Renamed to BinaryJacobianFactor
parent
9fcd498d6a
commit
a94c2e7323
|
@ -133,29 +133,29 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
class LinearizedFactor : public JacobianFactor {
|
||||
class BinaryJacobianFactor : public JacobianFactor {
|
||||
// Fixed size matrices
|
||||
// TODO(frank): implement generic BinaryJacobianFactor<N,M1,M2> next to
|
||||
// JacobianFactor
|
||||
|
||||
public:
|
||||
/// Constructor
|
||||
LinearizedFactor(Key i1, const JacobianC& A1, Key i2, const JacobianL& A2,
|
||||
BinaryJacobianFactor(Key key1, const JacobianC& A1, Key key2, const JacobianL& A2,
|
||||
const Vector2& b,
|
||||
const SharedDiagonal& model = SharedDiagonal())
|
||||
: JacobianFactor(i1, A1, i2, A2, b, model) {}
|
||||
: JacobianFactor(key1, A1, key2, A2, b, model) {}
|
||||
|
||||
// Fixed-size matrix update
|
||||
void updateHessian(const FastVector<Key>& infoKeys, SymmetricBlockMatrix* info) const {
|
||||
gttic(updateHessian_LinearizedFactor);
|
||||
gttic(updateHessian_BinaryJacobianFactor);
|
||||
// Whiten the factor if it has a noise model
|
||||
const SharedDiagonal& model = get_model();
|
||||
if (model && !model->isUnit()) {
|
||||
if (model->isConstrained())
|
||||
throw std::invalid_argument(
|
||||
"JacobianFactor::updateHessian: cannot update information with "
|
||||
"BinaryJacobianFactor::updateHessian: cannot update information with "
|
||||
"constrained noise model");
|
||||
JacobianFactor whitenedFactor = whiten();
|
||||
JacobianFactor whitenedFactor = whiten(); // TODO: make BinaryJacobianFactor
|
||||
whitenedFactor.updateHessian(infoKeys, info);
|
||||
} else {
|
||||
// First build an array of slots
|
||||
|
@ -164,9 +164,9 @@ public:
|
|||
DenseIndex slotB = info->nBlocks() - 1;
|
||||
|
||||
const Matrix& Ab = Ab_.matrix();
|
||||
Eigen::Block<const Matrix,2,DimC> A1(Ab,0,0);
|
||||
Eigen::Block<const Matrix,2,DimL> A2(Ab,0,DimC);
|
||||
Eigen::Block<const Matrix,2,1> b(Ab,0,DimC+DimL);
|
||||
Eigen::Block<const Matrix,2,DimC> A1(Ab, 0, 0);
|
||||
Eigen::Block<const Matrix,2,DimL> A2(Ab, 0, DimC);
|
||||
Eigen::Block<const Matrix,2,1> b(Ab, 0, DimC + DimL);
|
||||
|
||||
// We perform I += A'*A to the upper triangle
|
||||
(*info)(slot1, slot1).selfadjointView().rankUpdate(A1.transpose());
|
||||
|
@ -174,7 +174,7 @@ public:
|
|||
(*info)(slot1, slotB).knownOffDiagonal() += A1.transpose() * b;
|
||||
(*info)(slot2, slot2).selfadjointView().rankUpdate(A2.transpose());
|
||||
(*info)(slot2, slotB).knownOffDiagonal() += A2.transpose() * b;
|
||||
(*info)(slotB, slotB).selfadjointView().rankUpdate(b.transpose());
|
||||
(*info)(slotB, slotB)(0,0) = b.transpose() * b;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
@ -182,7 +182,7 @@ public:
|
|||
/// Linearize using fixed-size matrices
|
||||
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
|
||||
// Only linearize if the factor is active
|
||||
if (!this->active(values)) return boost::shared_ptr<LinearizedFactor>();
|
||||
if (!this->active(values)) return boost::shared_ptr<BinaryJacobianFactor>();
|
||||
|
||||
const Key key1 = this->key1(), key2 = this->key2();
|
||||
JacobianC H1;
|
||||
|
@ -212,11 +212,11 @@ public:
|
|||
|
||||
if (noiseModel && noiseModel->isConstrained()) {
|
||||
using noiseModel::Constrained;
|
||||
return boost::make_shared<LinearizedFactor>(
|
||||
return boost::make_shared<BinaryJacobianFactor>(
|
||||
key1, H1, key2, H2, b,
|
||||
boost::static_pointer_cast<Constrained>(noiseModel)->unit());
|
||||
} else {
|
||||
return boost::make_shared<LinearizedFactor>(key1, H1, key2, H2, b);
|
||||
return boost::make_shared<BinaryJacobianFactor>(key1, H1, key2, H2, b);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue