commit
a933b404f3
|
|
@ -195,7 +195,9 @@ macro(gtsamAddTestsGlob_impl groupName globPatterns excludedFiles linkLibraries)
|
|||
add_test(NAME ${target_name} COMMAND ${target_name})
|
||||
add_dependencies(check.${groupName} ${target_name})
|
||||
add_dependencies(check ${target_name})
|
||||
add_dependencies(all.tests ${script_name})
|
||||
if(NOT XCODE_VERSION)
|
||||
add_dependencies(all.tests ${script_name})
|
||||
endif()
|
||||
|
||||
# Add TOPSRCDIR
|
||||
set_property(SOURCE ${script_srcs} APPEND PROPERTY COMPILE_DEFINITIONS "TOPSRCDIR=\"${PROJECT_SOURCE_DIR}\"")
|
||||
|
|
|
|||
|
|
@ -0,0 +1 @@
|
|||
*.txt
|
||||
|
|
@ -34,6 +34,9 @@ using namespace gtsam;
|
|||
// Make the typename short so it looks much cleaner
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
// create a typedef to the camera type
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
|
|
@ -55,12 +58,12 @@ int main(int argc, char* argv[]) {
|
|||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
|
||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor());
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor(K));
|
||||
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
|
||||
// generate the 2D measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Camera camera(poses[i], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
|
||||
// call add() function to add measurement into a single factor, here we need to add:
|
||||
|
|
@ -68,7 +71,7 @@ int main(int argc, char* argv[]) {
|
|||
// 2. the corresponding camera's key
|
||||
// 3. camera noise model
|
||||
// 4. camera calibration
|
||||
smartfactor->add(measurement, i, measurementNoise, K);
|
||||
smartfactor->add(measurement, i, measurementNoise);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
|
|
@ -77,15 +80,15 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
||||
graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise));
|
||||
graph.push_back(PriorFactor<Camera>(0, Camera(poses[0],K), noise));
|
||||
|
||||
// Because the structure-from-motion problem has a scale ambiguity, the problem is
|
||||
// still under-constrained. Here we add a prior on the second pose x1, so this will
|
||||
// fix the scale by indicating the distance between x0 and x1.
|
||||
// Because these two are fixed, the rest of the poses will be also be fixed.
|
||||
graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise)); // add directly to graph
|
||||
graph.push_back(PriorFactor<Camera>(1, Camera(poses[1],K), noise)); // add directly to graph
|
||||
|
||||
graph.print("Factor Graph:\n");
|
||||
|
||||
|
|
@ -94,7 +97,7 @@ int main(int argc, char* argv[]) {
|
|||
Values initialEstimate;
|
||||
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(i, poses[i].compose(delta));
|
||||
initialEstimate.insert(i, Camera(poses[i].compose(delta), K));
|
||||
initialEstimate.print("Initial Estimates:\n");
|
||||
|
||||
// Optimize the graph and print results
|
||||
|
|
|
|||
|
|
@ -30,6 +30,9 @@ using namespace gtsam;
|
|||
// Make the typename short so it looks much cleaner
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
// create a typedef to the camera type
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
|
||||
|
|
@ -51,16 +54,16 @@ int main(int argc, char* argv[]) {
|
|||
for (size_t j = 0; j < points.size(); ++j) {
|
||||
|
||||
// every landmark represent a single landmark, we use shared pointer to init the factor, and then insert measurements.
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor());
|
||||
SmartFactor::shared_ptr smartfactor(new SmartFactor(K));
|
||||
|
||||
for (size_t i = 0; i < poses.size(); ++i) {
|
||||
|
||||
// generate the 2D measurement
|
||||
SimpleCamera camera(poses[i], *K);
|
||||
Camera camera(poses[i], K);
|
||||
Point2 measurement = camera.project(points[j]);
|
||||
|
||||
// call add() function to add measurement into a single factor, here we need to add:
|
||||
smartfactor->add(measurement, i, measurementNoise, K);
|
||||
smartfactor->add(measurement, i, measurementNoise);
|
||||
}
|
||||
|
||||
// insert the smart factor in the graph
|
||||
|
|
@ -69,18 +72,18 @@ int main(int argc, char* argv[]) {
|
|||
|
||||
// Add a prior on pose x0. This indirectly specifies where the origin is.
|
||||
// 30cm std on x,y,z 0.1 rad on roll,pitch,yaw
|
||||
noiseModel::Diagonal::shared_ptr poseNoise = noiseModel::Diagonal::Sigmas(
|
||||
noiseModel::Diagonal::shared_ptr noise = noiseModel::Diagonal::Sigmas(
|
||||
(Vector(6) << Vector3::Constant(0.3), Vector3::Constant(0.1)).finished());
|
||||
graph.push_back(PriorFactor<Pose3>(0, poses[0], poseNoise));
|
||||
graph.push_back(PriorFactor<Camera>(0, Camera(poses[0],K), noise));
|
||||
|
||||
// Fix the scale ambiguity by adding a prior
|
||||
graph.push_back(PriorFactor<Pose3>(1, poses[1], poseNoise));
|
||||
graph.push_back(PriorFactor<Camera>(1, Camera(poses[0],K), noise));
|
||||
|
||||
// Create the initial estimate to the solution
|
||||
Values initialEstimate;
|
||||
Pose3 delta(Rot3::rodriguez(-0.1, 0.2, 0.25), Point3(0.05, -0.10, 0.20));
|
||||
for (size_t i = 0; i < poses.size(); ++i)
|
||||
initialEstimate.insert(i, poses[i].compose(delta));
|
||||
initialEstimate.insert(i, Camera(poses[i].compose(delta),K));
|
||||
|
||||
// We will use LM in the outer optimization loop, but by specifying "Iterative" below
|
||||
// We indicate that an iterative linear solver should be used.
|
||||
|
|
|
|||
33
gtsam.h
33
gtsam.h
|
|
@ -812,7 +812,7 @@ class CalibratedCamera {
|
|||
|
||||
// Action on Point3
|
||||
gtsam::Point2 project(const gtsam::Point3& point) const;
|
||||
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
|
||||
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
|
||||
|
||||
// Standard Interface
|
||||
gtsam::Pose3 pose() const;
|
||||
|
|
@ -848,7 +848,7 @@ class PinholeCamera {
|
|||
static size_t Dim();
|
||||
|
||||
// Transformations and measurement functions
|
||||
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
|
||||
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
|
||||
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
|
||||
gtsam::Point2 project(const gtsam::Point3& point);
|
||||
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
|
||||
|
|
@ -884,7 +884,7 @@ virtual class SimpleCamera {
|
|||
static size_t Dim();
|
||||
|
||||
// Transformations and measurement functions
|
||||
static gtsam::Point2 project_to_camera(const gtsam::Point3& cameraPoint);
|
||||
static gtsam::Point2 Project(const gtsam::Point3& cameraPoint);
|
||||
pair<gtsam::Point2,bool> projectSafe(const gtsam::Point3& pw) const;
|
||||
gtsam::Point2 project(const gtsam::Point3& point);
|
||||
gtsam::Point3 backproject(const gtsam::Point2& p, double depth) const;
|
||||
|
|
@ -2352,18 +2352,31 @@ virtual class GeneralSFMFactor2 : gtsam::NoiseModelFactor {
|
|||
void serialize() const;
|
||||
};
|
||||
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
class SmartProjectionParams {
|
||||
SmartProjectionParams();
|
||||
// TODO(frank): make these work:
|
||||
// void setLinearizationMode(LinearizationMode linMode);
|
||||
// void setDegeneracyMode(DegeneracyMode degMode);
|
||||
void setRankTolerance(double rankTol);
|
||||
void setEnableEPI(bool enableEPI);
|
||||
void setLandmarkDistanceThreshold(bool landmarkDistanceThreshold);
|
||||
void setDynamicOutlierRejectionThreshold(bool dynOutRejectionThreshold);
|
||||
};
|
||||
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
template<CALIBRATION>
|
||||
virtual class SmartProjectionPoseFactor : gtsam::NonlinearFactor {
|
||||
virtual class SmartProjectionPoseFactor: gtsam::NonlinearFactor {
|
||||
|
||||
SmartProjectionPoseFactor(double rankTol, double linThreshold,
|
||||
bool manageDegeneracy, bool enableEPI, const gtsam::Pose3& body_P_sensor);
|
||||
|
||||
SmartProjectionPoseFactor(double rankTol);
|
||||
SmartProjectionPoseFactor();
|
||||
SmartProjectionPoseFactor(const CALIBRATION* K);
|
||||
SmartProjectionPoseFactor(const CALIBRATION* K,
|
||||
const gtsam::Pose3& body_P_sensor);
|
||||
SmartProjectionPoseFactor(const CALIBRATION* K,
|
||||
const gtsam::Pose3& body_P_sensor,
|
||||
const gtsam::SmartProjectionParams& params);
|
||||
|
||||
void add(const gtsam::Point2& measured_i, size_t poseKey_i,
|
||||
const gtsam::noiseModel::Base* noise_i, const CALIBRATION* K_i);
|
||||
const gtsam::noiseModel::Base* noise_i);
|
||||
|
||||
// enabling serialization functionality
|
||||
//void serialize() const;
|
||||
|
|
|
|||
|
|
@ -85,8 +85,7 @@ const Pose3& PinholeBase::getPose(OptionalJacobian<6, 6> H) const {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 PinholeBase::project_to_camera(const Point3& pc,
|
||||
OptionalJacobian<2, 3> Dpoint) {
|
||||
Point2 PinholeBase::Project(const Point3& pc, OptionalJacobian<2, 3> Dpoint) {
|
||||
double d = 1.0 / pc.z();
|
||||
const double u = pc.x() * d, v = pc.y() * d;
|
||||
if (Dpoint)
|
||||
|
|
@ -94,10 +93,22 @@ Point2 PinholeBase::project_to_camera(const Point3& pc,
|
|||
return Point2(u, v);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 PinholeBase::Project(const Unit3& pc, OptionalJacobian<2, 2> Dpoint) {
|
||||
if (Dpoint) {
|
||||
Matrix32 Dpoint3_pc;
|
||||
Matrix23 Duv_point3;
|
||||
Point2 uv = Project(pc.point3(Dpoint3_pc), Duv_point3);
|
||||
*Dpoint = Duv_point3 * Dpoint3_pc;
|
||||
return uv;
|
||||
} else
|
||||
return Project(pc.point3());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
pair<Point2, bool> PinholeBase::projectSafe(const Point3& pw) const {
|
||||
const Point3 pc = pose().transform_to(pw);
|
||||
const Point2 pn = project_to_camera(pc);
|
||||
const Point2 pn = Project(pc);
|
||||
return make_pair(pn, pc.z() > 0);
|
||||
}
|
||||
|
||||
|
|
@ -109,9 +120,9 @@ Point2 PinholeBase::project2(const Point3& point, OptionalJacobian<2, 6> Dpose,
|
|||
const Point3 q = pose().transform_to(point, boost::none, Dpoint ? &Rt : 0);
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
if (q.z() <= 0)
|
||||
throw CheiralityException();
|
||||
throw CheiralityException();
|
||||
#endif
|
||||
const Point2 pn = project_to_camera(q);
|
||||
const Point2 pn = Project(q);
|
||||
|
||||
if (Dpose || Dpoint) {
|
||||
const double d = 1.0 / q.z();
|
||||
|
|
@ -123,6 +134,32 @@ Point2 PinholeBase::project2(const Point3& point, OptionalJacobian<2, 6> Dpose,
|
|||
return pn;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
Point2 PinholeBase::project2(const Unit3& pw, OptionalJacobian<2, 6> Dpose,
|
||||
OptionalJacobian<2, 2> Dpoint) const {
|
||||
|
||||
// world to camera coordinate
|
||||
Matrix23 Dpc_rot;
|
||||
Matrix2 Dpc_point;
|
||||
const Unit3 pc = pose().rotation().unrotate(pw, Dpose ? &Dpc_rot : 0,
|
||||
Dpose ? &Dpc_point : 0);
|
||||
|
||||
// camera to normalized image coordinate
|
||||
Matrix2 Dpn_pc;
|
||||
const Point2 pn = Project(pc, Dpose || Dpoint ? &Dpn_pc : 0);
|
||||
|
||||
// chain the Jacobian matrices
|
||||
if (Dpose) {
|
||||
// only rotation is important
|
||||
Matrix26 Dpc_pose;
|
||||
Dpc_pose.setZero();
|
||||
Dpc_pose.leftCols<3>() = Dpc_rot;
|
||||
*Dpose = Dpn_pc * Dpc_pose; // 2x2 * 2x6
|
||||
}
|
||||
if (Dpoint)
|
||||
*Dpoint = Dpn_pc * Dpc_point; // 2x2 * 2*2
|
||||
return pn;
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
Point3 PinholeBase::backproject_from_camera(const Point2& p,
|
||||
const double depth) {
|
||||
|
|
|
|||
|
|
@ -44,6 +44,18 @@ public:
|
|||
*/
|
||||
class GTSAM_EXPORT PinholeBase {
|
||||
|
||||
public:
|
||||
|
||||
/** Pose Concept requirements */
|
||||
typedef Rot3 Rotation;
|
||||
typedef Point3 Translation;
|
||||
|
||||
/**
|
||||
* Some classes template on either PinholeCamera or StereoCamera,
|
||||
* and this typedef informs those classes what "project" returns.
|
||||
*/
|
||||
typedef Point2 Measurement;
|
||||
|
||||
private:
|
||||
|
||||
Pose3 pose_; ///< 3D pose of camera
|
||||
|
|
@ -135,6 +147,16 @@ public:
|
|||
return pose_;
|
||||
}
|
||||
|
||||
/// get rotation
|
||||
const Rot3& rotation() const {
|
||||
return pose_.rotation();
|
||||
}
|
||||
|
||||
/// get translation
|
||||
const Point3& translation() const {
|
||||
return pose_.translation();
|
||||
}
|
||||
|
||||
/// return pose, with derivative
|
||||
const Pose3& getPose(OptionalJacobian<6, 6> H) const;
|
||||
|
||||
|
|
@ -147,14 +169,21 @@ public:
|
|||
* Does *not* throw a CheiralityException, even if pc behind image plane
|
||||
* @param pc point in camera coordinates
|
||||
*/
|
||||
static Point2 project_to_camera(const Point3& pc, //
|
||||
static Point2 Project(const Point3& pc, //
|
||||
OptionalJacobian<2, 3> Dpoint = boost::none);
|
||||
|
||||
/**
|
||||
* Project from 3D point at infinity in camera coordinates into image
|
||||
* Does *not* throw a CheiralityException, even if pc behind image plane
|
||||
* @param pc point in camera coordinates
|
||||
*/
|
||||
static Point2 Project(const Unit3& pc, //
|
||||
OptionalJacobian<2, 2> Dpoint = boost::none);
|
||||
|
||||
/// Project a point into the image and check depth
|
||||
std::pair<Point2, bool> projectSafe(const Point3& pw) const;
|
||||
|
||||
/**
|
||||
* Project point into the image
|
||||
/** Project point into the image
|
||||
* Throws a CheiralityException if point behind image plane iff GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
* @param point 3D point in world coordinates
|
||||
* @return the intrinsic coordinates of the projected point
|
||||
|
|
@ -162,9 +191,33 @@ public:
|
|||
Point2 project2(const Point3& point, OptionalJacobian<2, 6> Dpose =
|
||||
boost::none, OptionalJacobian<2, 3> Dpoint = boost::none) const;
|
||||
|
||||
/** Project point at infinity into the image
|
||||
* Throws a CheiralityException if point behind image plane iff GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
* @param point 3D point in world coordinates
|
||||
* @return the intrinsic coordinates of the projected point
|
||||
*/
|
||||
Point2 project2(const Unit3& point,
|
||||
OptionalJacobian<2, 6> Dpose = boost::none,
|
||||
OptionalJacobian<2, 2> Dpoint = boost::none) const;
|
||||
|
||||
/// backproject a 2-dimensional point to a 3-dimensional point at given depth
|
||||
static Point3 backproject_from_camera(const Point2& p, const double depth);
|
||||
|
||||
/// @}
|
||||
/// @name Advanced interface
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* Return the start and end indices (inclusive) of the translation component of the
|
||||
* exponential map parameterization
|
||||
* @return a pair of [start, end] indices into the tangent space vector
|
||||
*/
|
||||
inline static std::pair<size_t, size_t> translationInterval() {
|
||||
return std::make_pair(3, 5);
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
private:
|
||||
|
||||
/** Serialization function */
|
||||
|
|
|
|||
|
|
@ -21,13 +21,14 @@
|
|||
#include <gtsam/geometry/Point3.h>
|
||||
#include <gtsam/geometry/CalibratedCamera.h> // for Cheirality exception
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/SymmetricBlockMatrix.h>
|
||||
#include <gtsam/base/FastMap.h>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief A set of cameras, all with their own calibration
|
||||
* Assumes that a camera is laid out as 6 Pose3 parameters then calibration
|
||||
*/
|
||||
template<class CAMERA>
|
||||
class CameraSet: public std::vector<CAMERA> {
|
||||
|
|
@ -40,28 +41,46 @@ protected:
|
|||
*/
|
||||
typedef typename CAMERA::Measurement Z;
|
||||
|
||||
static const int D = traits<CAMERA>::dimension; ///< Camera dimension
|
||||
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
|
||||
static const int Dim = traits<CAMERA>::dimension; ///< Camera dimension
|
||||
|
||||
/// Make a vector of re-projection errors
|
||||
static Vector ErrorVector(const std::vector<Z>& predicted,
|
||||
const std::vector<Z>& measured) {
|
||||
|
||||
// Check size
|
||||
size_t m = predicted.size();
|
||||
if (measured.size() != m)
|
||||
throw std::runtime_error("CameraSet::errors: size mismatch");
|
||||
|
||||
// Project and fill error vector
|
||||
Vector b(ZDim * m);
|
||||
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
||||
Z e = predicted[i] - measured[i];
|
||||
b.segment<ZDim>(row) = e.vector();
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// Definitions for blocks of F
|
||||
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F
|
||||
typedef std::pair<Key, MatrixZD> FBlock; // Fblocks
|
||||
typedef Eigen::Matrix<double, ZDim, D> MatrixZD;
|
||||
typedef std::vector<MatrixZD> FBlocks;
|
||||
|
||||
/**
|
||||
* print
|
||||
* @param s optional string naming the factor
|
||||
* @param keyFormatter optional formatter useful for printing Symbols
|
||||
*/
|
||||
void print(const std::string& s = "") const {
|
||||
virtual void print(const std::string& s = "") const {
|
||||
std::cout << s << "CameraSet, cameras = \n";
|
||||
for (size_t k = 0; k < this->size(); ++k)
|
||||
this->at(k).print();
|
||||
this->at(k).print(s);
|
||||
}
|
||||
|
||||
/// equals
|
||||
virtual bool equals(const CameraSet& p, double tol = 1e-9) const {
|
||||
bool equals(const CameraSet& p, double tol = 1e-9) const {
|
||||
if (this->size() != p.size())
|
||||
return false;
|
||||
bool camerasAreEqual = true;
|
||||
|
|
@ -74,31 +93,227 @@ public:
|
|||
}
|
||||
|
||||
/**
|
||||
* Project a point, with derivatives in this, point, and calibration
|
||||
* Project a point (possibly Unit3 at infinity), with derivatives
|
||||
* Note that F is a sparse block-diagonal matrix, so instead of a large dense
|
||||
* matrix this function returns the diagonal blocks.
