x2)
1 1 Leaf [1] p(x2)
R = [ 10.0494 ]
d = [ -10.0494 ]
mean: 1 elements

View File

@ -63,8 +63,8 @@ TEST(MixtureFactor, Printing) {
R"(Hybrid [x1 x2; 1]
MixtureFactor
Choice(1)
0 Leaf Nonlinear factor on 2 keys
1 Leaf Nonlinear factor on 2 keys
0 Leaf [1] Nonlinear factor on 2 keys
1 Leaf [1] Nonlinear factor on 2 keys
)";
EXPECT(assert_print_equal(expected, mixtureFactor));
}