more tests running
parent
0e4db30713
commit
aa48658626
|
|
@ -116,12 +116,6 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
|
||||
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
|
||||
|
||||
//TODO(Varun) we cannot enforce ordering
|
||||
// // Create ordering.
|
||||
// Ordering ordering1;
|
||||
// ordering1 += X(1);
|
||||
// ordering1 += X(2);
|
||||
|
||||
// Run update step
|
||||
isam.update(graph1);
|
||||
|
||||
|
|
@ -133,14 +127,7 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
|
||||
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
|
||||
|
||||
//TODO(Varun) we cannot enforce ordering
|
||||
// // Create ordering.
|
||||
// Ordering ordering2;
|
||||
// ordering2 += X(2);
|
||||
// ordering2 += X(3);
|
||||
|
||||
isam.update(graph2);
|
||||
GTSAM_PRINT(isam);
|
||||
|
||||
/********************************************************/
|
||||
// Run batch elimination so we can compare results.
|
||||
|
|
@ -150,68 +137,78 @@ TEST(HybridGaussianElimination, IncrementalInference) {
|
|||
ordering += X(3);
|
||||
|
||||
// Now we calculate the actual factors using full elimination
|
||||
HybridBayesNet::shared_ptr expectedHybridBayesNet;
|
||||
HybridBayesTree::shared_ptr expectedHybridBayesTree;
|
||||
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
|
||||
std::tie(expectedHybridBayesNet, expectedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialSequential(ordering);
|
||||
std::tie(expectedHybridBayesTree, expectedRemainingGraph) =
|
||||
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
|
||||
|
||||
// The densities on X(1) should be the same
|
||||
auto x1_conditional =
|
||||
dynamic_pointer_cast<GaussianMixture>(isam[X(1)]->conditional()->inner());
|
||||
EXPECT(
|
||||
assert_equal(*x1_conditional, *(expectedHybridBayesNet->atGaussian(0))));
|
||||
auto actual_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*x1_conditional, *actual_x1_conditional));
|
||||
|
||||
// The densities on X(2) should be the same
|
||||
auto x2_conditional =
|
||||
dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
|
||||
EXPECT(
|
||||
assert_equal(*x2_conditional, *(expectedHybridBayesNet->atGaussian(1))));
|
||||
auto actual_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*x2_conditional, *actual_x2_conditional));
|
||||
|
||||
// // The densities on X(3) should be the same
|
||||
// auto x3_conditional =
|
||||
// dynamic_pointer_cast<GaussianMixture>(isam[X(3)]->conditional()->inner());
|
||||
// EXPECT(
|
||||
// assert_equal(*x3_conditional, *(expectedHybridBayesNet->atGaussian(2))));
|
||||
// The densities on X(3) should be the same
|
||||
auto x3_conditional =
|
||||
dynamic_pointer_cast<GaussianMixture>(isam[X(3)]->conditional()->inner());
|
||||
auto actual_x3_conditional = dynamic_pointer_cast<GaussianMixture>(
|
||||
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
|
||||
EXPECT(assert_equal(*x3_conditional, *actual_x3_conditional));
|
||||
|
||||
GTSAM_PRINT(*expectedHybridBayesNet);
|
||||
|
||||
// we only do the manual continuous elimination for 0,0
|
||||
// the other discrete probabilities on M(2) are calculated the same way
|
||||
// We only perform manual continuous elimination for 0,0.
|
||||
// The other discrete probabilities on M(2) are calculated the same way
|
||||
auto m00_prob = [&]() {
|
||||
GaussianFactorGraph gf;
|
||||
// gf.add(switching.linearizedFactorGraph.gaussianGraph().at(3));
|
||||
auto x2_prior = boost::dynamic_pointer_cast<HybridGaussianFactor>(
|
||||
switching.linearizedFactorGraph.at(3))->inner();
|
||||
gf.add(x2_prior);
|
||||
|
||||
DiscreteValues m00;
|
||||
m00[M(1)] = 0, m00[M(2)] = 0;
|
||||
// auto dcMixture =
|
||||
// dynamic_pointer_cast<DCGaussianMixtureFactor>(graph2.dcGraph().at(0));
|
||||
// gf.add(dcMixture->factors()(m00));
|
||||
// auto x2_mixed =
|
||||
// boost::dynamic_pointer_cast<GaussianMixture>(hybridBayesNet.at(1));
|
||||
// gf.add(x2_mixed->factors()(m00));
|
||||
// P(X2, X3 | M2)
|
||||
auto dcMixture =
|
||||
dynamic_pointer_cast<GaussianMixtureFactor>(graph2.at(0));
|
||||
gf.add(dcMixture->factors()(m00));
|
||||
|
||||
auto x2_mixed =
|
||||
boost::dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
|
||||
// Perform explicit cast so we can add the conditional to `gf`.
|
||||
auto x2_cond = boost::dynamic_pointer_cast<GaussianFactor>(
|
||||
x2_mixed->conditionals()(m00));
|
||||
gf.add(x2_cond);
|
||||
|
||||
auto result_gf = gf.eliminateSequential();
|
||||
return gf.probPrime(result_gf->optimize());
|
||||
}();
|
||||
|
||||
/// Test if the probability values are as expected with regression tests.
|
||||
// DiscreteValues assignment;
|
||||
// EXPECT(assert_equal(m00_prob, 0.60656, 1e-5));
|
||||
// assignment[M(1)] = 0;
|
||||
// assignment[M(2)] = 0;
|
||||
// EXPECT(assert_equal(m00_prob, (*discreteFactor)(assignment), 1e-5));
|
||||
auto discreteConditional = isam[M(1)]->conditional()->asDiscreteConditional();
|
||||
// Test if the probability values are as expected with regression tests.
|
||||
// DiscreteValues assignment;
|
||||
// EXPECT(assert_equal(m00_prob, 0.60656, 1e-5));
|
||||
// assignment[M(1)] = 0;
|
||||
// assignment[M(2)] = 0;
|
||||
// EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
|
||||
// assignment[M(1)] = 1;
|
||||
// assignment[M(2)] = 0;
|
||||
// EXPECT(assert_equal(0.612477, (*discreteFactor)(assignment), 1e-5));
|
||||
// EXPECT(assert_equal(0.612477, (*discreteConditional)(assignment), 1e-5));
|
||||
// assignment[M(1)] = 0;
|
||||
// assignment[M(2)] = 1;
|
||||
// EXPECT(assert_equal(0.999952, (*discreteFactor)(assignment), 1e-5));
|
||||
// EXPECT(assert_equal(0.999952, (*discreteConditional)(assignment), 1e-5));
|
||||
// assignment[M(1)] = 1;
|
||||
// assignment[M(2)] = 1;
|
||||
// EXPECT(assert_equal(1.0, (*discreteFactor)(assignment), 1e-5));
|
||||
// EXPECT(assert_equal(1.0, (*discreteConditional)(assignment), 1e-5));
|
||||
|
||||
// DiscreteFactorGraph dfg;
|
||||
// dfg.add(*discreteFactor);
|
||||
// dfg.add(discreteFactor_m1);
|
||||
// dfg.add(*discreteConditional);
|
||||
// dfg.add(discreteConditional_m1);
|
||||
// dfg.add_factors(switching.linearizedFactorGraph.discreteGraph());
|
||||
|
||||
// // Check if the chordal graph generated from incremental elimination
|
||||
|
|
|
|||
Loading…
Reference in New Issue