|
||||
* throws CheiralityException
|
||||
*/
|
||||
std::vector<Z> project(const Point3& point, boost::optional<Matrix&> F =
|
||||
boost::none, boost::optional<Matrix&> E = boost::none,
|
||||
boost::optional<Matrix&> H = boost::none) const {
|
||||
template<class POINT>
|
||||
std::vector<Z> project2(const POINT& point, //
|
||||
boost::optional<FBlocks&> Fs = boost::none, //
|
||||
boost::optional<Matrix&> E = boost::none) const {
|
||||
|
||||
size_t nrCameras = this->size();
|
||||
if (F) F->resize(ZDim * nrCameras, 6);
|
||||
if (E) E->resize(ZDim * nrCameras, 3);
|
||||
if (H && Dim > 6) H->resize(ZDim * nrCameras, Dim - 6);
|
||||
std::vector<Z> z(nrCameras);
|
||||
static const int N = FixedDimension<POINT>::value;
|
||||
|
||||
for (size_t i = 0; i < nrCameras; i++) {
|
||||
Eigen::Matrix<double, ZDim, 6> Fi;
|
||||
Eigen::Matrix<double, ZDim, 3> Ei;
|
||||
Eigen::Matrix<double, ZDim, Dim - 6> Hi;
|
||||
z[i] = this->at(i).project(point, F ? &Fi : 0, E ? &Ei : 0, H ? &Hi : 0);
|
||||
if (F) F->block<ZDim, 6>(ZDim * i, 0) = Fi;
|
||||
if (E) E->block<ZDim, 3>(ZDim * i, 0) = Ei;
|
||||
if (H) H->block<ZDim, Dim - 6>(ZDim * i, 0) = Hi;
|
||||
// Allocate result
|
||||
size_t m = this->size();
|
||||
std::vector<Z> z(m);
|
||||
|
||||
// Allocate derivatives
|
||||
if (E)
|
||||
E->resize(ZDim * m, N);
|
||||
if (Fs)
|
||||
Fs->resize(m);
|
||||
|
||||
// Project and fill derivatives
|
||||
for (size_t i = 0; i < m; i++) {
|
||||
MatrixZD Fi;
|
||||
Eigen::Matrix<double, ZDim, N> Ei;
|
||||
z[i] = this->at(i).project2(point, Fs ? &Fi : 0, E ? &Ei : 0);
|
||||
if (Fs)
|
||||
(*Fs)[i] = Fi;
|
||||
if (E)
|
||||
E->block<ZDim, N>(ZDim * i, 0) = Ei;
|
||||
}
|
||||
|
||||
return z;
|
||||
}
|
||||
|
||||
/// Calculate vector [project2(point)-z] of re-projection errors
|
||||
template<class POINT>
|
||||
Vector reprojectionError(const POINT& point, const std::vector<Z>& measured,
|
||||
boost::optional<FBlocks&> Fs = boost::none, //
|
||||
boost::optional<Matrix&> E = boost::none) const {
|
||||
return ErrorVector(project2(point, Fs, E), measured);
|
||||
}
|
||||
|
||||
/**
|
||||
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
|
||||
* G = F' * F - F' * E * P * E' * F
|
||||
* g = F' * (b - E * P * E' * b)
|
||||
* Fixed size version
|
||||
*/
|
||||
template<int N> // N = 2 or 3
|
||||
static SymmetricBlockMatrix SchurComplement(const FBlocks& Fs,
|
||||
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
|
||||
|
||||
// a single point is observed in m cameras
|
||||
size_t m = Fs.size();
|
||||
|
||||
// Create a SymmetricBlockMatrix
|
||||
size_t M1 = D * m + 1;
|
||||
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, D);
|
||||
dims.back() = 1;
|
||||
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i = 0; i < m; i++) { // for each camera
|
||||
|
||||
const MatrixZD& Fi = Fs[i];
|
||||
const Eigen::Matrix<double, 2, N> Ei_P = //
|
||||
E.block(ZDim * i, 0, ZDim, N) * P;
|
||||
|
||||
// D = (Dx2) * ZDim
|
||||
augmentedHessian(i, m) = Fi.transpose() * b.segment<ZDim>(ZDim * i) // F' * b
|
||||
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
augmentedHessian(i, i) = Fi.transpose()
|
||||
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi);
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t j = i + 1; j < m; j++) { // for each camera
|
||||
const MatrixZD& Fj = Fs[j];
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
augmentedHessian(i, j) = -Fi.transpose()
|
||||
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj);
|
||||
}
|
||||
} // end of for over cameras
|
||||
|
||||
augmentedHessian(m, m)(0, 0) += b.squaredNorm();
|
||||
return augmentedHessian;
|
||||
}
|
||||
|
||||
/// Computes Point Covariance P, with lambda parameter
|
||||
template<int N> // N = 2 or 3
|
||||
static void ComputePointCovariance(Eigen::Matrix<double, N, N>& P,
|
||||
const Matrix& E, double lambda, bool diagonalDamping = false) {
|
||||
|
||||
Matrix EtE = E.transpose() * E;
|
||||
|
||||
if (diagonalDamping) { // diagonal of the hessian
|
||||
EtE.diagonal() += lambda * EtE.diagonal();
|
||||
} else {
|
||||
DenseIndex n = E.cols();
|
||||
EtE += lambda * Eigen::MatrixXd::Identity(n, n);
|
||||
}
|
||||
|
||||
P = (EtE).inverse();
|
||||
}
|
||||
|
||||
/// Computes Point Covariance P, with lambda parameter, dynamic version
|
||||
static Matrix PointCov(const Matrix& E, const double lambda = 0.0,
|
||||
bool diagonalDamping = false) {
|
||||
if (E.cols() == 2) {
|
||||
Matrix2 P2;
|
||||
ComputePointCovariance(P2, E, lambda, diagonalDamping);
|
||||
return P2;
|
||||
} else {
|
||||
Matrix3 P3;
|
||||
ComputePointCovariance(P3, E, lambda, diagonalDamping);
|
||||
return P3;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
|
||||
* Dynamic version
|
||||
*/
|
||||
static SymmetricBlockMatrix SchurComplement(const FBlocks& Fblocks,
|
||||
const Matrix& E, const Vector& b, const double lambda = 0.0,
|
||||
bool diagonalDamping = false) {
|
||||
SymmetricBlockMatrix augmentedHessian;
|
||||
if (E.cols() == 2) {
|
||||
Matrix2 P;
|
||||
ComputePointCovariance(P, E, lambda, diagonalDamping);
|
||||
augmentedHessian = SchurComplement(Fblocks, E, P, b);
|
||||
} else {
|
||||
Matrix3 P;
|
||||
ComputePointCovariance(P, E, lambda, diagonalDamping);
|
||||
augmentedHessian = SchurComplement(Fblocks, E, P, b);
|
||||
}
|
||||
return augmentedHessian;
|
||||
}
|
||||
|
||||
/**
|
||||
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
|
||||
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
|
||||
*/
|
||||
template<int N> // N = 2 or 3
|
||||
static void UpdateSchurComplement(const FBlocks& Fs, const Matrix& E,
|
||||
const Eigen::Matrix<double, N, N>& P, const Vector& b,
|
||||
const FastVector<Key>& allKeys, const FastVector<Key>& keys,
|
||||
/*output ->*/SymmetricBlockMatrix& augmentedHessian) {
|
||||
|
||||
assert(keys.size()==Fs.size());
|
||||
assert(keys.size()<=allKeys.size());
|
||||
|
||||
FastMap<Key, size_t> KeySlotMap;
|
||||
for (size_t slot = 0; slot < allKeys.size(); slot++)
|
||||
KeySlotMap.insert(std::make_pair(allKeys[slot], slot));
|
||||
|
||||
// Schur complement trick
|
||||
// G = F' * F - F' * E * P * E' * F
|
||||
// g = F' * (b - E * P * E' * b)
|
||||
|
||||
Eigen::Matrix<double, D, D> matrixBlock;
|
||||
typedef SymmetricBlockMatrix::Block Block; ///< A block from the Hessian matrix
|
||||
|
||||
// a single point is observed in m cameras
|
||||
size_t m = Fs.size(); // cameras observing current point
|
||||
size_t M = (augmentedHessian.rows() - 1) / D; // all cameras in the group
|
||||
assert(allKeys.size()==M);
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i = 0; i < m; i++) { // for each camera in the current factor
|
||||
|
||||
const MatrixZD& Fi = Fs[i];
|
||||
const Eigen::Matrix<double, 2, N> Ei_P = E.template block<ZDim, N>(
|
||||
ZDim * i, 0) * P;
|
||||
|
||||
// D = (DxZDim) * (ZDim)
|
||||
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
|
||||
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
|
||||
// Key cameraKey_i = this->keys_[i];
|
||||
DenseIndex aug_i = KeySlotMap.at(keys[i]);
|
||||
|
||||
// information vector - store previous vector
|
||||
// vectorBlock = augmentedHessian(aug_i, aug_m).knownOffDiagonal();
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i, M) = augmentedHessian(aug_i, M).knownOffDiagonal()
|
||||
+ Fi.transpose() * b.segment<ZDim>(ZDim * i) // F' * b
|
||||
- Fi.transpose() * (Ei_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
// main block diagonal - store previous block
|
||||
matrixBlock = augmentedHessian(aug_i, aug_i);
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i, aug_i) = matrixBlock
|
||||
+ (Fi.transpose()
|
||||
* (Fi - Ei_P * E.template block<ZDim, N>(ZDim * i, 0).transpose() * Fi));
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t j = i + 1; j < m; j++) { // for each camera
|
||||
const MatrixZD& Fj = Fs[j];
|
||||
|
||||
DenseIndex aug_j = KeySlotMap.at(keys[j]);
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
|
||||
// off diagonal block - store previous block
|
||||
// matrixBlock = augmentedHessian(aug_i, aug_j).knownOffDiagonal();
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i, aug_j) =
|
||||
augmentedHessian(aug_i, aug_j).knownOffDiagonal()
|
||||
- Fi.transpose()
|
||||
* (Ei_P * E.template block<ZDim, N>(ZDim * j, 0).transpose() * Fj);
|
||||
}
|
||||
} // end of for over cameras
|
||||
|
||||
augmentedHessian(M, M)(0, 0) += b.squaredNorm();
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/// Serialization function
|
||||
|
|
@ -109,6 +324,9 @@ private:
|
|||
}
|
||||
};
|
||||
|
||||
template<class CAMERA>
|
||||
const int CameraSet<CAMERA>::D;
|
||||
|
||||
template<class CAMERA>
|
||||
const int CameraSet<CAMERA>::ZDim;
|
||||
|
||||
|
|
|
|||
|
|
@ -31,14 +31,6 @@ namespace gtsam {
|
|||
template<typename Calibration>
|
||||
class GTSAM_EXPORT PinholeCamera: public PinholeBaseK<Calibration> {
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Some classes template on either PinholeCamera or StereoCamera,
|
||||
* and this typedef informs those classes what "project" returns.
|
||||
*/
|
||||
typedef Point2 Measurement;
|
||||
|
||||
private:
|
||||
|
||||
typedef PinholeBaseK<Calibration> Base; ///< base class has 3D pose as private member
|
||||
|
|
@ -153,7 +145,7 @@ public:
|
|||
const Pose3& getPose(OptionalJacobian<6, dimension> H) const {
|
||||
if (H) {
|
||||
H->setZero();
|
||||
H->block(0, 0, 6, 6) = I_6x6;
|
||||
H->template block<6, 6>(0, 0) = I_6x6;
|
||||
}
|
||||
return Base::pose();
|
||||
}
|
||||
|
|
@ -184,16 +176,15 @@ public:
|
|||
if ((size_t) d.size() == 6)
|
||||
return PinholeCamera(this->pose().retract(d), calibration());
|
||||
else
|
||||
return PinholeCamera(this->pose().retract(d.head(6)),
|
||||
return PinholeCamera(this->pose().retract(d.head<6>()),
|
||||
calibration().retract(d.tail(calibration().dim())));
|
||||
}
|
||||
|
||||
/// return canonical coordinate
|
||||
VectorK6 localCoordinates(const PinholeCamera& T2) const {
|
||||
VectorK6 d;
|
||||
// TODO: why does d.head<6>() not compile??
|
||||
d.head(6) = this->pose().localCoordinates(T2.pose());
|
||||
d.tail(DimK) = calibration().localCoordinates(T2.calibration());
|
||||
d.template head<6>() = this->pose().localCoordinates(T2.pose());
|
||||
d.template tail<DimK>() = calibration().localCoordinates(T2.calibration());
|
||||
return d;
|
||||
}
|
||||
|
||||
|
|
@ -208,101 +199,34 @@ public:
|
|||
|
||||
typedef Eigen::Matrix<double, 2, DimK> Matrix2K;
|
||||
|
||||
/** project a point from world coordinate to the image
|
||||
* @param pw is a point in world coordinates
|
||||
* @param Dpose is the Jacobian w.r.t. pose3
|
||||
* @param Dpoint is the Jacobian w.r.t. point3
|
||||
* @param Dcal is the Jacobian w.r.t. calibration
|
||||
/** Templated projection of a 3D point or a point at infinity into the image
|
||||
* @param pw either a Point3 or a Unit3, in world coordinates
|
||||
*/
|
||||
Point2 project(const Point3& pw, OptionalJacobian<2, 6> Dpose = boost::none,
|
||||
OptionalJacobian<2, 3> Dpoint = boost::none,
|
||||
OptionalJacobian<2, DimK> Dcal = boost::none) const {
|
||||
|
||||
// project to normalized coordinates
|
||||
const Point2 pn = PinholeBase::project2(pw, Dpose, Dpoint);
|
||||
|
||||
// uncalibrate to pixel coordinates
|
||||
Matrix2 Dpi_pn;
|
||||
const Point2 pi = calibration().uncalibrate(pn, Dcal,
|
||||
Dpose || Dpoint ? &Dpi_pn : 0);
|
||||
|
||||
// If needed, apply chain rule
|
||||
if (Dpose)
|
||||
*Dpose = Dpi_pn * *Dpose;
|
||||
if (Dpoint)
|
||||
*Dpoint = Dpi_pn * *Dpoint;
|
||||
|
||||
return pi;
|
||||
}
|
||||
|
||||
/** project a point at infinity from world coordinate to the image
|
||||
* @param pw is a point in the world coordinate (it is pw = lambda*[pw_x pw_y pw_z] with lambda->inf)
|
||||
* @param Dpose is the Jacobian w.r.t. pose3
|
||||
* @param Dpoint is the Jacobian w.r.t. point3
|
||||
* @param Dcal is the Jacobian w.r.t. calibration
|
||||
*/
|
||||
Point2 projectPointAtInfinity(const Point3& pw, OptionalJacobian<2, 6> Dpose =
|
||||
boost::none, OptionalJacobian<2, 2> Dpoint = boost::none,
|
||||
OptionalJacobian<2, DimK> Dcal = boost::none) const {
|
||||
|
||||
if (!Dpose && !Dpoint && !Dcal) {
|
||||
const Point3 pc = this->pose().rotation().unrotate(pw); // get direction in camera frame (translation does not matter)
|
||||
const Point2 pn = Base::project_to_camera(pc); // project the point to the camera
|
||||
return K_.uncalibrate(pn);
|
||||
}
|
||||
|
||||
// world to camera coordinate
|
||||
Matrix3 Dpc_rot, Dpc_point;
|
||||
const Point3 pc = this->pose().rotation().unrotate(pw, Dpc_rot, Dpc_point);
|
||||
|
||||
Matrix36 Dpc_pose;
|
||||
Dpc_pose.setZero();
|
||||
Dpc_pose.leftCols<3>() = Dpc_rot;
|
||||
|
||||
// camera to normalized image coordinate
|
||||
Matrix23 Dpn_pc; // 2*3
|
||||
const Point2 pn = Base::project_to_camera(pc, Dpn_pc);
|
||||
|
||||
// uncalibration
|
||||
Matrix2 Dpi_pn; // 2*2
|
||||
const Point2 pi = K_.uncalibrate(pn, Dcal, Dpi_pn);
|
||||
|
||||
// chain the Jacobian matrices
|
||||
const Matrix23 Dpi_pc = Dpi_pn * Dpn_pc;
|
||||
if (Dpose)
|
||||
*Dpose = Dpi_pc * Dpc_pose;
|
||||
if (Dpoint)
|
||||
*Dpoint = (Dpi_pc * Dpc_point).leftCols<2>(); // only 2dof are important for the point (direction-only)
|
||||
return pi;
|
||||
}
|
||||
|
||||
/** project a point from world coordinate to the image, fixed Jacobians
|
||||
* @param pw is a point in the world coordinate
|
||||
*/
|
||||
Point2 project2(
|
||||
const Point3& pw, //
|
||||
OptionalJacobian<2, dimension> Dcamera = boost::none,
|
||||
OptionalJacobian<2, 3> Dpoint = boost::none) const {
|
||||
|
||||
// project to normalized coordinates
|
||||
template<class POINT>
|
||||
Point2 _project2(const POINT& pw, OptionalJacobian<2, dimension> Dcamera,
|
||||
OptionalJacobian<2, FixedDimension<POINT>::value> Dpoint) const {
|
||||
// We just call 3-derivative version in Base
|
||||
Matrix26 Dpose;
|
||||
const Point2 pn = PinholeBase::project2(pw, Dpose, Dpoint);
|
||||
|
||||
// uncalibrate to pixel coordinates
|
||||
Matrix2K Dcal;
|
||||
Matrix2 Dpi_pn;
|
||||
const Point2 pi = calibration().uncalibrate(pn, Dcamera ? &Dcal : 0,
|
||||
Dcamera || Dpoint ? &Dpi_pn : 0);
|
||||
|
||||
// If needed, calculate derivatives
|
||||
Eigen::Matrix<double, 2, DimK> Dcal;
|
||||
Point2 pi = Base::project(pw, Dcamera ? &Dpose : 0, Dpoint,
|
||||
Dcamera ? &Dcal : 0);
|
||||
if (Dcamera)
|
||||
*Dcamera << Dpi_pn * Dpose, Dcal;
|
||||
if (Dpoint)
|
||||
*Dpoint = Dpi_pn * (*Dpoint);
|
||||
|
||||
*Dcamera << Dpose, Dcal;
|
||||
return pi;
|
||||
}
|
||||
|
||||
/// project a 3D point from world coordinates into the image
|
||||
Point2 project2(const Point3& pw, OptionalJacobian<2, dimension> Dcamera =
|
||||
boost::none, OptionalJacobian<2, 3> Dpoint = boost::none) const {
|
||||
return _project2(pw, Dcamera, Dpoint);
|
||||
}
|
||||
|
||||
/// project a point at infinity from world coordinates into the image
|
||||
Point2 project2(const Unit3& pw, OptionalJacobian<2, dimension> Dcamera =
|
||||
boost::none, OptionalJacobian<2, 2> Dpoint = boost::none) const {
|
||||
return _project2(pw, Dcamera, Dpoint);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate range to a landmark
|
||||
* @param point 3D location of landmark
|
||||
|
|
@ -350,7 +274,7 @@ public:
|
|||
if (Dother) {
|
||||
Dother->resize(1, 6 + CalibrationB::dimension);
|
||||
Dother->setZero();
|
||||
Dother->block(0, 0, 1, 6) = Dother_;
|
||||
Dother->block<1, 6>(0, 0) = Dother_;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -30,14 +30,19 @@ namespace gtsam {
|
|||
* @addtogroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<typename Calibration>
|
||||
template<typename CALIBRATION>
|
||||
class GTSAM_EXPORT PinholeBaseK: public PinholeBase {
|
||||
|
||||
GTSAM_CONCEPT_MANIFOLD_TYPE(Calibration)
|
||||
private:
|
||||
|
||||
public :
|
||||
GTSAM_CONCEPT_MANIFOLD_TYPE(CALIBRATION);
|
||||
|
||||
typedef Calibration CalibrationType;
|
||||
// Get dimensions of calibration type at compile time
|
||||
static const int DimK = FixedDimension<CALIBRATION>::value;
|
||||
|
||||
public:
|
||||
|
||||
typedef CALIBRATION CalibrationType;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
|
@ -67,7 +72,7 @@ public :
|
|||
}
|
||||
|
||||
/// return calibration
|
||||
virtual const Calibration& calibration() const = 0;
|
||||
virtual const CALIBRATION& calibration() const = 0;
|
||||
|
||||
/// @}
|
||||
/// @name Transformations and measurement functions
|
||||
|
|
@ -80,27 +85,65 @@ public :
|
|||
return pn;
|
||||
}
|
||||
|
||||
/** project a point from world coordinate to the image, fixed Jacobians
|
||||
/** project a point from world coordinate to the image
|
||||
* @param pw is a point in the world coordinates
|
||||
*/
|
||||
Point2 project2(const Point3& pw, OptionalJacobian<2, 6> Dpose = boost::none,
|
||||
OptionalJacobian<2, 3> Dpoint = boost::none) const {
|
||||
Point2 project(const Point3& pw) const {
|
||||
const Point2 pn = PinholeBase::project2(pw); // project to normalized coordinates
|
||||
return calibration().uncalibrate(pn); // uncalibrate to pixel coordinates
|
||||
}
|
||||
|
||||
/** project a point from world coordinate to the image
|
||||
* @param pw is a point at infinity in the world coordinates
|
||||
*/
|
||||
