Evaluation works
parent
5002f3da8a
commit
b839387028
|
|
@ -6,6 +6,56 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/slam/EssentialMatrixFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Binary factor that optimizes for E and inverse depth d: assumes measurement
|
||||
* in image 2 is perfect, and returns re-projection error in image 1
|
||||
* This version takes an extrinsic rotation to allow for omnidirectional rigs
|
||||
*/
|
||||
class EssentialMatrixFactor3: public EssentialMatrixFactor2 {
|
||||
|
||||
typedef EssentialMatrixFactor3 Base;
|
||||
typedef EssentialMatrixFactor3 This;
|
||||
|
||||
Rot3 cRb_; ///< Rotation from body to camera frame
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param pA point in first camera, in calibrated coordinates
|
||||
* @param pB point in second camera, in calibrated coordinates
|
||||
* @param bRc extra rotation between "body" and "camera" frame
|
||||
* @param model noise model should be in calibrated coordinates, as well
|
||||
*/
|
||||
EssentialMatrixFactor3(Key key1, Key key2, const Point2& pA, const Point2& pB,
|
||||
const Rot3& cRb, const SharedNoiseModel& model):
|
||||
EssentialMatrixFactor2(key1, key2, pA, pB, model), cRb_(cRb) {
|
||||
}
|
||||
|
||||
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
|
||||
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
|
||||
gtsam::NonlinearFactor::shared_ptr(new This(*this)));
|
||||
}
|
||||
|
||||
virtual void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
}
|
||||
|
||||
Vector evaluateError(const EssentialMatrix& E, const LieScalar& d,
|
||||
boost::optional<Matrix&> DE = boost::none, boost::optional<Matrix&> Dd =
|
||||
boost::none) const {
|
||||
EssentialMatrix cameraE = cRb_ * E;
|
||||
return EssentialMatrixFactor2::evaluateError(cameraE, d, DE, Dd);
|
||||
}
|
||||
|
||||
};
|
||||
// EssentialMatrixFactor3
|
||||
|
||||
}
|
||||
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
|
|
@ -29,8 +79,9 @@ namespace example1 {
|
|||
const string filename = findExampleDataFile("5pointExample1.txt");
|
||||
SfM_data data;
|
||||
bool readOK = readBAL(filename, data);
|
||||
Rot3 aRb = data.cameras[1].pose().rotation();
|
||||
Point3 aTb = data.cameras[1].pose().translation();
|
||||
Rot3 c1Rc2 = data.cameras[1].pose().rotation();
|
||||
Point3 c1Tc2 = data.cameras[1].pose().translation();
|
||||
EssentialMatrix trueE(c1Rc2, c1Tc2);
|
||||
double baseline = 0.1; // actual baseline of the camera
|
||||
|
||||
Point2 pA(size_t i) {
|
||||
|
|
@ -53,32 +104,30 @@ TEST (EssentialMatrixFactor, testData) {
|
|||
// Check E matrix
|
||||
Matrix expected(3, 3);
|
||||
expected << 0, 0, 0, 0, 0, -0.1, 0.1, 0, 0;
|
||||
Matrix aEb_matrix = skewSymmetric(aTb.x(), aTb.y(), aTb.z()) * aRb.matrix();
|
||||
EXPECT(assert_equal(expected, aEb_matrix,1e-8));
|
||||
Matrix aEb_matrix = skewSymmetric(c1Tc2.x(), c1Tc2.y(), c1Tc2.z())
|
||||
* c1Rc2.matrix();
|
||||
EXPECT(assert_equal(expected, aEb_matrix, 1e-8));
|
||||
|
||||
// Check some projections
|
||||
EXPECT(assert_equal(Point2(0,0),pA(0),1e-8));
|
||||
EXPECT(assert_equal(Point2(0,0.1),pB(0),1e-8));
|
||||
EXPECT(assert_equal(Point2(0,-1),pA(4),1e-8));
|
||||
EXPECT(assert_equal(Point2(-1,0.2),pB(4),1e-8));
|
||||
EXPECT(assert_equal(Point2(0, 0), pA(0), 1e-8));
|
||||
EXPECT(assert_equal(Point2(0, 0.1), pB(0), 1e-8));
|
||||
EXPECT(assert_equal(Point2(0, -1), pA(4), 1e-8));
|
||||
EXPECT(assert_equal(Point2(-1, 0.2), pB(4), 1e-8));
|
||||
|
||||
// Check homogeneous version
|
||||
EXPECT(assert_equal((Vector(3) << -1,0.2,1),vB(4),1e-8));
|
||||
EXPECT(assert_equal((Vector(3) << -1, 0.2, 1), vB(4), 1e-8));
|
||||
|
||||
// Check epipolar constraint
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, vA(i).transpose() * aEb_matrix * vB(i), 1e-8);
|
||||
|
||||
// Check epipolar constraint
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA(i),vB(i)), 1e-7);
|
||||
EXPECT_DOUBLES_EQUAL(0, trueE.error(vA(i), vB(i)), 1e-7);
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor, factor) {
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor factor(1, pA(i), pB(i), model1);
|
||||
|
||||
|
|
@ -115,7 +164,6 @@ TEST (EssentialMatrixFactor, minimization) {
|
|||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
truth.insert(1, trueE);
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(truth), 1e-8);
|
||||
|
||||
|
|
@ -133,21 +181,19 @@ TEST (EssentialMatrixFactor, minimization) {
|
|||
|
||||
// Check result
|
||||
EssentialMatrix actual = result.at<EssentialMatrix>(1);
|
||||
EXPECT(assert_equal(trueE, actual,1e-1));
|
||||
EXPECT(assert_equal(trueE, actual, 1e-1));
|
||||
|
||||
// Check error at result
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
|
||||
// Check errors individually
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i),vB(i)), 1e-6);
|
||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
|
||||
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor2, factor) {
|
||||
EssentialMatrix E(aRb, aTb);
|
||||
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor2 factor(100, i, pA(i), pB(i), model2);
|
||||
|
||||
|
|
@ -159,7 +205,7 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
|
||||
Matrix Hactual1, Hactual2;
|
||||
LieScalar d(baseline / P1.z());
|
||||
Vector actual = factor.evaluateError(E, d, Hactual1, Hactual2);
|
||||
Vector actual = factor.evaluateError(trueE, d, Hactual1, Hactual2);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// Use numerical derivatives to calculate the expected Jacobian
|
||||
|
|
@ -167,8 +213,8 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
boost::function<Vector(const EssentialMatrix&, const LieScalar&)> f =
|
||||
boost::bind(&EssentialMatrixFactor2::evaluateError, &factor, _1, _2,
|
||||
boost::none, boost::none);
|
||||
Hexpected1 = numericalDerivative21<EssentialMatrix>(f, E, d);
|
||||
Hexpected2 = numericalDerivative22<EssentialMatrix>(f, E, d);
|
||||
Hexpected1 = numericalDerivative21<EssentialMatrix>(f, trueE, d);
|
||||
Hexpected2 = numericalDerivative22<EssentialMatrix>(f, trueE, d);
|
||||
|
||||
// Verify the Jacobian is correct
|
||||
EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
|
||||
|
|
@ -188,7 +234,6 @@ TEST (EssentialMatrixFactor2, minimization) {
|
|||
|
||||
// Check error at ground truth
|
||||
Values truth;
|
||||
EssentialMatrix trueE(aRb, aTb);
|
||||
truth.insert(100, trueE);
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
Point3 P1 = data.tracks[i].p;
|
||||
|
|
@ -204,16 +249,65 @@ TEST (EssentialMatrixFactor2, minimization) {
|
|||
|
||||
// Check result
|
||||
EssentialMatrix actual = result.at<EssentialMatrix>(100);
|
||||
EXPECT(assert_equal(trueE, actual,1e-1));
|
||||
EXPECT(assert_equal(trueE, actual, 1e-1));
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT(assert_equal(truth.at<LieScalar>(i),result.at<LieScalar>(i),1e-1));
|
||||
EXPECT(assert_equal(truth.at<LieScalar>(i), result.at<LieScalar>(i), 1e-1));
|
||||
|
||||
// Check error at result
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
// Below we want to optimize for an essential matrix specified in a
|
||||
// body coordinate frame B which is rotated with respect to the camera
|
||||
// frame C, via the rotation bRc.