Point2 project(const Unit3& pw) const {
|
||||
const Unit3 pc = pose().rotation().unrotate(pw); // convert to camera frame
|
||||
const Point2 pn = PinholeBase::Project(pc); // project to normalized coordinates
|
||||
return calibration().uncalibrate(pn); // uncalibrate to pixel coordinates
|
||||
}
|
||||
|
||||
/** Templated projection of a point (possibly at infinity) from world coordinate to the image
|
||||
* @param pw is a 3D point or aUnit3 (point at infinity) in world coordinates
|
||||
* @param Dpose is the Jacobian w.r.t. pose3
|
||||
* @param Dpoint is the Jacobian w.r.t. point3
|
||||
* @param Dcal is the Jacobian w.r.t. calibration
|
||||
*/
|
||||
template <class POINT>
|
||||
Point2 _project(const POINT& pw, OptionalJacobian<2, 6> Dpose,
|
||||
OptionalJacobian<2, FixedDimension<POINT>::value> Dpoint,
|
||||
OptionalJacobian<2, DimK> Dcal) const {
|
||||
|
||||
// project to normalized coordinates
|
||||
const Point2 pn = PinholeBase::project2(pw, Dpose, Dpoint);
|
||||
|
||||
// uncalibrate to pixel coordinates
|
||||
Matrix2 Dpi_pn;
|
||||
const Point2 pi = calibration().uncalibrate(pn, boost::none,
|
||||
const Point2 pi = calibration().uncalibrate(pn, Dcal,
|
||||
Dpose || Dpoint ? &Dpi_pn : 0);
|
||||
|
||||
// If needed, apply chain rule
|
||||
if (Dpose) *Dpose = Dpi_pn * (*Dpose);
|
||||
if (Dpoint) *Dpoint = Dpi_pn * (*Dpoint);
|
||||
if (Dpose)
|
||||
*Dpose = Dpi_pn * *Dpose;
|
||||
if (Dpoint)
|
||||
*Dpoint = Dpi_pn * *Dpoint;
|
||||
|
||||
return pi;
|
||||
}
|
||||
|
||||
/// project a 3D point from world coordinates into the image
|
||||
Point2 project(const Point3& pw, OptionalJacobian<2, 6> Dpose,
|
||||
OptionalJacobian<2, 3> Dpoint = boost::none,
|
||||
OptionalJacobian<2, DimK> Dcal = boost::none) const {
|
||||
return _project(pw, Dpose, Dpoint, Dcal);
|
||||
}
|
||||
|
||||
/// project a point at infinity from world coordinates into the image
|
||||
Point2 project(const Unit3& pw, OptionalJacobian<2, 6> Dpose,
|
||||
OptionalJacobian<2, 2> Dpoint = boost::none,
|
||||
OptionalJacobian<2, DimK> Dcal = boost::none) const {
|
||||
return _project(pw, Dpose, Dpoint, Dcal);
|
||||
}
|
||||
|
||||
/// backproject a 2-dimensional point to a 3-dimensional point at given depth
|
||||
Point3 backproject(const Point2& p, double depth) const {
|
||||
const Point2 pn = calibration().calibrate(p);
|
||||
|
|
@ -108,9 +151,9 @@ public :
|
|||
}
|
||||
|
||||
/// backproject a 2-dimensional point to a 3-dimensional point at infinity
|
||||
Point3 backprojectPointAtInfinity(const Point2& p) const {
|
||||
Unit3 backprojectPointAtInfinity(const Point2& p) const {
|
||||
const Point2 pn = calibration().calibrate(p);
|
||||
const Point3 pc(pn.x(), pn.y(), 1.0); //by convention the last element is 1
|
||||
const Unit3 pc(pn.x(), pn.y(), 1.0); //by convention the last element is 1
|
||||
return pose().rotation().rotate(pc);
|
||||
}
|
||||
|
||||
|
|
@ -178,13 +221,13 @@ private:
|
|||
* @addtogroup geometry
|
||||
* \nosubgrouping
|
||||
*/
|
||||
template<typename Calibration>
|
||||
class GTSAM_EXPORT PinholePose: public PinholeBaseK<Calibration> {
|
||||
template<typename CALIBRATION>
|
||||
class GTSAM_EXPORT PinholePose: public PinholeBaseK<CALIBRATION> {
|
||||
|
||||
private:
|
||||
|
||||
typedef PinholeBaseK<Calibration> Base; ///< base class has 3D pose as private member
|
||||
boost::shared_ptr<Calibration> K_; ///< shared pointer to fixed calibration
|
||||
typedef PinholeBaseK<CALIBRATION> Base; ///< base class has 3D pose as private member
|
||||
boost::shared_ptr<CALIBRATION> K_; ///< shared pointer to fixed calibration
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -201,11 +244,11 @@ public:
|
|||
|
||||
/** constructor with pose, uses default calibration */
|
||||
explicit PinholePose(const Pose3& pose) :
|
||||
Base(pose), K_(new Calibration()) {
|
||||
Base(pose), K_(new CALIBRATION()) {
|
||||
}
|
||||
|
||||
/** constructor with pose and calibration */
|
||||
PinholePose(const Pose3& pose, const boost::shared_ptr<Calibration>& K) :
|
||||
PinholePose(const Pose3& pose, const boost::shared_ptr<CALIBRATION>& K) :
|
||||
Base(pose), K_(K) {
|
||||
}
|
||||
|
||||
|
|
@ -220,14 +263,14 @@ public:
|
|||
* (theta 0 = looking in direction of positive X axis)
|
||||
* @param height camera height
|
||||
*/
|
||||
static PinholePose Level(const boost::shared_ptr<Calibration>& K,
|
||||
static PinholePose Level(const boost::shared_ptr<CALIBRATION>& K,
|
||||
const Pose2& pose2, double height) {
|
||||
return PinholePose(Base::LevelPose(pose2, height), K);
|
||||
}
|
||||
|
||||
/// PinholePose::level with default calibration
|
||||
static PinholePose Level(const Pose2& pose2, double height) {
|
||||
return PinholePose::Level(boost::make_shared<Calibration>(), pose2, height);
|
||||
return PinholePose::Level(boost::make_shared<CALIBRATION>(), pose2, height);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -240,8 +283,8 @@ public:
|
|||
* @param K optional calibration parameter
|
||||
*/
|
||||
static PinholePose Lookat(const Point3& eye, const Point3& target,
|
||||
const Point3& upVector, const boost::shared_ptr<Calibration>& K =
|
||||
boost::make_shared<Calibration>()) {
|
||||
const Point3& upVector, const boost::shared_ptr<CALIBRATION>& K =
|
||||
boost::make_shared<CALIBRATION>()) {
|
||||
return PinholePose(Base::LookatPose(eye, target, upVector), K);
|
||||
}
|
||||
|
||||
|
|
@ -251,12 +294,12 @@ public:
|
|||
|
||||
/// Init from 6D vector
|
||||
explicit PinholePose(const Vector &v) :
|
||||
Base(v), K_(new Calibration()) {
|
||||
Base(v), K_(new CALIBRATION()) {
|
||||
}
|
||||
|
||||
/// Init from Vector and calibration
|
||||
PinholePose(const Vector &v, const Vector &K) :
|
||||
Base(v), K_(new Calibration(K)) {
|
||||
Base(v), K_(new CALIBRATION(K)) {
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
|
@ -286,10 +329,26 @@ public:
|
|||
}
|
||||
|
||||
/// return calibration
|
||||
virtual const Calibration& calibration() const {
|
||||
virtual const CALIBRATION& calibration() const {
|
||||
return *K_;
|
||||
}
|
||||
|
||||
/** project a point from world coordinate to the image, 2 derivatives only
|
||||
* @param pw is a point in world coordinates
|
||||
* @param Dpose is the Jacobian w.r.t. the whole camera (really only the pose)
|
||||
* @param Dpoint is the Jacobian w.r.t. point3
|
||||
*/
|
||||
Point2 project2(const Point3& pw, OptionalJacobian<2, 6> Dpose = boost::none,
|
||||
OptionalJacobian<2, 3> Dpoint = boost::none) const {
|
||||
return Base::project(pw, Dpose, Dpoint);
|
||||
}
|
||||
|
||||
/// project2 version for point at infinity
|
||||
Point2 project2(const Unit3& pw, OptionalJacobian<2, 6> Dpose = boost::none,
|
||||
OptionalJacobian<2, 2> Dpoint = boost::none) const {
|
||||
return Base::project(pw, Dpose, Dpoint);
|
||||
}
|
||||
|
||||
/// @}
|
||||
/// @name Manifold
|
||||
/// @{
|
||||
|
|
@ -336,14 +395,14 @@ private:
|
|||
};
|
||||
// end of class PinholePose
|
||||
|
||||
template<typename Calibration>
|
||||
struct traits<PinholePose<Calibration> > : public internal::Manifold<
|
||||
PinholePose<Calibration> > {
|
||||
template<typename CALIBRATION>
|
||||
struct traits<PinholePose<CALIBRATION> > : public internal::Manifold<
|
||||
PinholePose<CALIBRATION> > {
|
||||
};
|
||||
|
||||
template<typename Calibration>
|
||||
struct traits<const PinholePose<Calibration> > : public internal::Manifold<
|
||||
PinholePose<Calibration> > {
|
||||
template<typename CALIBRATION>
|
||||
struct traits<const PinholePose<CALIBRATION> > : public internal::Manifold<
|
||||
PinholePose<CALIBRATION> > {
|
||||
};
|
||||
|
||||
} // \ gtsam
|
||||
|
|
|
|||
|
|
@ -0,0 +1,85 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file PinholeSet.h
|
||||
* @brief A CameraSet of either CalibratedCamera, PinholePose, or PinholeCamera
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/CameraSet.h>
|
||||
#include <gtsam/geometry/triangulation.h>
|
||||
#include <boost/optional.hpp>
|
||||
#include <boost/foreach.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* PinholeSet: triangulates point and keeps an estimate of it around.
|
||||
*/
|
||||
template<class CAMERA>
|
||||
class PinholeSet: public CameraSet<CAMERA> {
|
||||
|
||||
private:
|
||||
typedef CameraSet<CAMERA> Base;
|
||||
typedef PinholeSet<CAMERA> This;
|
||||
|
||||
protected:
|
||||
|
||||
public:
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~PinholeSet() {
|
||||
}
|
||||
|
||||
/// @name Testable
|
||||
/// @{
|
||||
|
||||
/// print
|
||||
virtual void print(const std::string& s = "") const {
|
||||
Base::print(s);
|
||||
}
|
||||
|
||||
/// equals
|
||||
bool equals(const PinholeSet& p, double tol = 1e-9) const {
|
||||
return Base::equals(p, tol); // TODO all flags
|
||||
}
|
||||
|
||||
/// @}
|
||||
|
||||
/// triangulateSafe
|
||||
TriangulationResult triangulateSafe(
|
||||
const std::vector<Point2>& measured,
|
||||
const TriangulationParameters& params) const {
|
||||
return gtsam::triangulateSafe(*this, measured, params);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
}
|
||||
};
|
||||
|
||||
template<class CAMERA>
|
||||
struct traits<PinholeSet<CAMERA> > : public Testable<PinholeSet<CAMERA> > {
|
||||
};
|
||||
|
||||
template<class CAMERA>
|
||||
struct traits<const PinholeSet<CAMERA> > : public Testable<PinholeSet<CAMERA> > {
|
||||
};
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
@ -88,13 +88,30 @@ TEST( CalibratedCamera, project)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( CalibratedCamera, Dproject_to_camera1) {
|
||||
Point3 pp(155,233,131);
|
||||
Matrix actual;
|
||||
CalibratedCamera::project_to_camera(pp, actual);
|
||||
Matrix expected_numerical = numericalDerivative11<Point2,Point3>(
|
||||
boost::bind(CalibratedCamera::project_to_camera, _1, boost::none), pp);
|
||||
CHECK(assert_equal(expected_numerical, actual));
|
||||
static Point2 Project1(const Point3& point) {
|
||||
return PinholeBase::Project(point);
|
||||
}
|
||||
|
||||
TEST( CalibratedCamera, DProject1) {
|
||||
Point3 pp(155, 233, 131);
|
||||
Matrix test1;
|
||||
CalibratedCamera::Project(pp, test1);
|
||||
Matrix test2 = numericalDerivative11<Point2, Point3>(Project1, pp);
|
||||
CHECK(assert_equal(test1, test2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Point2 Project2(const Unit3& point) {
|
||||
return PinholeBase::Project(point);
|
||||
}
|
||||
|
||||
Unit3 pointAtInfinity(0, 0, 1000);
|
||||
TEST( CalibratedCamera, DProjectInfinity) {
|
||||
Matrix test1;
|
||||
CalibratedCamera::Project(pointAtInfinity, test1);
|
||||
Matrix test2 = numericalDerivative11<Point2, Unit3>(Project2,
|
||||
pointAtInfinity);
|
||||
CHECK(assert_equal(test1, test2));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -128,6 +145,36 @@ TEST( CalibratedCamera, Dproject_point_pose2)
|
|||
CHECK(assert_equal(numerical_point, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Point2 projectAtInfinity(const CalibratedCamera& camera, const Unit3& point) {
|
||||
return camera.project2(point);
|
||||
}
|
||||
|
||||
TEST( CalibratedCamera, Dproject_point_pose_infinity)
|
||||
{
|
||||
Matrix Dpose, Dpoint;
|
||||
Point2 result = camera.project2(pointAtInfinity, Dpose, Dpoint);
|
||||
Matrix numerical_pose = numericalDerivative21(projectAtInfinity, camera, pointAtInfinity);
|
||||
Matrix numerical_point = numericalDerivative22(projectAtInfinity, camera, pointAtInfinity);
|
||||
CHECK(assert_equal(Point2(), result));
|
||||
CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
CHECK(assert_equal(numerical_point, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Add a test with more arbitrary rotation
|
||||
TEST( CalibratedCamera, Dproject_point_pose2_infinity)
|
||||
{
|
||||
static const Pose3 pose1(Rot3::ypr(0.1, -0.1, 0.4), Point3(0, 0, -10));
|
||||
static const CalibratedCamera camera(pose1);
|
||||
Matrix Dpose, Dpoint;
|
||||
camera.project2(pointAtInfinity, Dpose, Dpoint);
|
||||
Matrix numerical_pose = numericalDerivative21(projectAtInfinity, camera, pointAtInfinity);
|
||||
Matrix numerical_point = numericalDerivative22(projectAtInfinity, camera, pointAtInfinity);
|
||||
CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
CHECK(assert_equal(numerical_point, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -31,43 +31,105 @@ using namespace gtsam;
|
|||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
TEST(CameraSet, Pinhole) {
|
||||
typedef PinholeCamera<Cal3Bundler> Camera;
|
||||
typedef CameraSet<Camera> Set;
|
||||
typedef vector<Point2> ZZ;
|
||||
CameraSet<Camera> set;
|
||||
Set set;
|
||||
Camera camera;
|
||||
set.push_back(camera);
|
||||
set.push_back(camera);
|
||||
Point3 p(0, 0, 1);
|
||||
CHECK(assert_equal(set, set));
|
||||
CameraSet<Camera> set2 = set;
|
||||
EXPECT(assert_equal(set, set));
|
||||
Set set2 = set;
|
||||
set2.push_back(camera);
|
||||
CHECK(!set.equals(set2));
|
||||
EXPECT(!set.equals(set2));
|
||||
|
||||
// Check measurements
|
||||
Point2 expected;
|
||||
ZZ z = set.project(p);
|
||||
CHECK(assert_equal(expected, z[0]));
|
||||
CHECK(assert_equal(expected, z[1]));
|
||||
ZZ z = set.project2(p);
|
||||
EXPECT(assert_equal(expected, z[0]));
|
||||
EXPECT(assert_equal(expected, z[1]));
|
||||
|
||||
// Calculate expected derivatives using Pinhole
|
||||
Matrix46 actualF;
|
||||
Matrix43 actualE;
|
||||
Matrix43 actualH;
|
||||
Matrix actualE;
|
||||
Matrix29 F1;
|
||||
{
|
||||
Matrix26 F1;
|
||||
Matrix23 E1;
|
||||
Matrix23 H1;
|
||||
camera.project(p, F1, E1, H1);
|
||||
camera.project2(p, F1, E1);
|
||||
actualE.resize(4,3);
|
||||
actualE << E1, E1;
|
||||
actualF << F1, F1;
|
||||
actualH << H1, H1;
|
||||
}
|
||||
|
||||
// Check computed derivatives
|
||||
Matrix F, E, H;
|
||||
set.project(p, F, E, H);
|
||||
CHECK(assert_equal(actualF, F));
|
||||
CHECK(assert_equal(actualE, E));
|
||||
CHECK(assert_equal(actualH, H));
|
||||
Set::FBlocks Fs;
|
||||
Matrix E;
|
||||
set.project2(p, Fs, E);
|
||||
LONGS_EQUAL(2, Fs.size());
|
||||
EXPECT(assert_equal(F1, Fs[0]));
|
||||
EXPECT(assert_equal(F1, Fs[1]));
|
||||
EXPECT(assert_equal(actualE, E));
|
||||
|
||||
// Check errors
|
||||
ZZ measured;
|
||||
measured.push_back(Point2(1, 2));
|
||||
measured.push_back(Point2(3, 4));
|
||||
Vector4 expectedV;
|
||||
|
||||
// reprojectionError
|
||||
expectedV << -1, -2, -3, -4;
|
||||
Vector actualV = set.reprojectionError(p, measured);
|
||||
EXPECT(assert_equal(expectedV, actualV));
|
||||
|
||||
// Check Schur complement
|
||||
Matrix F(4, 18);
|
||||
F << F1, Matrix29::Zero(), Matrix29::Zero(), F1;
|
||||
Matrix Ft = F.transpose();
|
||||
Matrix34 Et = E.transpose();
|
||||
Matrix3 P = Et * E;
|
||||
Matrix schur(19, 19);
|
||||
Vector4 b = actualV;
|
||||
Vector v = Ft * (b - E * P * Et * b);
|
||||
schur << Ft * F - Ft * E * P * Et * F, v, v.transpose(), 30;
|
||||
SymmetricBlockMatrix actualReduced = Set::SchurComplement(Fs, E, P, b);
|
||||
EXPECT(assert_equal(schur, actualReduced.matrix()));
|
||||
|
||||
// Check Schur complement update, same order, should just double
|
||||
FastVector<Key> allKeys, keys;
|
||||
allKeys.push_back(1);
|
||||
allKeys.push_back(2);
|
||||
keys.push_back(1);
|
||||
keys.push_back(2);
|
||||
Set::UpdateSchurComplement(Fs, E, P, b, allKeys, keys, actualReduced);
|
||||
EXPECT(assert_equal((Matrix )(2.0 * schur), actualReduced.matrix()));
|
||||
|
||||
// Check Schur complement update, keys reversed
|
||||
FastVector<Key> keys2;
|
||||
keys2.push_back(2);
|
||||
keys2.push_back(1);
|
||||
Set::UpdateSchurComplement(Fs, E, P, b, allKeys, keys2, actualReduced);
|
||||
Vector4 reverse_b;
|
||||
reverse_b << b.tail<2>(), b.head<2>();
|
||||
Vector reverse_v = Ft * (reverse_b - E * P * Et * reverse_b);
|
||||
Matrix A(19, 19);
|
||||
A << Ft * F - Ft * E * P * Et * F, reverse_v, reverse_v.transpose(), 30;
|
||||
EXPECT(assert_equal((Matrix )(2.0 * schur + A), actualReduced.matrix()));
|
||||
|
||||
// reprojectionErrorAtInfinity
|
||||
Unit3 pointAtInfinity(0, 0, 1000);
|
||||
EXPECT(
|
||||
assert_equal(pointAtInfinity,
|
||||
camera.backprojectPointAtInfinity(Point2())));
|
||||
actualV = set.reprojectionError(pointAtInfinity, measured, Fs, E);
|
||||
EXPECT(assert_equal(expectedV, actualV));
|
||||
LONGS_EQUAL(2, Fs.size());
|
||||
{
|
||||
Matrix22 E1;
|
||||
camera.project2(pointAtInfinity, F1, E1);
|
||||
actualE.resize(4,2);
|
||||
actualE << E1, E1;
|
||||
}
|
||||
EXPECT(assert_equal(F1, Fs[0]));
|
||||
EXPECT(assert_equal(F1, Fs[1]));
|
||||
EXPECT(assert_equal(actualE, E));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -83,26 +145,27 @@ TEST(CameraSet, Stereo) {
|
|||
|
||||
// Check measurements
|
||||
StereoPoint2 expected(0, -1, 0);
|
||||
ZZ z = set.project(p);
|
||||
CHECK(assert_equal(expected, z[0]));
|
||||
CHECK(assert_equal(expected, z[1]));
|
||||
ZZ z = set.project2(p);
|
||||
EXPECT(assert_equal(expected, z[0]));
|
||||
EXPECT(assert_equal(expected, z[1]));
|
||||
|
||||
// Calculate expected derivatives using Pinhole
|
||||
Matrix66 actualF;
|
||||
Matrix63 actualE;
|
||||
Matrix F1;
|
||||
{
|
||||
Matrix36 F1;
|
||||
Matrix33 E1;
|
||||
camera.project(p, F1, E1);
|
||||
camera.project2(p, F1, E1);
|
||||
actualE << E1, E1;
|
||||
actualF << F1, F1;
|
||||
}
|
||||
|
||||
// Check computed derivatives
|
||||
Matrix F, E;
|
||||
set.project(p, F, E);
|
||||
CHECK(assert_equal(actualF, F));
|
||||
CHECK(assert_equal(actualE, E));
|
||||
CameraSet<StereoCamera>::FBlocks Fs;
|
||||
Matrix E;
|
||||
set.project2(p, Fs, E);
|
||||
LONGS_EQUAL(2, Fs.size());
|
||||
EXPECT(assert_equal(F1, Fs[0]));
|
||||
EXPECT(assert_equal(F1, Fs[1]));
|
||||
EXPECT(assert_equal(actualE, E));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -45,10 +45,10 @@ static const Point3 point2(-0.08, 0.08, 0.0);
|
|||
static const Point3 point3( 0.08, 0.08, 0.0);
|
||||
static const Point3 point4( 0.08,-0.08, 0.0);
|
||||
|
||||
static const Point3 point1_inf(-0.16,-0.16, -1.0);
|
||||
static const Point3 point2_inf(-0.16, 0.16, -1.0);
|
||||
static const Point3 point3_inf( 0.16, 0.16, -1.0);
|
||||
static const Point3 point4_inf( 0.16,-0.16, -1.0);
|
||||
static const Unit3 point1_inf(-0.16,-0.16, -1.0);
|
||||
static const Unit3 point2_inf(-0.16, 0.16, -1.0);
|
||||
static const Unit3 point3_inf( 0.16, 0.16, -1.0);
|
||||
static const Unit3 point4_inf( 0.16,-0.16, -1.0);
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( PinholeCamera, constructor)
|
||||
|
|
@ -154,9 +154,9 @@ TEST( PinholeCamera, backprojectInfinity2)
|
|||
Rot3 rot(1., 0., 0., 0., 0., 1., 0., -1., 0.); // a camera1 looking down
|
||||
Camera camera(Pose3(rot, origin), K);
|
||||
|
||||
Point3 actual = camera.backprojectPointAtInfinity(Point2());
|
||||
Point3 expected(0., 1., 0.);
|
||||
Point2 x = camera.projectPointAtInfinity(expected);
|
||||
Unit3 actual = camera.backprojectPointAtInfinity(Point2());
|
||||
Unit3 expected(0., 1., 0.);
|
||||
Point2 x = camera.project(expected);
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
EXPECT(assert_equal(Point2(), x));
|
||||
|
|
@ -169,9 +169,9 @@ TEST( PinholeCamera, backprojectInfinity3)
|
|||
Rot3 rot(1., 0., 0., 0., 1., 0., 0., 0., 1.); // identity
|
||||
Camera camera(Pose3(rot, origin), K);
|
||||
|
||||
Point3 actual = camera.backprojectPointAtInfinity(Point2());
|
||||
Point3 expected(0., 0., 1.);
|
||||
Point2 x = camera.projectPointAtInfinity(expected);
|
||||
Unit3 actual = camera.backprojectPointAtInfinity(Point2());
|
||||
Unit3 expected(0., 0., 1.);
|
||||
Point2 x = camera.project(expected);
|
||||
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
EXPECT(assert_equal(Point2(), x));
|
||||
|
|
@ -197,17 +197,17 @@ TEST( PinholeCamera, Dproject)
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Point2 projectInfinity3(const Pose3& pose, const Point3& point3D, const Cal3_S2& cal) {
|
||||
return Camera(pose,cal).projectPointAtInfinity(point3D);
|
||||
static Point2 projectInfinity3(const Pose3& pose, const Unit3& point3D, const Cal3_S2& cal) {
|
||||
return Camera(pose,cal).project(point3D);
|
||||
}
|
||||
|
||||
TEST( PinholeCamera, Dproject_Infinity)
|
||||
{
|
||||
Matrix Dpose, Dpoint, Dcal;
|
||||
Point3 point3D(point1.x(), point1.y(), -10.0); // a point in front of the camera1
|
||||
Unit3 point3D(point1.x(), point1.y(), -10.0); // a point in front of the camera1
|
||||
|
||||
// test Projection
|
||||
Point2 actual = camera.projectPointAtInfinity(point3D, Dpose, Dpoint, Dcal);
|
||||
Point2 actual = camera.project(point3D, Dpose, Dpoint, Dcal);
|
||||
Point2 expected(-5.0, 5.0);
|
||||
EXPECT(assert_equal(actual, expected, 1e-7));
|
||||
|
||||
|
|
|
|||
|
|
@ -46,10 +46,10 @@ static const Point3 point2(-0.08, 0.08, 0.0);
|
|||
static const Point3 point3( 0.08, 0.08, 0.0);
|
||||
static const Point3 point4( 0.08,-0.08, 0.0);
|
||||
|
||||
static const Point3 point1_inf(-0.16,-0.16, -1.0);
|
||||
static const Point3 point2_inf(-0.16, 0.16, -1.0);
|
||||
static const Point3 point3_inf( 0.16, 0.16, -1.0);
|
||||
static const Point3 point4_inf( 0.16,-0.16, -1.0);
|
||||
static const Unit3 point1_inf(-0.16,-0.16, -1.0);
|
||||
static const Unit3 point2_inf(-0.16, 0.16, -1.0);
|
||||
static const Unit3 point3_inf( 0.16, 0.16, -1.0);
|
||||
static const Unit3 point4_inf( 0.16,-0.16, -1.0);
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( PinholePose, constructor)
|
||||
|
|
@ -144,11 +144,11 @@ TEST( PinholePose, Dproject)
|
|||
{
|
||||
Matrix Dpose, Dpoint;
|
||||
Point2 result = camera.project2(point1, Dpose, Dpoint);
|
||||
Matrix numerical_pose = numericalDerivative31(project3, pose, point1, K);
|
||||
Matrix Hexpected2 = numericalDerivative32(project3, pose, point1, K);
|
||||
Matrix expectedDcamera = numericalDerivative31(project3, pose, point1, K);
|
||||
Matrix expectedDpoint = numericalDerivative32(project3, pose, point1, K);
|
||||
EXPECT(assert_equal(Point2(-100, 100), result));
|
||||
EXPECT(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
EXPECT(assert_equal(Hexpected2, Dpoint, 1e-7));
|
||||
EXPECT(assert_equal(expectedDcamera, Dpose, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -161,11 +161,11 @@ TEST( PinholePose, Dproject2)
|
|||
{
|
||||
Matrix Dcamera, Dpoint;
|
||||
Point2 result = camera.project2(point1, Dcamera, Dpoint);
|
||||
Matrix Hexpected1 = numericalDerivative21(project4, camera, point1);
|
||||
Matrix Hexpected2 = numericalDerivative22(project4, camera, point1);
|
||||
Matrix expectedDcamera = numericalDerivative21(project4, camera, point1);
|
||||
Matrix expectedDpoint = numericalDerivative22(project4, camera, point1);
|
||||
EXPECT(assert_equal(result, Point2(-100, 100) ));
|
||||
EXPECT(assert_equal(Hexpected1, Dcamera, 1e-7));
|
||||
EXPECT(assert_equal(Hexpected2, Dpoint, 1e-7));
|
||||
EXPECT(assert_equal(expectedDcamera, Dcamera, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -176,12 +176,31 @@ TEST( CalibratedCamera, Dproject3)
|
|||
static const Camera camera(pose1);
|
||||
Matrix Dpose, Dpoint;
|
||||
camera.project2(point1, Dpose, Dpoint);
|
||||
Matrix numerical_pose = numericalDerivative21(project4, camera, point1);
|
||||
Matrix expectedDcamera = numericalDerivative21(project4, camera, point1);
|
||||
Matrix numerical_point = numericalDerivative22(project4, camera, point1);
|
||||
CHECK(assert_equal(numerical_pose, Dpose, 1e-7));
|
||||
CHECK(assert_equal(expectedDcamera, Dpose, 1e-7));
|
||||
CHECK(assert_equal(numerical_point, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static Point2 project(const Pose3& pose, const Unit3& pointAtInfinity,
|
||||
const Cal3_S2::shared_ptr& cal) {
|
||||
return Camera(pose, cal).project(pointAtInfinity);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( PinholePose, DprojectAtInfinity2)
|
||||
{
|
||||
Unit3 pointAtInfinity(0,0,1000);
|
||||
Matrix Dpose, Dpoint;
|
||||
Point2 result = camera.project2(pointAtInfinity, Dpose, Dpoint);
|
||||
Matrix expectedDcamera = numericalDerivative31(project, pose, pointAtInfinity, K);
|
||||
Matrix expectedDpoint = numericalDerivative32(project, pose, pointAtInfinity, K);
|
||||
EXPECT(assert_equal(Point2(0,0), result));
|
||||
EXPECT(assert_equal(expectedDcamera, Dpose, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, Dpoint, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
static double range0(const Camera& camera, const Point3& point) {
|
||||
return camera.range(point);
|
||||
|
|
@ -191,12 +210,12 @@ static double range0(const Camera& camera, const Point3& point) {
|
|||
TEST( PinholePose, range0) {
|
||||
Matrix D1; Matrix D2;
|
||||
double result = camera.range(point1, D1, D2);
|
||||
Matrix Hexpected1 = numericalDerivative21(range0, camera, point1);
|
||||
Matrix Hexpected2 = numericalDerivative22(range0, camera, point1);
|
||||
Matrix expectedDcamera = numericalDerivative21(range0, camera, point1);
|
||||
Matrix expectedDpoint = numericalDerivative22(range0, camera, point1);
|
||||
EXPECT_DOUBLES_EQUAL(point1.distance(camera.pose().translation()), result,
|
||||
1e-9);
|
||||
EXPECT(assert_equal(Hexpected1, D1, 1e-7));
|
||||
EXPECT(assert_equal(Hexpected2, D2, 1e-7));
|
||||
EXPECT(assert_equal(expectedDcamera, D1, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, D2, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -208,11 +227,11 @@ static double range1(const Camera& camera, const Pose3& pose) {
|
|||
TEST( PinholePose, range1) {
|
||||
Matrix D1; Matrix D2;
|
||||
double result = camera.range(pose1, D1, D2);
|
||||
Matrix Hexpected1 = numericalDerivative21(range1, camera, pose1);
|
||||
Matrix Hexpected2 = numericalDerivative22(range1, camera, pose1);
|
||||
Matrix expectedDcamera = numericalDerivative21(range1, camera, pose1);
|
||||
Matrix expectedDpoint = numericalDerivative22(range1, camera, pose1);
|
||||
EXPECT_DOUBLES_EQUAL(1, result, 1e-9);
|
||||
EXPECT(assert_equal(Hexpected1, D1, 1e-7));
|
||||
EXPECT(assert_equal(Hexpected2, D2, 1e-7));
|
||||
EXPECT(assert_equal(expectedDcamera, D1, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, D2, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -228,11 +247,11 @@ static double range2(const Camera& camera, const Camera2& camera2) {
|
|||
TEST( PinholePose, range2) {
|
||||
Matrix D1; Matrix D2;
|
||||
double result = camera.range<Cal3Bundler>(camera2, D1, D2);
|
||||
Matrix Hexpected1 = numericalDerivative21(range2, camera, camera2);
|
||||
Matrix Hexpected2 = numericalDerivative22(range2, camera, camera2);
|
||||
Matrix expectedDcamera = numericalDerivative21(range2, camera, camera2);
|
||||
Matrix expectedDpoint = numericalDerivative22(range2, camera, camera2);
|
||||
EXPECT_DOUBLES_EQUAL(1, result, 1e-9);
|
||||
EXPECT(assert_equal(Hexpected1, D1, 1e-7));
|
||||
EXPECT(assert_equal(Hexpected2, D2, 1e-7));
|
||||
EXPECT(assert_equal(expectedDcamera, D1, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, D2, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -245,11 +264,11 @@ static double range3(const Camera& camera, const CalibratedCamera& camera3) {
|
|||
TEST( PinholePose, range3) {
|
||||
Matrix D1; Matrix D2;
|
||||
double result = camera.range(camera3, D1, D2);
|
||||
Matrix Hexpected1 = numericalDerivative21(range3, camera, camera3);
|
||||
Matrix Hexpected2 = numericalDerivative22(range3, camera, camera3);
|
||||
Matrix expectedDcamera = numericalDerivative21(range3, camera, camera3);
|
||||
Matrix expectedDpoint = numericalDerivative22(range3, camera, camera3);
|
||||
EXPECT_DOUBLES_EQUAL(1, result, 1e-9);
|
||||
EXPECT(assert_equal(Hexpected1, D1, 1e-7));
|
||||
EXPECT(assert_equal(Hexpected2, D2, 1e-7));
|
||||
EXPECT(assert_equal(expectedDcamera, D1, 1e-7));
|
||||
EXPECT(assert_equal(expectedDpoint, D2, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -0,0 +1,158 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testCameraSet.cpp
|
||||
* @brief Unit tests for testCameraSet Class
|
||||
* @author Frank Dellaert
|
||||
* @date Feb 19, 2015
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/PinholeSet.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <boost/bind.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
/* ************************************************************************* */
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
TEST(PinholeSet, Stereo) {
|
||||
typedef vector<Point2> ZZ;
|
||||
PinholeSet<CalibratedCamera> set;
|
||||
CalibratedCamera camera;
|
||||
set.push_back(camera);
|
||||
set.push_back(camera);
|
||||
// set.print("set: ");
|
||||
Point3 p(0, 0, 1);
|
||||
EXPECT_LONGS_EQUAL(6, traits<CalibratedCamera>::dimension);
|
||||
|
||||
// Check measurements
|
||||
Point2 expected(0, 0);
|
||||
ZZ z = set.project2(p);
|
||||
EXPECT(assert_equal(expected, z[0]));
|
||||
EXPECT(assert_equal(expected, z[1]));
|
||||
|
||||
// Calculate expected derivatives using Pinhole
|
||||
Matrix43 actualE;
|
||||
Matrix F1;
|
||||
{
|
||||
Matrix23 E1;
|
||||
camera.project2(p, F1, E1);
|
||||
actualE << E1, E1;
|
||||
}
|
||||
|
||||
// Check computed derivatives
|
||||
PinholeSet<CalibratedCamera>::FBlocks Fs;
|
||||
Matrix E;
|
||||
set.project2(p, Fs, E);
|
||||
LONGS_EQUAL(2, Fs.size());
|
||||
EXPECT(assert_equal(F1, Fs[0]));
|
||||
EXPECT(assert_equal(F1, Fs[1]));
|
||||
EXPECT(assert_equal(actualE, E));
|
||||
|
||||
// Instantiate triangulateSafe
|
||||
// TODO triangulation does not work yet for CalibratedCamera
|
||||
// PinholeSet<CalibratedCamera>::Result actual = set.triangulateSafe(z);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// Cal3Bundler test
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
TEST(PinholeSet, Pinhole) {
|
||||
typedef PinholeCamera<Cal3Bundler> Camera;
|
||||
typedef vector<Point2> ZZ;
|
||||
PinholeSet<Camera> set;
|
||||
Camera camera;
|
||||
set.push_back(camera);
|
||||
set.push_back(camera);
|
||||
Point3 p(0, 0, 1);
|
||||
EXPECT(assert_equal(set, set));
|
||||
PinholeSet<Camera> set2 = set;
|
||||
set2.push_back(camera);
|
||||
EXPECT(!set.equals(set2));
|
||||
|
||||
// Check measurements
|
||||
Point2 expected;
|
||||
ZZ z = set.project2(p);
|
||||
EXPECT(assert_equal(expected, z[0]));
|
||||
EXPECT(assert_equal(expected, z[1]));
|
||||
|
||||
// Calculate expected derivatives using Pinhole
|
||||
Matrix actualE;
|
||||
Matrix F1;
|
||||
{
|
||||
Matrix23 E1;
|
||||
camera.project2(p, F1, E1);
|
||||
actualE.resize(4, 3);
|
||||
actualE << E1, E1;
|
||||
}
|
||||
|
||||
// Check computed derivatives
|
||||
{
|
||||
PinholeSet<Camera>::FBlocks Fs;
|
||||
Matrix E;
|
||||
set.project2(p, Fs, E);
|
||||
EXPECT(assert_equal(actualE, E));
|
||||
LONGS_EQUAL(2, Fs.size());
|
||||
EXPECT(assert_equal(F1, Fs[0]));
|
||||
EXPECT(assert_equal(F1, Fs[1]));
|
||||
}
|
||||
|
||||
// Check errors
|
||||
ZZ measured;
|
||||
measured.push_back(Point2(1, 2));
|
||||
measured.push_back(Point2(3, 4));
|
||||
Vector4 expectedV;
|
||||
|
||||
// reprojectionError
|
||||
expectedV << -1, -2, -3, -4;
|
||||
Vector actualV = set.reprojectionError(p, measured);
|
||||
EXPECT(assert_equal(expectedV, actualV));
|
||||
|
||||
// reprojectionErrorAtInfinity
|
||||
Unit3 pointAtInfinity(0, 0, 1000);
|
||||
{
|
||||
Matrix22 E1;
|
||||
camera.project2(pointAtInfinity, F1, E1);
|
||||
actualE.resize(4, 2);
|
||||
actualE << E1, E1;
|
||||
}
|
||||
EXPECT(
|
||||
assert_equal(pointAtInfinity,
|
||||
camera.backprojectPointAtInfinity(Point2())));
|
||||
{
|
||||
PinholeSet<Camera>::FBlocks Fs;
|
||||
Matrix E;
|
||||
actualV = set.reprojectionError(pointAtInfinity, measured, Fs, E);
|
||||
EXPECT(assert_equal(actualE, E));
|
||||
LONGS_EQUAL(2, Fs.size());
|
||||
EXPECT(assert_equal(F1, Fs[0]));
|
||||
EXPECT(assert_equal(F1, Fs[1]));
|
||||
}
|
||||
EXPECT(assert_equal(expectedV, actualV));
|
||||
|
||||
// Instantiate triangulateSafe
|
||||
TriangulationParameters params;
|
||||
TriangulationResult actual = set.triangulateSafe(z, params);
|
||||
CHECK(actual.degenerate());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -17,6 +17,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/geometry/triangulation.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
|
|
@ -49,6 +50,7 @@ Point2 z1 = camera1.project(landmark);
|
|||
Point2 z2 = camera2.project(landmark);
|
||||
|
||||
//******************************************************************************
|
||||
// Simple test with a well-behaved two camera situation
|
||||
TEST( triangulation, twoPoses) {
|
||||
|
||||
vector<Pose3> poses;
|
||||
|
|
@ -57,24 +59,37 @@ TEST( triangulation, twoPoses) {
|
|||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
// 1. Test simple DLT, perfect in no noise situation
|
||||
bool optimize = false;
|
||||
boost::optional<Point3> actual1 = //
|
||||
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual1, 1e-7));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
// 2. test with optimization on, same answer
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-7));
|
||||
|
||||
// 3. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
optimize = false;
|
||||
boost::optional<Point3> actual3 = //
|
||||
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual3, 1e-4));
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
// 4. Now with optimization on
|
||||
optimize = true;
|
||||
boost::optional<Point3> actual4 = //
|
||||
triangulatePoint3(poses, sharedCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19814), *actual4, 1e-4));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
||||
// Similar, but now with Bundler calibration
|
||||
TEST( triangulation, twoPosesBundler) {
|
||||
|
||||
boost::shared_ptr<Cal3Bundler> bundlerCal = //
|
||||
|
|
@ -95,17 +110,17 @@ TEST( triangulation, twoPosesBundler) {
|
|||
bool optimize = true;
|
||||
double rank_tol = 1e-9;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
bundlerCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
boost::optional<Point3> actual = //
|
||||
triangulatePoint3(poses, bundlerCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-7));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
// Add some noise and try again
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = triangulatePoint3(poses,
|
||||
bundlerCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3(poses, bundlerCal, measurements, rank_tol, optimize);
|
||||
EXPECT(assert_equal(Point3(4.995, 0.499167, 1.19847), *actual2, 1e-4));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
@ -116,17 +131,17 @@ TEST( triangulation, fourPoses) {
|
|||
poses += pose1, pose2;
|
||||
measurements += z1, z2;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = triangulatePoint3(poses,
|
||||
sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
boost::optional<Point3> actual = triangulatePoint3(poses, sharedCal,
|
||||
measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = //
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
|
|
@ -150,7 +165,7 @@ TEST( triangulation, fourPoses) {
|
|||
SimpleCamera camera4(pose4, *sharedCal);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
||||
CHECK_EXCEPTION(camera4.project(landmark), CheiralityException);
|
||||
|
||||
poses += pose4;
|
||||
measurements += Point2(400, 400);
|
||||
|
|
@ -180,17 +195,17 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
cameras += camera1, camera2;
|
||||
measurements += z1, z2;
|
||||
|
||||
boost::optional<Point3> triangulated_landmark = //
|
||||
boost::optional<Point3> actual = //
|
||||
triangulatePoint3(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark, 1e-2));
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
|
||||
// 2. Add some noise and try again: result should be ~ (4.995, 0.499167, 1.19814)
|
||||
measurements.at(0) += Point2(0.1, 0.5);
|
||||
measurements.at(1) += Point2(-0.2, 0.3);
|
||||
|
||||
boost::optional<Point3> triangulated_landmark_noise = //
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3(cameras, measurements);
|
||||
EXPECT(assert_equal(landmark, *triangulated_landmark_noise, 1e-2));
|
||||
EXPECT(assert_equal(landmark, *actual2, 1e-2));
|
||||
|
||||
// 3. Add a slightly rotated third camera above, again with measurement noise
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
|
|
@ -216,7 +231,7 @@ TEST( triangulation, fourPoses_distinct_Ks) {
|
|||
SimpleCamera camera4(pose4, K4);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
CHECK_EXCEPTION(camera4.project(landmark);, CheiralityException);
|
||||
CHECK_EXCEPTION(camera4.project(landmark), CheiralityException);
|
||||
|
||||
cameras += camera4;
|
||||
measurements += Point2(400, 400);
|
||||
|
|
@ -244,23 +259,19 @@ TEST( triangulation, twoIdenticalPoses) {
|
|||
}
|
||||
|
||||
//******************************************************************************
|
||||
/*
|
||||
TEST( triangulation, onePose) {
|
||||
// we expect this test to fail with a TriangulationUnderconstrainedException
|
||||
// because there's only one camera observation
|
||||
TEST( triangulation, onePose) {
|
||||
// we expect this test to fail with a TriangulationUnderconstrainedException
|
||||
// because there's only one camera observation
|
||||
|
||||
Cal3_S2 *sharedCal(1500, 1200, 0, 640, 480);
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
|
||||
vector<Pose3> poses;
|
||||
vector<Point2> measurements;
|
||||
poses += Pose3();
|
||||
measurements += Point2();
|
||||
|
||||
poses += Pose3();
|
||||
measurements += Point2();
|
||||
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, measurements, *sharedCal),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
*/
|
||||
CHECK_EXCEPTION(triangulatePoint3(poses, sharedCal, measurements),
|
||||
TriangulationUnderconstrainedException);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
int main() {
|
||||
|
|
|
|||
|
|
@ -46,7 +46,6 @@ Vector4 triangulateHomogeneousDLT(
|
|||
double error;
|
||||
Vector v;
|
||||
boost::tie(rank, error, v) = DLT(A, rank_tol);
|
||||
// std::cout << "s " << s.transpose() << std:endl;
|
||||
|
||||
if (rank < 3)
|
||||
throw(TriangulationUnderconstrainedException());
|
||||
|
|
|
|||
|
|
@ -18,6 +18,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/slam/TriangulationFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
|
|
@ -64,7 +65,6 @@ GTSAM_EXPORT Point3 triangulateDLT(
|
|||
const std::vector<Matrix34>& projection_matrices,
|
||||
const std::vector<Point2>& measurements, double rank_tol = 1e-9);
|
||||
|
||||
///
|
||||
/**
|
||||
* Create a factor graph with projection factors from poses and one calibration
|
||||
* @param poses Camera poses
|
||||
|
|
@ -86,8 +86,9 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const Pose3& pose_i = poses[i];
|
||||
PinholeCamera<CALIBRATION> camera_i(pose_i, *sharedCal);
|
||||
graph.push_back(TriangulationFactor<CALIBRATION> //
|
||||
typedef PinholePose<CALIBRATION> Camera;
|
||||
Camera camera_i(pose_i, sharedCal);
|
||||
graph.push_back(TriangulationFactor<Camera> //
|
||||
(camera_i, measurements[i], unit2, landmarkKey));
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
|
|
@ -114,13 +115,22 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const CAMERA& camera_i = cameras[i];
|
||||
graph.push_back(TriangulationFactor<typename CAMERA::CalibrationType> //
|
||||
graph.push_back(TriangulationFactor<CAMERA> //
|
||||
(camera_i, measurements[i], unit2, landmarkKey));
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
||||
///
|
||||
/// PinholeCamera specific version
|
||||
template<class CALIBRATION>
|
||||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||
const std::vector<PinholeCamera<CALIBRATION> >& cameras,
|
||||
const std::vector<Point2>& measurements, Key landmarkKey,
|
||||
const Point3& initialEstimate) {
|
||||
return triangulationGraph<PinholeCamera<CALIBRATION> > //
|
||||
(cameras, measurements, landmarkKey, initialEstimate);
|
||||
}
|
||||
|
||||
/**
|
||||
* Optimize for triangulation
|
||||
* @param graph nonlinear factors for projection
|
||||
|
|
@ -147,8 +157,8 @@ Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
|||
// Create a factor graph and initial values
|
||||
Values values;
|
||||
NonlinearFactorGraph graph;
|
||||
boost::tie(graph, values) = triangulationGraph(poses, sharedCal, measurements,
|
||||
Symbol('p', 0), initialEstimate);
|
||||
boost::tie(graph, values) = triangulationGraph<CALIBRATION> //
|
||||
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate);
|
||||
|
||||
return optimize(graph, values, Symbol('p', 0));
|
||||
}
|
||||
|
|
@ -168,12 +178,21 @@ Point3 triangulateNonlinear(
|
|||
// Create a factor graph and initial values
|
||||
Values values;
|
||||
NonlinearFactorGraph graph;
|
||||
boost::tie(graph, values) = triangulationGraph(cameras, measurements,
|
||||
Symbol('p', 0), initialEstimate);
|
||||
boost::tie(graph, values) = triangulationGraph<CAMERA> //
|
||||
(cameras, measurements, Symbol('p', 0), initialEstimate);
|
||||
|
||||
return optimize(graph, values, Symbol('p', 0));
|
||||
}
|
||||
|
||||
/// PinholeCamera specific version
|
||||
template<class CALIBRATION>
|
||||
Point3 triangulateNonlinear(
|
||||
const std::vector<PinholeCamera<CALIBRATION> >& cameras,
|
||||
const std::vector<Point2>& measurements, const Point3& initialEstimate) {
|
||||
return triangulateNonlinear<PinholeCamera<CALIBRATION> > //
|
||||
(cameras, measurements, initialEstimate);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a 3*4 camera projection matrix from calibration and pose.
|
||||
* Functor for partial application on calibration
|
||||
|
|
@ -224,12 +243,13 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
// Triangulate linearly
|
||||
Point3 point = triangulateDLT(projection_matrices, measurements, rank_tol);
|
||||
|
||||
// The n refine using non-linear optimization
|
||||
// Then refine using non-linear optimization
|
||||
if (optimize)
|
||||
point = triangulateNonlinear(poses, sharedCal, measurements, point);
|
||||
point = triangulateNonlinear<CALIBRATION> //
|
||||
(poses, sharedCal, measurements, point);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies infront of all cameras
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
BOOST_FOREACH(const Pose3& pose, poses) {
|
||||
const Point3& p_local = pose.transform_to(point);
|
||||
if (p_local.z() <= 0)
|
||||
|
|
@ -265,9 +285,8 @@ Point3 triangulatePoint3(
|
|||
throw(TriangulationUnderconstrainedException());
|
||||
|
||||
// construct projection matrices from poses & calibration
|
||||
typedef PinholeCamera<typename CAMERA::CalibrationType> Camera;
|
||||
std::vector<Matrix34> projection_matrices;
|
||||
BOOST_FOREACH(const Camera& camera, cameras)
|
||||
BOOST_FOREACH(const CAMERA& camera, cameras)
|
||||
projection_matrices.push_back(
|
||||
CameraProjectionMatrix<typename CAMERA::CalibrationType>(camera.calibration())(
|
||||
camera.pose()));
|
||||
|
|
@ -275,11 +294,11 @@ Point3 triangulatePoint3(
|
|||
|
||||
// The n refine using non-linear optimization
|
||||
if (optimize)
|
||||
point = triangulateNonlinear(cameras, measurements, point);
|
||||
point = triangulateNonlinear<CAMERA>(cameras, measurements, point);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies infront of all cameras
|
||||
BOOST_FOREACH(const Camera& camera, cameras) {
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
BOOST_FOREACH(const CAMERA& camera, cameras) {
|
||||
const Point3& p_local = camera.pose().transform_to(point);
|
||||
if (p_local.z() <= 0)
|
||||
throw(TriangulationCheiralityException());
|
||||
|
|
@ -289,5 +308,160 @@ Point3 triangulatePoint3(
|
|||
return point;
|
||||
}
|
||||
|
||||
/// Pinhole-specific version
|
||||
template<class CALIBRATION>
|
||||
Point3 triangulatePoint3(
|
||||
const std::vector<PinholeCamera<CALIBRATION> >& cameras,
|
||||
const std::vector<Point2>& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
return triangulatePoint3<PinholeCamera<CALIBRATION> > //
|
||||
(cameras, measurements, rank_tol, optimize);
|
||||
}
|
||||
|
||||
struct TriangulationParameters {
|
||||
|
||||
double rankTolerance; ///< threshold to decide whether triangulation is result.degenerate
|
||||
bool enableEPI; ///< if set to true, will refine triangulation using LM
|
||||
|
||||
/**
|
||||
* if the landmark is triangulated at distance larger than this,
|
||||
* result is flagged as degenerate.
|
||||
*/
|
||||
double landmarkDistanceThreshold; //
|
||||
|
||||
/**
|
||||
* If this is nonnegative the we will check if the average reprojection error
|
||||
* is smaller than this threshold after triangulation, otherwise result is
|
||||
* flagged as degenerate.
|
||||
*/
|
||||
double dynamicOutlierRejectionThreshold;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param rankTol tolerance used to check if point triangulation is degenerate
|
||||
* @param enableEPI if true refine triangulation with embedded LM iterations
|
||||
* @param landmarkDistanceThreshold flag as degenerate if point further than this
|
||||
* @param dynamicOutlierRejectionThreshold or if average error larger than this
|
||||
*
|
||||
*/
|
||||
TriangulationParameters(const double _rankTolerance = 1.0,
|
||||
const bool _enableEPI = false, double _landmarkDistanceThreshold = -1,
|
||||
double _dynamicOutlierRejectionThreshold = -1) :
|
||||
rankTolerance(_rankTolerance), enableEPI(_enableEPI), //
|
||||
landmarkDistanceThreshold(_landmarkDistanceThreshold), //
|
||||
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold) {
|
||||
}
|
||||
|
||||
// stream to output
|
||||
friend std::ostream &operator<<(std::ostream &os,
|
||||
const TriangulationParameters& p) {
|
||||
os << "rankTolerance = " << p.rankTolerance << std::endl;
|
||||
os << "enableEPI = " << p.enableEPI << std::endl;
|
||||
os << "landmarkDistanceThreshold = " << p.landmarkDistanceThreshold
|
||||
<< std::endl;
|
||||
os << "dynamicOutlierRejectionThreshold = "
|
||||
<< p.dynamicOutlierRejectionThreshold << std::endl;
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* TriangulationResult is an optional point, along with the reasons why it is invalid.
|
||||
*/
|
||||
class TriangulationResult: public boost::optional<Point3> {
|
||||
enum Status {
|
||||
VALID, DEGENERATE, BEHIND_CAMERA
|
||||
};
|
||||
Status status_;
|
||||
TriangulationResult(Status s) :
|
||||
status_(s) {
|
||||
}
|
||||
public:
|
||||
TriangulationResult(const Point3& p) :
|
||||
status_(VALID) {
|
||||
reset(p);
|
||||
}
|
||||
static TriangulationResult Degenerate() {
|
||||
return TriangulationResult(DEGENERATE);
|
||||
}
|
||||
static TriangulationResult BehindCamera() {
|
||||
return TriangulationResult(BEHIND_CAMERA);
|
||||
}
|
||||
bool degenerate() const {
|
||||
return status_ == DEGENERATE;
|
||||
}
|
||||
bool behindCamera() const {
|
||||
return status_ == BEHIND_CAMERA;
|
||||
}
|
||||
// stream to output
|
||||
friend std::ostream &operator<<(std::ostream &os,
|
||||
const TriangulationResult& result) {
|
||||
if (result)
|
||||
os << "point = " << *result << std::endl;
|
||||
else
|
||||
os << "no point, status = " << result.status_ << std::endl;
|
||||
return os;
|
||||
}
|
||||
};
|
||||
|
||||
/// triangulateSafe: extensive checking of the outcome
|
||||
template<class CAMERA>
|
||||
TriangulationResult triangulateSafe(const std::vector<CAMERA>& cameras,
|
||||
const std::vector<Point2>& measured,
|
||||
const TriangulationParameters& params) {
|
||||
|
||||
size_t m = cameras.size();
|
||||
|
||||
// if we have a single pose the corresponding factor is uninformative
|
||||
if (m < 2)
|
||||
return TriangulationResult::Degenerate();
|
||||
else
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
Point3 point = triangulatePoint3<CAMERA>(cameras, measured,
|
||||
params.rankTolerance, params.enableEPI);
|
||||
|
||||
// Check landmark distance and re-projection errors to avoid outliers
|
||||
size_t i = 0;
|
||||
double totalReprojError = 0.0;
|
||||
BOOST_FOREACH(const CAMERA& camera, cameras) {
|
||||
const Pose3& pose = camera.pose();
|
||||
if (params.landmarkDistanceThreshold > 0
|
||||
&& pose.translation().distance(point)
|
||||
> params.landmarkDistanceThreshold)
|
||||
return TriangulationResult::Degenerate();
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
// Only needed if this was not yet handled by exception
|
||||
const Point3& p_local = pose.transform_to(point);
|
||||
if (p_local.z() <= 0)
|
||||
return TriangulationResult::BehindCamera();
|
||||
#endif
|
||||
// Check reprojection error
|
||||
if (params.dynamicOutlierRejectionThreshold > 0) {
|
||||
const Point2& zi = measured.at(i);
|
||||
Point2 reprojectionError(camera.project(point) - zi);
|
||||
totalReprojError += reprojectionError.vector().norm();
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
// Flag as degenerate if average reprojection error is too large
|
||||
if (params.dynamicOutlierRejectionThreshold > 0
|
||||
&& totalReprojError / m > params.dynamicOutlierRejectionThreshold)
|
||||
return TriangulationResult::Degenerate();
|
||||
|
||||
// all good!
|
||||
return TriangulationResult(point);
|
||||
} catch (TriangulationUnderconstrainedException&) {
|
||||
// This exception is thrown if
|
||||
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
|
||||
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
|
||||
return TriangulationResult::Degenerate();
|
||||
} catch (TriangulationCheiralityException&) {
|
||||
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
|
||||
return TriangulationResult::BehindCamera();
|
||||
}
|
||||
}
|
||||
|
||||
} // \namespace gtsam
|
||||
|
||||
|
|
|
|||
|
|
@ -20,6 +20,7 @@
|
|||
#include <gtsam/base/timing.h>
|
||||
|
||||
#include <boost/foreach.hpp>
|
||||
#include <boost/format.hpp>
|
||||
#include <boost/random/linear_congruential.hpp>
|
||||
#include <boost/random/normal_distribution.hpp>
|
||||
#include <boost/random/variate_generator.hpp>
|
||||
|
|
@ -506,7 +507,7 @@ Isotropic::shared_ptr Isotropic::Variance(size_t dim, double variance, bool smar
|
|||
|
||||
/* ************************************************************************* */
|
||||
void Isotropic::print(const string& name) const {
|
||||
cout << name << "isotropic sigma " << " " << sigma_ << endl;
|
||||
cout << boost::format("isotropic dim=%1% sigma=%2%") % dim() % sigma_ << endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -534,6 +535,11 @@ void Isotropic::WhitenInPlace(Matrix& H) const {
|
|||
H *= invsigma_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Isotropic::whitenInPlace(Vector& v) const {
|
||||
v *= invsigma_;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void Isotropic::WhitenInPlace(Eigen::Block<Matrix> H) const {
|
||||
H *= invsigma_;
|
||||
|
|
|
|||
|
|
@ -550,6 +550,7 @@ namespace gtsam {
|
|||
virtual Vector unwhiten(const Vector& v) const;
|
||||
virtual Matrix Whiten(const Matrix& H) const;
|
||||
virtual void WhitenInPlace(Matrix& H) const;
|
||||
virtual void whitenInPlace(Vector& v) const;
|
||||
virtual void WhitenInPlace(Eigen::Block<Matrix> H) const;
|
||||
|
||||
/**
|
||||
|
|
|
|||
|
|
@ -19,7 +19,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/linear/HessianFactor.h>
|
||||
#include <gtsam/slam/RegularJacobianFactor.h>
|
||||
#include <gtsam/linear/RegularJacobianFactor.h>
|
||||
#include <boost/foreach.hpp>
|
||||
#include <vector>
|
||||
|
||||
|
|
@ -66,6 +66,18 @@ namespace gtsam {
|
|||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
VectorValues::iterator VectorValues::insert(const std::pair<Key, Vector>& key_value) {
|
||||
// Note that here we accept a pair with a reference to the Vector, but the Vector is copied as
|
||||
// it is inserted into the values_ map.
|
||||
std::pair<iterator, bool> result = values_.insert(key_value);
|
||||
if(!result.second)
|
||||
throw std::invalid_argument(
|
||||
"Requested to insert variable '" + DefaultKeyFormatter(key_value.first)
|
||||
+ "' already in this VectorValues.");
|
||||
return result.first;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
void VectorValues::update(const VectorValues& values)
|
||||
{
|
||||
|
|
|
|||
|
|
@ -181,23 +181,14 @@ namespace gtsam {
|
|||
* @param value The vector to be inserted.