|
||||
|
||||
// The rotation between body and camera is:
|
||||
gtsam::Point3 bX(1, 0, 0), bY(0, 1, 0), bZ(0, 0, 1);
|
||||
gtsam::Rot3 bRc(bX, bZ, -bY), cRb = bRc.inverse();
|
||||
|
||||
// The "true E" in the body frame is then
|
||||
EssentialMatrix bodyE = bRc * trueE;
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, factor) {
|
||||
|
||||
for (size_t i = 0; i < 5; i++) {
|
||||
EssentialMatrixFactor3 factor(100, i, pA(i), pB(i), cRb, model2);
|
||||
|
||||
// Check evaluation
|
||||
Point3 P1 = data.tracks[i].p, P2 = data.cameras[1].pose().transform_to(P1);
|
||||
const Point2 pi = SimpleCamera::project_to_camera(P2);
|
||||
Point2 reprojectionError(pi - pB(i));
|
||||
Vector expected = reprojectionError.vector();
|
||||
|
||||
Matrix Hactual1, Hactual2;
|
||||
LieScalar d(baseline / P1.z());
|
||||
Vector actual = factor.evaluateError(bodyE, d, Hactual1, Hactual2);
|
||||
EXPECT(assert_equal(expected, actual, 1e-7));
|
||||
|
||||
// // Use numerical derivatives to calculate the expected Jacobian
|
||||
// Matrix Hexpected1, Hexpected2;
|
||||
// boost::function<Vector(const EssentialMatrix&, const LieScalar&)> f =
|
||||
// boost::bind(&EssentialMatrixFactor3::evaluateError, &factor, _1, _2,
|
||||
// boost::none, boost::none);
|
||||
// Hexpected1 = numericalDerivative21<EssentialMatrix>(f, trueE, d);
|
||||
// Hexpected2 = numericalDerivative22<EssentialMatrix>(f, trueE, d);
|
||||
//
|
||||
// // Verify the Jacobian is correct
|
||||
// EXPECT(assert_equal(Hexpected1, Hactual1, 1e-8));
|
||||
// EXPECT(assert_equal(Hexpected2, Hactual2, 1e-8));
|
||||
}
|
||||
}
|
||||
|
||||
//*************************************************************************
|
||||
TEST (EssentialMatrixFactor3, minimization) {
|
||||
|
||||
// As before, we start with a factor graph and add constraints to it
|
||||
NonlinearFactorGraph graph;
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
// but now we specify the rotation bRc
|
||||
graph.add(EssentialMatrixFactor3(100, i, pA(i), pB(i), bRc, model2));
|
||||
}
|
||||
|
||||
} // namespace example1
|
||||
|
|
@ -237,7 +331,7 @@ Point2 pB(size_t i) {
|
|||
}
|
||||
|
||||
boost::shared_ptr<Cal3Bundler> //
|
||||
K = boost::make_shared < Cal3Bundler > (500, 0, 0);
|
||||
K = boost::make_shared<Cal3Bundler>(500, 0, 0);
|
||||
|
||||
Vector vA(size_t i) {
|
||||
Point2 xy = K->calibrate(pA(i));
|
||||
|
|
@ -276,14 +370,14 @@ TEST (EssentialMatrixFactor, extraTest) {
|
|||
|
||||
// Check result
|
||||
EssentialMatrix actual = result.at<EssentialMatrix>(1);
|
||||
EXPECT(assert_equal(trueE, actual,1e-1));
|
||||
EXPECT(assert_equal(trueE, actual, 1e-1));
|
||||
|
||||
// Check error at result
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
|
||||
// Check errors individually
|
||||
for (size_t i = 0; i < 5; i++)
|
||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i),vB(i)), 1e-6);
|
||||
EXPECT_DOUBLES_EQUAL(0, actual.error(vA(i), vB(i)), 1e-6);
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -315,9 +409,9 @@ TEST (EssentialMatrixFactor2, extraTest) {
|
|||
|
||||
// Check result
|
||||
EssentialMatrix actual = result.at<EssentialMatrix>(100);
|
||||
EXPECT(assert_equal(trueE, actual,1e-1));
|
||||
EXPECT(assert_equal(trueE, actual, 1e-1));
|
||||
for (size_t i = 0; i < data.number_tracks(); i++)
|
||||
EXPECT(assert_equal(truth.at<LieScalar>(i),result.at<LieScalar>(i),1e-1));
|
||||
EXPECT(assert_equal(truth.at<LieScalar>(i), result.at<LieScalar>(i), 1e-1));
|
||||
|
||||
// Check error at result
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-4);
|
||||
|
|
|
|||
Loading…
Reference in New Issue