|
||||
* @param j The index with which the value will be associated. */
|
||||
iterator insert(Key j, const Vector& value) {
|
||||
return insert(std::make_pair(j, value)); // Note only passing a reference to the Vector
|
||||
return insert(std::make_pair(j, value));
|
||||
}
|
||||
|
||||
/** Insert a vector \c value with key \c j. Throws an invalid_argument exception if the key \c
|
||||
* j is already used.
|
||||
* @param value The vector to be inserted.
|
||||
* @param j The index with which the value will be associated. */
|
||||
iterator insert(const std::pair<Key, Vector>& key_value) {
|
||||
// Note that here we accept a pair with a reference to the Vector, but the Vector is copied as
|
||||
// it is inserted into the values_ map.
|
||||
std::pair<iterator, bool> result = values_.insert(key_value);
|
||||
if(!result.second)
|
||||
throw std::invalid_argument(
|
||||
"Requested to insert variable '" + DefaultKeyFormatter(key_value.first)
|
||||
+ "' already in this VectorValues.");
|
||||
return result.first;
|
||||
}
|
||||
iterator insert(const std::pair<Key, Vector>& key_value);
|
||||
|
||||
/** Insert all values from \c values. Throws an invalid_argument exception if any keys to be
|
||||
* inserted are already used. */
|
||||
|
|
|
|||
|
|
@ -15,7 +15,7 @@
|
|||
* @date March 4, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/RegularHessianFactor.h>
|
||||
#include <gtsam/linear/RegularHessianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
|
|
@ -16,7 +16,7 @@
|
|||
* @date Nov 12, 2014
|
||||
*/
|
||||
|
||||
#include <gtsam/slam/RegularJacobianFactor.h>
|
||||
#include <gtsam/linear/RegularJacobianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
|
@ -175,7 +175,8 @@ using namespace binary;
|
|||
Expression<Cal3_S2> K(3);
|
||||
|
||||
// Create expression tree
|
||||
Expression<Point2> projection(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
||||
Point2 (*f)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
|
||||
Expression<Point2> projection(f, p_cam);
|
||||
Expression<Point2> uv_hat(uncalibrate<Cal3_S2>, K, projection);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -173,7 +173,7 @@ public:
|
|||
Point3 _1T2 = E.direction().point3();
|
||||
Point3 d1T2 = d * _1T2;
|
||||
Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2); // 2R1*((x,y,1)-d*1T2)
|
||||
pn = SimpleCamera::project_to_camera(dP2);
|
||||
pn = PinholeBase::Project(dP2);
|
||||
|
||||
} else {
|
||||
|
||||
|
|
@ -186,7 +186,7 @@ public:
|
|||
Point3 dP2 = E.rotation().unrotate(dP1_ - d1T2, DdP2_rot, DP2_point);
|
||||
|
||||
Matrix23 Dpn_dP2;
|
||||
pn = SimpleCamera::project_to_camera(dP2, Dpn_dP2);
|
||||
pn = PinholeBase::Project(dP2, Dpn_dP2);
|
||||
|
||||
if (DE) {
|
||||
Matrix DdP2_E(3, 5);
|
||||
|
|
|
|||
|
|
@ -17,7 +17,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include "RegularJacobianFactor.h"
|
||||
#include <gtsam/linear/RegularJacobianFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
|
|
@ -28,7 +28,7 @@ class JacobianFactorQ: public RegularJacobianFactor<D> {
|
|||
|
||||
typedef RegularJacobianFactor<D> Base;
|
||||
typedef Eigen::Matrix<double, ZDim, D> MatrixZD;
|
||||
typedef std::pair<Key, MatrixZD> KeyMatrixZD;
|
||||
typedef std::pair<Key, Matrix> KeyMatrix;
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -42,7 +42,6 @@ public:
|
|||
Base() {
|
||||
Matrix zeroMatrix = Matrix::Zero(0, D);
|
||||
Vector zeroVector = Vector::Zero(0);
|
||||
typedef std::pair<Key, Matrix> KeyMatrix;
|
||||
std::vector<KeyMatrix> QF;
|
||||
QF.reserve(keys.size());
|
||||
BOOST_FOREACH(const Key& key, keys)
|
||||
|
|
@ -51,24 +50,25 @@ public:
|
|||
}
|
||||
|
||||
/// Constructor
|
||||
JacobianFactorQ(const std::vector<KeyMatrixZD>& Fblocks, const Matrix& E,
|
||||
const Matrix3& P, const Vector& b, const SharedDiagonal& model =
|
||||
SharedDiagonal()) :
|
||||
JacobianFactorQ(const FastVector<Key>& keys,
|
||||
const std::vector<MatrixZD>& FBlocks, const Matrix& E, const Matrix3& P,
|
||||
const Vector& b, const SharedDiagonal& model = SharedDiagonal()) :
|
||||
Base() {
|
||||
size_t j = 0, m2 = E.rows(), m = m2 / ZDim;
|
||||
// Calculate projector Q
|
||||
Matrix Q = eye(m2) - E * P * E.transpose();
|
||||
// Calculate pre-computed Jacobian matrices
|
||||
// TODO: can we do better ?
|
||||
typedef std::pair<Key, Matrix> KeyMatrix;
|
||||
std::vector<KeyMatrix> QF;
|
||||
QF.reserve(m);
|
||||
// Below, we compute each mZDim*D block A_j = Q_j * F_j = (mZDim*ZDim) * (Zdim*D)
|
||||
BOOST_FOREACH(const KeyMatrixZD& it, Fblocks)
|
||||
for (size_t k = 0; k < FBlocks.size(); ++k) {
|
||||
Key key = keys[k];
|
||||
QF.push_back(
|
||||
KeyMatrix(it.first, Q.block(0, ZDim * j++, m2, ZDim) * it.second));
|
||||
KeyMatrix(key, - Q.block(0, ZDim * j++, m2, ZDim) * FBlocks[k]));
|
||||
}
|
||||
// Which is then passed to the normal JacobianFactor constructor
|
||||
JacobianFactor::fillTerms(QF, Q * b, model);
|
||||
JacobianFactor::fillTerms(QF, - Q * b, model);
|
||||
}
|
||||
};
|
||||
// end class JacobianFactorQ
|
||||
|
|
|
|||
|
|
@ -6,8 +6,8 @@
|
|||
*/
|
||||
|
||||
#pragma once
|
||||
#include <gtsam/slam/RegularJacobianFactor.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/RegularJacobianFactor.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
@ -22,25 +22,24 @@ class JacobianFactorQR: public RegularJacobianFactor<D> {
|
|||
|
||||
typedef RegularJacobianFactor<D> Base;
|
||||
typedef Eigen::Matrix<double, ZDim, D> MatrixZD;
|
||||
typedef std::pair<Key, MatrixZD> KeyMatrixZD;
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
*/
|
||||
JacobianFactorQR(const std::vector<KeyMatrixZD>& Fblocks, const Matrix& E,
|
||||
const Matrix3& P, const Vector& b, //
|
||||
JacobianFactorQR(const FastVector<Key>& keys,
|
||||
const std::vector<MatrixZD>& FBlocks, const Matrix& E, const Matrix3& P,
|
||||
const Vector& b, //
|
||||
const SharedDiagonal& model = SharedDiagonal()) :
|
||||
Base() {
|
||||
// Create a number of Jacobian factors in a factor graph
|
||||
GaussianFactorGraph gfg;
|
||||
Symbol pointKey('p', 0);
|
||||
size_t i = 0;
|
||||
BOOST_FOREACH(const KeyMatrixZD& it, Fblocks) {
|
||||
gfg.add(pointKey, E.block<ZDim, 3>(ZDim * i, 0), it.first, it.second,
|
||||
b.segment<ZDim>(ZDim * i), model);
|
||||
i += 1;
|
||||
for (size_t k = 0; k < FBlocks.size(); ++k) {
|
||||
Key key = keys[k];
|
||||
gfg.add(pointKey, E.block<ZDim, 3>(ZDim * k, 0), key, FBlocks[k],
|
||||
b.segment < ZDim > (ZDim * k), model);
|
||||
}
|
||||
//gfg.print("gfg");
|
||||
|
||||
|
|
|
|||
|
|
@ -5,18 +5,17 @@
|
|||
*/
|
||||
|
||||
#pragma once
|
||||
#include "gtsam/slam/RegularJacobianFactor.h"
|
||||
#include <gtsam/linear/RegularJacobianFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
* JacobianFactor for Schur complement that uses Q noise model
|
||||
* JacobianFactor for Schur complement
|
||||
*/
|
||||
template<size_t D, size_t ZDim>
|
||||
class JacobianFactorSVD: public RegularJacobianFactor<D> {
|
||||
|
||||
typedef RegularJacobianFactor<D> Base;
|
||||
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; // e.g 2 x 6 with Z=Point2
|
||||
typedef std::pair<Key, MatrixZD> KeyMatrixZD;
|
||||
typedef std::pair<Key, Matrix> KeyMatrix;
|
||||
|
||||
public:
|
||||
|
|
@ -38,13 +37,21 @@ public:
|
|||
JacobianFactor::fillTerms(QF, zeroVector, model);
|
||||
}
|
||||
|
||||
/// Constructor
|
||||
JacobianFactorSVD(const std::vector<KeyMatrixZD>& Fblocks,
|
||||
const Matrix& Enull, const Vector& b, //
|
||||
/**
|
||||
* @brief Constructor
|
||||
* Takes the CameraSet derivatives (as ZDim*D blocks of block-diagonal F)
|
||||
* and a reduced point derivative, Enull
|
||||
* and creates a reduced-rank Jacobian factor on the CameraSet
|
||||
*
|
||||
* @Fblocks:
|
||||
*/
|
||||
JacobianFactorSVD(const FastVector<Key>& keys,
|
||||
const std::vector<MatrixZD>& Fblocks, const Matrix& Enull,
|
||||
const Vector& b, //
|
||||
const SharedDiagonal& model = SharedDiagonal()) :
|
||||
Base() {
|
||||
size_t numKeys = Enull.rows() / ZDim;
|
||||
size_t j = 0, m2 = ZDim * numKeys - 3;
|
||||
size_t m2 = ZDim * numKeys - 3;
|
||||
// PLAIN NULL SPACE TRICK
|
||||
// Matrix Q = Enull * Enull.transpose();
|
||||
// BOOST_FOREACH(const KeyMatrixZD& it, Fblocks)
|
||||
|
|
@ -52,10 +59,12 @@ public:
|
|||
// JacobianFactor factor(QF, Q * b);
|
||||
std::vector<KeyMatrix> QF;
|
||||
QF.reserve(numKeys);
|
||||
BOOST_FOREACH(const KeyMatrixZD& it, Fblocks)
|
||||
for (size_t k = 0; k < Fblocks.size(); ++k) {
|
||||
Key key = keys[k];
|
||||
QF.push_back(
|
||||
KeyMatrix(it.first,
|
||||
(Enull.transpose()).block(0, ZDim * j++, m2, ZDim) * it.second));
|
||||
KeyMatrix(key,
|
||||
(Enull.transpose()).block(0, ZDim * k, m2, ZDim) * Fblocks[k]));
|
||||
}
|
||||
JacobianFactor::fillTerms(QF, Enull.transpose() * b, model);
|
||||
}
|
||||
};
|
||||
|
|
|
|||
|
|
@ -7,6 +7,7 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/geometry/CameraSet.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <boost/foreach.hpp>
|
||||
|
|
@ -17,7 +18,7 @@ namespace gtsam {
|
|||
/**
|
||||
* RegularImplicitSchurFactor
|
||||
*/
|
||||
template<size_t D> //
|
||||
template<class CAMERA>
|
||||
class RegularImplicitSchurFactor: public GaussianFactor {
|
||||
|
||||
public:
|
||||
|
|
@ -26,14 +27,20 @@ public:
|
|||
|
||||
protected:
|
||||
|
||||
typedef Eigen::Matrix<double, 2, D> Matrix2D; ///< type of an F block
|
||||
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera hessian
|
||||
typedef std::pair<Key, Matrix2D> KeyMatrix2D; ///< named F block
|
||||
// This factor is closely related to a CameraSet
|
||||
typedef CameraSet<CAMERA> Set;
|
||||
|
||||
std::vector<KeyMatrix2D> Fblocks_; ///< All 2*D F blocks (one for each camera)
|
||||
Matrix3 PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (2*2 if degenerate)
|
||||
Matrix E_; ///< The 2m*3 E Jacobian with respect to the point
|
||||
Vector b_; ///< 2m-dimensional RHS vector
|
||||
typedef typename CAMERA::Measurement Z;
|
||||
static const int D = traits<CAMERA>::dimension; ///< Camera dimension
|
||||
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
|
||||
|
||||
typedef Eigen::Matrix<double, ZDim, D> MatrixZD; ///< type of an F block
|
||||
typedef Eigen::Matrix<double, D, D> MatrixDD; ///< camera hessian
|
||||
|
||||
const std::vector<MatrixZD> FBlocks_; ///< All ZDim*D F blocks (one for each camera)
|
||||
const Matrix PointCovariance_; ///< the 3*3 matrix P = inv(E'E) (2*2 if degenerate)
|
||||
const Matrix E_; ///< The 2m*3 E Jacobian with respect to the point
|
||||
const Vector b_; ///< 2m-dimensional RHS vector
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -41,54 +48,40 @@ public:
|
|||
RegularImplicitSchurFactor() {
|
||||
}
|
||||
|
||||
/// Construct from blcoks of F, E, inv(E'*E), and RHS vector b
|
||||
RegularImplicitSchurFactor(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
|
||||
const Matrix3& P, const Vector& b) :
|
||||
Fblocks_(Fblocks), PointCovariance_(P), E_(E), b_(b) {
|
||||
initKeys();
|
||||
}
|
||||
|
||||
/// initialize keys from Fblocks
|
||||
void initKeys() {
|
||||
keys_.reserve(Fblocks_.size());
|
||||
BOOST_FOREACH(const KeyMatrix2D& it, Fblocks_)
|
||||
keys_.push_back(it.first);
|
||||
/// Construct from blocks of F, E, inv(E'*E), and RHS vector b
|
||||
RegularImplicitSchurFactor(const FastVector<Key>& keys,
|
||||
const std::vector<MatrixZD>& FBlocks, const Matrix& E, const Matrix& P,
|
||||
const Vector& b) :
|
||||
GaussianFactor(keys), FBlocks_(FBlocks), PointCovariance_(P), E_(E), b_(b) {
|
||||
}
|
||||
|
||||
/// Destructor
|
||||
virtual ~RegularImplicitSchurFactor() {
|
||||
}
|
||||
|
||||
// Write access, only use for construction!
|
||||
|
||||
inline std::vector<KeyMatrix2D>& Fblocks() {
|
||||
return Fblocks_;
|
||||
std::vector<MatrixZD>& FBlocks() const {
|
||||
return FBlocks_;
|
||||
}
|
||||
|
||||
inline Matrix3& PointCovariance() {
|
||||
return PointCovariance_;
|
||||
}
|
||||
|
||||
inline Matrix& E() {
|
||||
const Matrix& E() const {
|
||||
return E_;
|
||||
}
|
||||
|
||||
inline Vector& b() {
|
||||
const Vector& b() const {
|
||||
return b_;
|
||||
}
|
||||
|
||||
/// Get matrix P
|
||||
inline const Matrix3& getPointCovariance() const {
|
||||
const Matrix& getPointCovariance() const {
|
||||
return PointCovariance_;
|
||||
}
|
||||
|
||||
/// print
|
||||
void print(const std::string& s = "",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << " RegularImplicitSchurFactor " << std::endl;
|
||||
Factor::print(s);
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
std::cout << "Fblock:\n" << Fblocks_[pos].second << std::endl;
|
||||
std::cout << "Fblock:\n" << FBlocks_[pos] << std::endl;
|
||||
}
|
||||
std::cout << "PointCovariance:\n" << PointCovariance_ << std::endl;
|
||||
std::cout << "E:\n" << E_ << std::endl;
|
||||
|
|
@ -100,10 +93,11 @@ public:
|
|||
const This* f = dynamic_cast<const This*>(&lf);
|
||||
if (!f)
|
||||
return false;
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
if (keys_[pos] != f->keys_[pos]) return false;
|
||||
if (Fblocks_[pos].first != f->Fblocks_[pos].first) return false;
|
||||
if (!equal_with_abs_tol(Fblocks_[pos].second,f->Fblocks_[pos].second,tol)) return false;
|
||||
for (size_t k = 0; k < FBlocks_.size(); ++k) {
|
||||
if (keys_[k] != f->keys_[k])
|
||||
return false;
|
||||
if (!equal_with_abs_tol(FBlocks_[k], f->FBlocks_[k], tol))
|
||||
return false;
|
||||
}
|
||||
return equal_with_abs_tol(PointCovariance_, f->PointCovariance_, tol)
|
||||
&& equal_with_abs_tol(E_, f->E_, tol)
|
||||
|
|
@ -126,18 +120,26 @@ public:
|
|||
return Matrix();
|
||||
}
|
||||
virtual std::pair<Matrix, Vector> jacobian() const {
|
||||
throw std::runtime_error("RegularImplicitSchurFactor::jacobian non implemented");
|
||||
throw std::runtime_error(
|
||||
"RegularImplicitSchurFactor::jacobian non implemented");
|
||||
return std::make_pair(Matrix(), Vector());
|
||||
}
|
||||
|
||||
/// *Compute* full augmented information matrix
|
||||
virtual Matrix augmentedInformation() const {
|
||||
throw std::runtime_error(
|
||||
"RegularImplicitSchurFactor::augmentedInformation non implemented");
|
||||
return Matrix();
|
||||
|
||||
// Do the Schur complement
|
||||
SymmetricBlockMatrix augmentedHessian = //
|
||||
Set::SchurComplement(FBlocks_, E_, b_);
|
||||
return augmentedHessian.matrix();
|
||||
}
|
||||
|
||||
/// *Compute* full information matrix
|
||||
virtual Matrix information() const {
|
||||
throw std::runtime_error(
|
||||
"RegularImplicitSchurFactor::information non implemented");
|
||||
return Matrix();
|
||||
Matrix augmented = augmentedInformation();
|
||||
int m = this->keys_.size();
|
||||
size_t M = D * m;
|
||||
return augmented.block(0, 0, M, M);
|
||||
}
|
||||
|
||||
/// Return the diagonal of the Hessian for this factor
|
||||
|
|
@ -145,17 +147,17 @@ public:
|
|||
// diag(Hessian) = diag(F' * (I - E * PointCov * E') * F);
|
||||
VectorValues d;
|
||||
|
||||
for (size_t pos = 0; pos < size(); ++pos) { // for each camera
|
||||
Key j = keys_[pos];
|
||||
for (size_t k = 0; k < size(); ++k) { // for each camera
|
||||
Key j = keys_[k];
|
||||
|
||||
// Calculate Fj'*Ej for the current camera (observing a single point)
|
||||
// D x 3 = (D x 2) * (2 x 3)
|
||||
const Matrix2D& Fj = Fblocks_[pos].second;
|
||||
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
|
||||
* E_.block<2, 3>(2 * pos, 0);
|
||||
// D x 3 = (D x ZDim) * (ZDim x 3)
|
||||
const MatrixZD& Fj = FBlocks_[k];
|
||||
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
|
||||
* E_.block<ZDim, 3>(ZDim * k, 0);
|
||||
|
||||
Eigen::Matrix<double, D, 1> dj;
|
||||
for (size_t k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
|
||||
for (int k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
|
||||
// Vector column_k_Fj = Fj.col(k);
|
||||
dj(k) = Fj.col(k).squaredNorm(); // dot(column_k_Fj, column_k_Fj);
|
||||
// Vector column_k_FtE = FtE.row(k);
|
||||
|
|
@ -181,13 +183,13 @@ public:
|
|||
Key j = keys_[pos];
|
||||
|
||||
// Calculate Fj'*Ej for the current camera (observing a single point)
|
||||
// D x 3 = (D x 2) * (2 x 3)
|
||||
const Matrix2D& Fj = Fblocks_[pos].second;
|
||||
// D x 3 = (D x ZDim) * (ZDim x 3)
|
||||
const MatrixZD& Fj = FBlocks_[pos];
|
||||
Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
|
||||
* E_.block<2, 3>(2 * pos, 0);
|
||||
* E_.block<ZDim, 3>(ZDim * pos, 0);
|
||||
|
||||
DVector dj;
|
||||
for (size_t k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
|
||||
for (int k = 0; k < D; ++k) { // for each diagonal element of the camera hessian
|
||||
dj(k) = Fj.col(k).squaredNorm();
|
||||
// (1 x 1) = (1 x 3) * (3 * 3) * (3 x 1)
|
||||
dj(k) -= FtE.row(k) * PointCovariance_ * FtE.row(k).transpose();
|
||||
|
|
@ -202,38 +204,41 @@ public:
|
|||
// F'*(I - E*P*E')*F
|
||||
for (size_t pos = 0; pos < size(); ++pos) {
|
||||
Key j = keys_[pos];
|
||||
// F'*F - F'*E*P*E'*F (9*2)*(2*9) - (9*2)*(2*3)*(3*3)*(3*2)*(2*9)
|
||||
const Matrix2D& Fj = Fblocks_[pos].second;
|
||||
// F'*F - F'*E*P*E'*F e.g. (9*2)*(2*9) - (9*2)*(2*3)*(3*3)*(3*2)*(2*9)
|
||||
const MatrixZD& Fj = FBlocks_[pos];
|
||||
// Eigen::Matrix<double, D, 3> FtE = Fj.transpose()
|
||||
// * E_.block<2, 3>(2 * pos, 0);
|
||||
// * E_.block<ZDim, 3>(ZDim * pos, 0);
|
||||
// blocks[j] = Fj.transpose() * Fj
|
||||
// - FtE * PointCovariance_ * FtE.transpose();
|
||||
|
||||
const Matrix23& Ej = E_.block<2, 3>(2 * pos, 0);
|
||||
blocks[j] = Fj.transpose() * (Fj - Ej * PointCovariance_ * Ej.transpose() * Fj);
|
||||
const Matrix23& Ej = E_.block<ZDim, 3>(ZDim * pos, 0);
|
||||
blocks[j] = Fj.transpose()
|
||||
* (Fj - Ej * PointCovariance_ * Ej.transpose() * Fj);
|
||||
|
||||
// F'*(I - E*P*E')*F, TODO: this should work, but it does not :-(
|
||||
// static const Eigen::Matrix<double, 2, 2> I2 = eye(2);
|
||||
// static const Eigen::Matrix<double, ZDim, ZDim> I2 = eye(ZDim);
|
||||
// Matrix2 Q = //
|
||||
// I2 - E_.block<2, 3>(2 * pos, 0) * PointCovariance_ * E_.block<2, 3>(2 * pos, 0).transpose();
|
||||
// I2 - E_.block<ZDim, 3>(ZDim * pos, 0) * PointCovariance_ * E_.block<ZDim, 3>(ZDim * pos, 0).transpose();
|
||||
// blocks[j] = Fj.transpose() * Q * Fj;
|
||||
}
|
||||
return blocks;
|
||||
}
|
||||
|
||||
virtual GaussianFactor::shared_ptr clone() const {
|
||||
return boost::make_shared<RegularImplicitSchurFactor<D> >(Fblocks_,
|
||||
PointCovariance_, E_, b_);
|
||||
throw std::runtime_error("RegularImplicitSchurFactor::clone non implemented");
|
||||
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_,
|
||||
FBlocks_, PointCovariance_, E_, b_);
|
||||
throw std::runtime_error(
|
||||
"RegularImplicitSchurFactor::clone non implemented");
|
||||
}
|
||||
virtual bool empty() const {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual GaussianFactor::shared_ptr negate() const {
|
||||
return boost::make_shared<RegularImplicitSchurFactor<D> >(Fblocks_,
|
||||
PointCovariance_, E_, b_);
|
||||
throw std::runtime_error("RegularImplicitSchurFactor::negate non implemented");
|
||||
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_,
|
||||
FBlocks_, PointCovariance_, E_, b_);
|
||||
throw std::runtime_error(
|
||||
"RegularImplicitSchurFactor::negate non implemented");
|
||||
}
|
||||
|
||||
// Raw Vector version of y += F'*alpha*(I - E*P*E')*F*x, for testing
|
||||
|
|
@ -251,22 +256,24 @@ public:
|
|||
typedef std::vector<Vector2> Error2s;
|
||||
|
||||
/**
|
||||
* @brief Calculate corrected error Q*(e-2*b) = (I - E*P*E')*(e-2*b)
|
||||
* @brief Calculate corrected error Q*(e-ZDim*b) = (I - E*P*E')*(e-ZDim*b)
|
||||
*/
|
||||
void projectError2(const Error2s& e1, Error2s& e2) const {
|
||||
|
||||
// d1 = E.transpose() * (e1-2*b) = (3*2m)*2m
|
||||
// d1 = E.transpose() * (e1-ZDim*b) = (3*2m)*2m
|
||||
Vector3 d1;
|
||||
d1.setZero();
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
d1 += E_.block < 2, 3 > (2 * k, 0).transpose() * (e1[k] - 2 * b_.segment < 2 > (k * 2));
|
||||
d1 += E_.block<ZDim, 3>(ZDim * k, 0).transpose()
|
||||
* (e1[k] - ZDim * b_.segment<ZDim>(k * ZDim));
|
||||
|
||||
// d2 = E.transpose() * e1 = (3*2m)*2m
|
||||
Vector3 d2 = PointCovariance_ * d1;
|
||||
|
||||
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
e2[k] = e1[k] - 2 * b_.segment < 2 > (k * 2) - E_.block < 2, 3 > (2 * k, 0) * d2;
|
||||
e2[k] = e1[k] - ZDim * b_.segment<ZDim>(k * ZDim)
|
||||
- E_.block<ZDim, 3>(ZDim * k, 0) * d2;
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
@ -286,7 +293,7 @@ public:
|
|||
|
||||
// e1 = F * x - b = (2m*dm)*dm
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
e1[k] = Fblocks_[k].second * x.at(keys_[k]);
|
||||
e1[k] = FBlocks_[k] * x.at(keys_[k]);
|
||||
projectError2(e1, e2);
|
||||
|
||||
double result = 0;
|
||||
|
|
@ -308,7 +315,7 @@ public:
|
|||
|
||||
// e1 = F * x - b = (2m*dm)*dm
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
e1[k] = Fblocks_[k].second * x.at(keys_[k]) - b_.segment < 2 > (k * 2);
|
||||
e1[k] = FBlocks_[k] * x.at(keys_[k]) - b_.segment<ZDim>(k * ZDim);
|
||||
projectError(e1, e2);
|
||||
|
||||
double result = 0;
|
||||
|
|
@ -321,21 +328,21 @@ public:
|
|||
/**
|
||||
* @brief Calculate corrected error Q*e = (I - E*P*E')*e
|
||||
*/
|
||||
void projectError(const Error2s& e1, Error2s& e2) const {
|
||||
void projectError(const Error2s& e1, Error2s& e2) const {
|
||||
|
||||
// d1 = E.transpose() * e1 = (3*2m)*2m
|
||||
Vector3 d1;
|
||||
d1.setZero();
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
d1 += E_.block < 2, 3 > (2 * k, 0).transpose() * e1[k];
|
||||
// d1 = E.transpose() * e1 = (3*2m)*2m
|
||||
Vector3 d1;
|
||||
d1.setZero();
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
d1 += E_.block<ZDim, 3>(ZDim * k, 0).transpose() * e1[k];
|
||||
|
||||
// d2 = E.transpose() * e1 = (3*2m)*2m
|
||||
Vector3 d2 = PointCovariance_ * d1;
|
||||
// d2 = E.transpose() * e1 = (3*2m)*2m
|
||||
Vector3 d2 = PointCovariance_ * d1;
|
||||
|
||||
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
e2[k] = e1[k] - E_.block < 2, 3 > (2 * k, 0) * d2;
|
||||
}
|
||||
// e3 = alpha*(e1 - E*d2) = 1*[2m-(2m*3)*3]
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
e2[k] = e1[k] - E_.block<ZDim, 3>(ZDim * k, 0) * d2;
|
||||
}
|
||||
|
||||
/// Scratch space for multiplyHessianAdd
|
||||
mutable Error2s e1, e2;
|
||||
|
|
@ -356,19 +363,17 @@ public:
|
|||
e2.resize(size());
|
||||
|
||||
// e1 = F * x = (2m*dm)*dm
|
||||
size_t k = 0;
|
||||
BOOST_FOREACH(const KeyMatrix2D& it, Fblocks_) {
|
||||
Key key = it.first;
|
||||
e1[k++] = it.second * ConstDMap(x + D * key);
|
||||
for (size_t k = 0; k < size(); ++k) {
|
||||
Key key = keys_[k];
|
||||
e1[k] = FBlocks_[k] * ConstDMap(x + D * key);
|
||||
}
|
||||
|
||||
projectError(e1, e2);
|
||||
|
||||
// y += F.transpose()*e2 = (2d*2m)*2m
|
||||
k = 0;
|
||||
BOOST_FOREACH(const KeyMatrix2D& it, Fblocks_) {
|
||||
Key key = it.first;
|
||||
DMap(y + D * key) += it.second.transpose() * alpha * e2[k++];
|
||||
for (size_t k = 0; k < size(); ++k) {
|
||||
Key key = keys_[k];
|
||||
DMap(y + D * key) += FBlocks_[k].transpose() * alpha * e2[k];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -389,7 +394,7 @@ public:
|
|||
|
||||
// e1 = F * x = (2m*dm)*dm
|
||||
for (size_t k = 0; k < size(); ++k)
|
||||
e1[k] = Fblocks_[k].second * x.at(keys_[k]);
|
||||
e1[k] = FBlocks_[k] * x.at(keys_[k]);
|
||||
|
||||
projectError(e1, e2);
|
||||
|
||||
|
|
@ -401,8 +406,8 @@ public:
|
|||
Vector& yi = it.first->second;
|
||||
// Create the value as a zero vector if it does not exist.
|
||||
if (it.second)
|
||||
yi = Vector::Zero(Fblocks_[k].second.cols());
|
||||
yi += Fblocks_[k].second.transpose() * alpha * e2[k];
|
||||
yi = Vector::Zero(FBlocks_[k].cols());
|
||||
yi += FBlocks_[k].transpose() * alpha * e2[k];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -412,9 +417,9 @@ public:
|
|||
void multiplyHessianDummy(double alpha, const VectorValues& x,
|
||||
VectorValues& y) const {
|
||||
|
||||
BOOST_FOREACH(const KeyMatrix2D& Fi, Fblocks_) {
|
||||
for (size_t k = 0; k < size(); ++k) {
|
||||
static const Vector empty;
|
||||
Key key = Fi.first;
|
||||
Key key = keys_[k];
|
||||
std::pair<VectorValues::iterator, bool> it = y.tryInsert(key, empty);
|
||||
Vector& yi = it.first->second;
|
||||
yi = x.at(key);
|
||||
|
|
@ -429,14 +434,14 @@ public:
|
|||
e1.resize(size());
|
||||
e2.resize(size());
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
e1[k] = b_.segment < 2 > (2 * k);
|
||||
e1[k] = b_.segment<ZDim>(ZDim * k);
|
||||
projectError(e1, e2);
|
||||
|
||||
// g = F.transpose()*e2
|
||||
VectorValues g;
|
||||
for (size_t k = 0; k < size(); ++k) {
|
||||
Key key = keys_[k];
|
||||
g.insert(key, -Fblocks_[k].second.transpose() * e2[k]);
|
||||
g.insert(key, -FBlocks_[k].transpose() * e2[k]);
|
||||
}
|
||||
|
||||
// return it
|
||||
|
|
@ -456,27 +461,33 @@ public:
|
|||
e1.resize(size());
|
||||
e2.resize(size());
|
||||
for (size_t k = 0; k < size(); k++)
|
||||
e1[k] = b_.segment < 2 > (2 * k);
|
||||
e1[k] = b_.segment<ZDim>(ZDim * k);
|
||||
projectError(e1, e2);
|
||||
|
||||
for (size_t k = 0; k < size(); ++k) { // for each camera in the factor
|
||||
Key j = keys_[k];
|
||||
DMap(d + D * j) += -Fblocks_[k].second.transpose() * e2[k];
|
||||
DMap(d + D * j) += -FBlocks_[k].transpose() * e2[k];
|
||||
}
|
||||
}
|
||||
|
||||
/// Gradient wrt a key at any values
|
||||
Vector gradient(Key key, const VectorValues& x) const {
|
||||
throw std::runtime_error("gradient for RegularImplicitSchurFactor is not implemented yet");
|
||||
throw std::runtime_error(
|
||||
"gradient for RegularImplicitSchurFactor is not implemented yet");
|
||||
}
|
||||
|
||||
|
||||
};
|
||||
// end class RegularImplicitSchurFactor
|
||||
|
||||
template<class CAMERA>
|
||||
const int RegularImplicitSchurFactor<CAMERA>::D;
|
||||
|
||||
template<class CAMERA>
|
||||
const int RegularImplicitSchurFactor<CAMERA>::ZDim;
|
||||
|
||||
// traits
|
||||
template<size_t D> struct traits<RegularImplicitSchurFactor<D> > : public Testable<
|
||||
RegularImplicitSchurFactor<D> > {
|
||||
template<class CAMERA> struct traits<RegularImplicitSchurFactor<CAMERA> > : public Testable<
|
||||
RegularImplicitSchurFactor<CAMERA> > {
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,9 +22,9 @@
|
|||
#include <gtsam/slam/JacobianFactorQ.h>
|
||||
#include <gtsam/slam/JacobianFactorSVD.h>
|
||||
#include <gtsam/slam/RegularImplicitSchurFactor.h>
|
||||
#include <gtsam/slam/RegularHessianFactor.h>
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/linear/RegularHessianFactor.h>
|
||||
#include <gtsam/geometry/CameraSet.h>
|
||||
|
||||
#include <boost/optional.hpp>
|
||||
|
|
@ -41,13 +41,23 @@ namespace gtsam {
|
|||
* The methods take a Cameras argument, which should behave like PinholeCamera, and
|
||||
* the value of a point, which is kept in the base class.
|
||||
*/
|
||||
template<class CAMERA, size_t D>
|
||||
template<class CAMERA>
|
||||
class SmartFactorBase: public NonlinearFactor {
|
||||
|
||||
protected:
|
||||
|
||||
private:
|
||||
typedef NonlinearFactor Base;
|
||||
typedef SmartFactorBase<CAMERA> This;
|
||||
typedef typename CAMERA::Measurement Z;
|
||||
|
||||
/**
|
||||
* As of Feb 22, 2015, the noise model is the same for all measurements and
|
||||
* is isotropic. This allows for moving most calculations of Schur complement
|
||||
* etc to be moved to CameraSet very easily, and also agrees pragmatically
|
||||
* with what is normally done.
|
||||
*/
|
||||
SharedIsotropic noiseModel_;
|
||||
|
||||
protected:
|
||||
/**
|
||||
* 2D measurement and noise model for each of the m views
|
||||
* We keep a copy of measurements for I/O and computing the error.
|
||||
|
|
@ -55,45 +65,54 @@ protected:
|
|||
*/
|
||||
std::vector<Z> measured_;
|
||||
|
||||
std::vector<SharedNoiseModel> noise_; ///< noise model used
|
||||
|
||||
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame (one for all cameras)
|
||||
/// @name Pose of the camera in the body frame
|
||||
const boost::optional<Pose3> body_P_sensor_; ///< Pose of the camera in the body frame
|
||||
/// @}
|
||||
|
||||
static const int Dim = traits<CAMERA>::dimension; ///< Camera dimension
|
||||
static const int ZDim = traits<Z>::dimension; ///< Measurement dimension
|
||||
|
||||
/// Definitions for blocks of F
|
||||
typedef Eigen::Matrix<double, ZDim, D> Matrix2D; // F
|
||||
typedef Eigen::Matrix<double, D, ZDim> MatrixD2; // F'
|
||||
typedef std::pair<Key, Matrix2D> KeyMatrix2D; // Fblocks
|
||||
typedef Eigen::Matrix<double, D, D> MatrixDD; // camera hessian block
|
||||
// Definitions for block matrices used internally
|
||||
typedef Eigen::Matrix<double, Dim, ZDim> MatrixD2; // F'
|
||||
typedef Eigen::Matrix<double, Dim, Dim> MatrixDD; // camera hessian block
|
||||
typedef Eigen::Matrix<double, ZDim, 3> Matrix23;
|
||||
typedef Eigen::Matrix<double, D, 1> VectorD;
|
||||
typedef Eigen::Matrix<double, Dim, 1> VectorD;
|
||||
typedef Eigen::Matrix<double, ZDim, ZDim> Matrix2;
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef NonlinearFactor Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef SmartFactorBase<CAMERA, D> This;
|
||||
// check that noise model is isotropic and the same
|
||||
// TODO, this is hacky, we should just do this via constructor, not add
|
||||
void maybeSetNoiseModel(const SharedNoiseModel& sharedNoiseModel) {
|
||||
if (!sharedNoiseModel)
|
||||
return;
|
||||
SharedIsotropic sharedIsotropic = boost::dynamic_pointer_cast<
|
||||
noiseModel::Isotropic>(sharedNoiseModel);
|
||||
if (!sharedIsotropic)
|
||||
throw std::runtime_error("SmartFactorBase: needs isotropic");
|
||||
if (!noiseModel_)
|
||||
noiseModel_ = sharedIsotropic;
|
||||
else if (!sharedIsotropic->equals(*noiseModel_))
|
||||
throw std::runtime_error(
|
||||
"SmartFactorBase: cannot add measurements with different noise model");
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
// Definitions for blocks of F, externally visible
|
||||
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F
|
||||
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// We use the new CameraSte data structure to refer to a set of cameras
|
||||
typedef CameraSet<CAMERA> Cameras;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param body_P_sensor is the transform from sensor to body frame (default identity)
|
||||
*/
|
||||
/// Constructor
|
||||
SmartFactorBase(boost::optional<Pose3> body_P_sensor = boost::none) :
|
||||
body_P_sensor_(body_P_sensor) {
|
||||
}
|
||||
body_P_sensor_(body_P_sensor){}
|
||||
|
||||
/** Virtual destructor */
|
||||
/// Virtual destructor, subclasses from NonlinearFactor
|
||||
virtual ~SmartFactorBase() {
|
||||
}
|
||||
|
||||
|
|
@ -101,36 +120,36 @@ public:
|
|||
* Add a new measurement and pose key
|
||||
* @param measured_i is the 2m dimensional projection of a single landmark
|
||||
* @param poseKey is the index corresponding to the camera observing the landmark
|
||||
* @param noise_i is the measurement noise
|
||||
* @param sharedNoiseModel is the measurement noise
|
||||
*/
|
||||
void add(const Z& measured_i, const Key& poseKey_i,
|
||||
const SharedNoiseModel& noise_i) {
|
||||
void add(const Z& measured_i, const Key& cameraKey_i,
|
||||
const SharedNoiseModel& sharedNoiseModel) {
|
||||
this->measured_.push_back(measured_i);
|
||||
this->keys_.push_back(poseKey_i);
|
||||
this->noise_.push_back(noise_i);
|
||||
this->keys_.push_back(cameraKey_i);
|
||||
maybeSetNoiseModel(sharedNoiseModel);
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a bunch of measurements, together with the camera keys and noises
|
||||
*/
|
||||
void add(std::vector<Z>& measurements, std::vector<Key>& poseKeys,
|
||||
void add(std::vector<Z>& measurements, std::vector<Key>& cameraKeys,
|
||||
std::vector<SharedNoiseModel>& noises) {
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
this->measured_.push_back(measurements.at(i));
|
||||
this->keys_.push_back(poseKeys.at(i));
|
||||
this->noise_.push_back(noises.at(i));
|
||||
this->keys_.push_back(cameraKeys.at(i));
|
||||
maybeSetNoiseModel(noises.at(i));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a bunch of measurements and uses the same noise model for all of them
|
||||
* Add a bunch of measurements and use the same noise model for all of them
|
||||
*/
|
||||
void add(std::vector<Z>& measurements, std::vector<Key>& poseKeys,
|
||||
void add(std::vector<Z>& measurements, std::vector<Key>& cameraKeys,
|
||||
const SharedNoiseModel& noise) {
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
this->measured_.push_back(measurements.at(i));
|
||||
this->keys_.push_back(poseKeys.at(i));
|
||||
this->noise_.push_back(noise);
|
||||
this->keys_.push_back(cameraKeys.at(i));
|
||||
maybeSetNoiseModel(noise);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -143,7 +162,7 @@ public:
|
|||
for (size_t k = 0; k < trackToAdd.number_measurements(); k++) {
|
||||
this->measured_.push_back(trackToAdd.measurements[k].second);
|
||||
this->keys_.push_back(trackToAdd.measurements[k].first);
|
||||
this->noise_.push_back(noise);
|
||||
maybeSetNoiseModel(noise);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -157,9 +176,12 @@ public:
|
|||
return measured_;
|
||||
}
|
||||
|
||||
/** return the noise models */
|
||||
const std::vector<SharedNoiseModel>& noise() const {
|
||||
return noise_;
|
||||
/// Collect all cameras: important that in key order
|
||||
virtual Cameras cameras(const Values& values) const {
|
||||
Cameras cameras;
|
||||
BOOST_FOREACH(const Key& k, this->keys_)
|
||||
cameras.push_back(values.at<CAMERA>(k));
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -172,11 +194,11 @@ public:
|
|||
std::cout << s << "SmartFactorBase, z = \n";
|
||||
for (size_t k = 0; k < measured_.size(); ++k) {
|
||||
std::cout << "measurement, p = " << measured_[k] << "\t";
|
||||
noise_[k]->print("noise model = ");
|
||||
noiseModel_->print("noise model = ");
|
||||
}
|
||||
if (this->body_P_sensor_)
|
||||
this->body_P_sensor_->print(" sensor pose in body frame: ");
|
||||
Base::print("", keyFormatter);
|
||||
if(body_P_sensor_)
|
||||
body_P_sensor_->print("body_P_sensor_:\n");
|
||||
print("", keyFormatter);
|
||||
}
|
||||
|
||||
/// equals
|
||||
|
|
@ -189,518 +211,105 @@ public:
|
|||
areMeasurementsEqual = false;
|
||||
break;
|
||||
}
|
||||
return e && Base::equals(p, tol) && areMeasurementsEqual
|
||||
&& ((!body_P_sensor_ && !e->body_P_sensor_)
|
||||
|| (body_P_sensor_ && e->body_P_sensor_
|
||||
&& body_P_sensor_->equals(*e->body_P_sensor_)));
|
||||
return e && Base::equals(p, tol) && areMeasurementsEqual;
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, before applying noise model
|
||||
Vector reprojectionError(const Cameras& cameras, const Point3& point) const {
|
||||
|
||||
// Project into CameraSet
|
||||
std::vector<Z> predicted;
|
||||
try {
|
||||
predicted = cameras.project(point);
|
||||
} catch (CheiralityException&) {
|
||||
std::cout << "reprojectionError: Cheirality exception " << std::endl;
|
||||
exit(EXIT_FAILURE); // TODO: throw exception
|
||||
/// Compute reprojection errors [h(x)-z] = [cameras.project(p)-z] and derivatives
|
||||
template<class POINT>
|
||||
Vector unwhitenedError(const Cameras& cameras, const POINT& point,
|
||||
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, //
|
||||
boost::optional<Matrix&> E = boost::none) const {
|
||||
Vector ue = cameras.reprojectionError(point, measured_, Fs, E);
|
||||
if(body_P_sensor_){
|
||||
for(size_t i=0; i < Fs->size(); i++){
|
||||
Pose3 w_Pose_body = (cameras[i].pose()).compose(body_P_sensor_->inverse());
|
||||
Matrix J(6, 6);
|
||||
Pose3 world_P_body = w_Pose_body.compose(*body_P_sensor_, J);
|
||||
Fs->at(i) = Fs->at(i) * J;
|
||||
}
|
||||
}
|
||||
|
||||
// Calculate vector of errors
|
||||
size_t nrCameras = cameras.size();
|
||||
Vector b(ZDim * nrCameras);
|
||||
for (size_t i = 0, row = 0; i < nrCameras; i++, row += ZDim) {
|
||||
Z e = predicted[i] - measured_.at(i);
|
||||
b.segment<ZDim>(row) = e.vector();
|
||||
}
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, noise model applied
|
||||
Vector whitenedError(const Cameras& cameras, const Point3& point) const {
|
||||
Vector b = reprojectionError(cameras, point);
|
||||
size_t nrCameras = cameras.size();
|
||||
for (size_t i = 0, row = 0; i < nrCameras; i++, row += ZDim)
|
||||
b.segment<ZDim>(row) = noise_.at(i)->whiten(b.segment<ZDim>(row));
|
||||
return b;
|
||||
return ue;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the error of the factor.
|
||||
* Calculate vector of re-projection errors [h(x)-z] = [cameras.project(p) - z]
|
||||
* Noise model applied
|
||||
*/
|
||||
template<class POINT>
|
||||
Vector whitenedError(const Cameras& cameras, const POINT& point) const {
|
||||
Vector e = cameras.reprojectionError(point, measured_);
|
||||
if (noiseModel_)
|
||||
noiseModel_->whitenInPlace(e);
|
||||
return e;
|
||||
}
|
||||
|
||||
/** Calculate the error of the factor.
|
||||
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
||||
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
|
||||
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
|
||||
* This is different from reprojectionError(cameras,point) as each point is whitened
|
||||
* Will be used in "error(Values)" function required by NonlinearFactor base class
|
||||
*/
|
||||
template<class POINT>
|
||||
double totalReprojectionError(const Cameras& cameras,
|
||||
const Point3& point) const {
|
||||
Vector b = reprojectionError(cameras, point);
|
||||
double overallError = 0;
|
||||
size_t nrCameras = cameras.size();
|
||||
for (size_t i = 0; i < nrCameras; i++)
|
||||
overallError += noise_.at(i)->distance(b.segment<ZDim>(i * ZDim));
|
||||
return 0.5 * overallError;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute whitenedError, returning only the derivative E, i.e.,
|
||||
* the stacked ZDim*3 derivatives of project with respect to the point.
|
||||
* Assumes non-degenerate ! TODO explain this
|
||||
*/
|
||||
Vector whitenedError(const Cameras& cameras, const Point3& point,
|
||||
Matrix& E) const {
|
||||
|
||||
// Project into CameraSet, calculating derivatives
|
||||
std::vector<Z> predicted;
|
||||
try {
|
||||
using boost::none;
|
||||
predicted = cameras.project(point, none, E, none);
|
||||
} catch (CheiralityException&) {
|
||||
std::cout << "whitenedError(E): Cheirality exception " << std::endl;
|
||||
exit(EXIT_FAILURE); // TODO: throw exception
|
||||
}
|
||||
|
||||
// if needed, whiten
|
||||
size_t m = keys_.size();
|
||||
Vector b(ZDim * m);
|
||||
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
||||
|
||||
// Calculate error
|
||||
const Z& zi = measured_.at(i);
|
||||
Vector bi = (zi - predicted[i]).vector();
|
||||
|
||||
// if needed, whiten
|
||||
SharedNoiseModel model = noise_.at(i);
|
||||
if (model) {
|
||||
// TODO: re-factor noiseModel to take any block/fixed vector/matrix
|
||||
Vector dummy;
|
||||
Matrix Ei = E.block<ZDim, 3>(row, 0);
|
||||
model->WhitenSystem(Ei, dummy);
|
||||
E.block<ZDim, 3>(row, 0) = Ei;
|
||||
}
|
||||
b.segment<ZDim>(row) = bi;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute F, E, and optionally H, where F and E are the stacked derivatives
|
||||
* with respect to the cameras, point, and calibration, respectively.
|
||||
* The value of cameras/point are passed as parameters.
|
||||
* Returns error vector b
|
||||
* TODO: the treatment of body_P_sensor_ is weird: the transformation
|
||||
* is applied in the caller, but the derivatives are computed here.
|
||||
*/
|
||||
Vector whitenedError(const Cameras& cameras, const Point3& point, Matrix& F,
|
||||
Matrix& E, boost::optional<Matrix&> G = boost::none) const {
|
||||
|
||||
// Project into CameraSet, calculating derivatives
|
||||
std::vector<Z> predicted;
|
||||
try {
|
||||
predicted = cameras.project(point, F, E, G);
|
||||
} catch (CheiralityException&) {
|
||||
std::cout << "whitenedError(E,F): Cheirality exception " << std::endl;
|
||||
exit(EXIT_FAILURE); // TODO: throw exception
|
||||
}
|
||||
|
||||
// Calculate error and whiten derivatives if needed
|
||||
size_t m = keys_.size();
|
||||
Vector b(ZDim * m);
|
||||
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
||||
|
||||
// Calculate error
|
||||
const Z& zi = measured_.at(i);
|
||||
Vector bi = (zi - predicted[i]).vector();
|
||||
|
||||
// if we have a sensor offset, correct camera derivatives
|
||||
if (body_P_sensor_) {
|
||||
// TODO: no simpler way ??
|
||||
const Pose3& pose_i = cameras[i].pose();
|
||||
Pose3 w_Pose_body = pose_i.compose(body_P_sensor_->inverse());
|
||||
Matrix66 J;
|
||||
Pose3 world_P_body = w_Pose_body.compose(*body_P_sensor_, J);
|
||||
F.block<ZDim, 6>(row, 0) *= J;
|
||||
}
|
||||
|
||||
// if needed, whiten
|
||||
SharedNoiseModel model = noise_.at(i);
|
||||
if (model) {
|
||||
// TODO, refactor noiseModel so we can take blocks
|
||||
Matrix Fi = F.block<ZDim, 6>(row, 0);
|
||||
Matrix Ei = E.block<ZDim, 3>(row, 0);
|
||||
if (!G)
|
||||
model->WhitenSystem(Fi, Ei, bi);
|
||||
else {
|
||||
Matrix Gi = G->block<ZDim, D - 6>(row, 0);
|
||||
model->WhitenSystem(Fi, Ei, Gi, bi);
|
||||
G->block<ZDim, D - 6>(row, 0) = Gi;
|
||||
}
|
||||
F.block<ZDim, 6>(row, 0) = Fi;
|
||||
E.block<ZDim, 3>(row, 0) = Ei;
|
||||
}
|
||||
b.segment<ZDim>(row) = bi;
|
||||
}
|
||||
return b;
|
||||
const POINT& point) const {
|
||||
Vector e = whitenedError(cameras, point);
|
||||
return 0.5 * e.dot(e);
|
||||
}
|
||||
|
||||
/// Computes Point Covariance P from E
|
||||
static Matrix3 PointCov(Matrix& E) {
|
||||
static Matrix PointCov(Matrix& E) {
|
||||
return (E.transpose() * E).inverse();
|
||||
}
|
||||
|
||||
/// Computes Point Covariance P, with lambda parameter
|
||||
static Matrix3 PointCov(Matrix& E, double lambda,
|
||||
bool diagonalDamping = false) {
|
||||
|
||||
Matrix3 EtE = E.transpose() * E;
|
||||
|
||||
if (diagonalDamping) { // diagonal of the hessian
|
||||
EtE(0, 0) += lambda * EtE(0, 0);
|
||||
EtE(1, 1) += lambda * EtE(1, 1);
|
||||
EtE(2, 2) += lambda * EtE(2, 2);
|
||||
} else {
|
||||
EtE(0, 0) += lambda;
|
||||
EtE(1, 1) += lambda;
|
||||
EtE(2, 2) += lambda;
|
||||
}
|
||||
|
||||
return (EtE).inverse();
|
||||
}
|
||||
|
||||
/// Assumes non-degenerate !
|
||||
void computeEP(Matrix& E, Matrix& P, const Cameras& cameras,
|
||||
const Point3& point) const {
|
||||
whitenedError(cameras, point, E);
|
||||
P = PointCov(E);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute F, E, and b (called below in both vanilla and SVD versions), where
|
||||
* F is a vector of derivatives wrpt the cameras, and E the stacked derivatives
|
||||
* with respect to the point. The value of cameras/point are passed as parameters.
|
||||
* TODO: Kill this obsolete method
|
||||
*/
|
||||
double computeJacobians(std::vector<KeyMatrix2D>& Fblocks, Matrix& E,
|
||||
Vector& b, const Cameras& cameras, const Point3& point) const {
|
||||
|
||||
template<class POINT>
|
||||
void computeJacobians(std::vector<MatrixZD>& Fblocks, Matrix& E, Vector& b,
|
||||
const Cameras& cameras, const POINT& point) const {
|
||||
// Project into Camera set and calculate derivatives
|
||||
// TODO: if D==6 we optimize only camera pose. That is fairly hacky!
|
||||
Matrix F, G;
|
||||
using boost::none;
|
||||
boost::optional<Matrix&> optionalG(G);
|
||||
b = whitenedError(cameras, point, F, E, D == 6 ? none : optionalG);
|
||||
|
||||
// Now calculate f and divide up the F derivatives into Fblocks
|
||||
double f = 0.0;
|
||||
size_t m = keys_.size();
|
||||
for (size_t i = 0, row = 0; i < m; i++, row += ZDim) {
|
||||
|
||||
// Accumulate normalized error
|
||||
f += b.segment<ZDim>(row).squaredNorm();
|
||||
|
||||
// Get piece of F and possibly G
|
||||
Matrix2D Fi;
|
||||
if (D == 6)
|
||||
Fi << F.block<ZDim, 6>(row, 0);
|
||||
else
|
||||
Fi << F.block<ZDim, 6>(row, 0), G.block<ZDim, D - 6>(row, 0);
|
||||
|
||||
// Push it onto Fblocks
|
||||
Fblocks.push_back(KeyMatrix2D(keys_[i], Fi));
|
||||
}
|
||||
return f;
|
||||
}
|
||||
|
||||
/// Create BIG block-diagonal matrix F from Fblocks
|
||||
static void FillDiagonalF(const std::vector<KeyMatrix2D>& Fblocks, Matrix& F) {
|
||||
size_t m = Fblocks.size();
|
||||
F.resize(ZDim * m, D * m);
|
||||
F.setZero();
|
||||
for (size_t i = 0; i < m; ++i)
|
||||
F.block<This::ZDim, D>(This::ZDim * i, D * i) = Fblocks.at(i).second;
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute F, E, and b, where F and E are the stacked derivatives
|
||||
* with respect to the point. The value of cameras/point are passed as parameters.
|
||||
*/
|
||||
double computeJacobians(Matrix& F, Matrix& E, Vector& b,
|
||||
const Cameras& cameras, const Point3& point) const {
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
double f = computeJacobians(Fblocks, E, b, cameras, point);
|
||||
FillDiagonalF(Fblocks, F);
|
||||
return f;
|
||||
// As in expressionFactor, RHS vector b = - (h(x_bar) - z) = z-h(x_bar)
|
||||
// Indeed, nonlinear error |h(x_bar+dx)-z| ~ |h(x_bar) + A*dx - z|
|
||||
// = |A*dx - (z-h(x_bar))|
|
||||
b = -unwhitenedError(cameras, point, Fblocks, E);
|
||||
}
|
||||
|
||||
/// SVD version
|
||||
double computeJacobiansSVD(std::vector<KeyMatrix2D>& Fblocks, Matrix& Enull,
|
||||
Vector& b, const Cameras& cameras, const Point3& point) const {
|
||||
template<class POINT>
|
||||
void computeJacobiansSVD(std::vector<MatrixZD>& Fblocks, Matrix& Enull,
|
||||
Vector& b, const Cameras& cameras, const POINT& point) const {
|
||||
|
||||
Matrix E;
|
||||
double f = computeJacobians(Fblocks, E, b, cameras, point);
|
||||
computeJacobians(Fblocks, E, b, cameras, point);
|
||||
|
||||
static const int N = FixedDimension<POINT>::value; // 2 (Unit3) or 3 (Point3)
|
||||
|
||||
// Do SVD on A
|
||||
Eigen::JacobiSVD<Matrix> svd(E, Eigen::ComputeFullU);
|
||||
Vector s = svd.singularValues();
|
||||
size_t m = this->keys_.size();
|
||||
// Enull = zeros(ZDim * m, ZDim * m - 3);
|
||||
Enull = svd.matrixU().block(0, 3, ZDim * m, ZDim * m - 3); // last ZDim*m-3 columns
|
||||
|
||||
return f;
|
||||
Enull = svd.matrixU().block(0, N, ZDim * m, ZDim * m - N); // last ZDim*m-N columns
|
||||
}
|
||||
|
||||
/// Matrix version of SVD
|
||||
// TODO, there should not be a Matrix version, really
|
||||
double computeJacobiansSVD(Matrix& F, Matrix& Enull, Vector& b,
|
||||
const Cameras& cameras, const Point3& point) const {
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
double f = computeJacobiansSVD(Fblocks, Enull, b, cameras, point);
|
||||
FillDiagonalF(Fblocks, F);
|
||||
return f;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearize returns a Hessianfactor that is an approximation of error(p)
|
||||
*/
|
||||
boost::shared_ptr<RegularHessianFactor<D> > createHessianFactor(
|
||||
/// Linearize to a Hessianfactor
|
||||
boost::shared_ptr<RegularHessianFactor<Dim> > createHessianFactor(
|
||||
const Cameras& cameras, const Point3& point, const double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
|
||||
int numKeys = this->keys_.size();
|
||||
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
std::vector<MatrixZD> Fblocks;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
double f = computeJacobians(Fblocks, E, b, cameras, point);
|
||||
Matrix3 P = PointCov(E, lambda, diagonalDamping);
|
||||
computeJacobians(Fblocks, E, b, cameras, point);
|
||||
|
||||
//#define HESSIAN_BLOCKS // slower, as internally the Hessian factor will transform the blocks into SymmetricBlockMatrix
|
||||
#ifdef HESSIAN_BLOCKS
|
||||
// Create structures for Hessian Factors
|
||||
std::vector < Matrix > Gs(numKeys * (numKeys + 1) / 2);
|
||||
std::vector < Vector > gs(numKeys);
|
||||
// build augmented hessian
|
||||
SymmetricBlockMatrix augmentedHessian = Cameras::SchurComplement(Fblocks, E,
|
||||
b);
|
||||
|
||||
sparseSchurComplement(Fblocks, E, P, b, Gs, gs);
|
||||
// schurComplement(Fblocks, E, P, b, Gs, gs);
|
||||
|
||||
//std::vector < Matrix > Gs2(Gs.begin(), Gs.end());
|
||||
//std::vector < Vector > gs2(gs.begin(), gs.end());
|
||||
|
||||
return boost::make_shared < RegularHessianFactor<D> > (this->keys_, Gs, gs, f);
|
||||
#else // we create directly a SymmetricBlockMatrix
|
||||
size_t n1 = D * numKeys + 1;
|
||||
std::vector<DenseIndex> dims(numKeys + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, D);
|
||||
dims.back() = 1;
|
||||
|
||||
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(n1, n1)); // for 10 cameras, size should be (10*D+1 x 10*D+1)
|
||||
sparseSchurComplement(Fblocks, E, P, b, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
||||
augmentedHessian(numKeys, numKeys)(0, 0) = f;
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_,
|
||||
return boost::make_shared<RegularHessianFactor<Dim> >(keys_,
|
||||
augmentedHessian);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Do Schur complement, given Jacobian as F,E,P.
|
||||
* Slow version - works on full matrices
|
||||
*/
|
||||
void schurComplement(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
|
||||
const Matrix3& P, const Vector& b,
|
||||
/*output ->*/std::vector<Matrix>& Gs, std::vector<Vector>& gs) const {
|
||||
// Schur complement trick
|
||||
// Gs = F' * F - F' * E * inv(E'*E) * E' * F
|
||||
// gs = F' * (b - E * inv(E'*E) * E' * b)
|
||||
// This version uses full matrices
|
||||
|
||||
int numKeys = this->keys_.size();
|
||||
|
||||
/// Compute Full F ????
|
||||
Matrix F;
|
||||
FillDiagonalF(Fblocks, F);
|
||||
|
||||
Matrix H(D * numKeys, D * numKeys);
|
||||
Vector gs_vector;
|
||||
|
||||
H.noalias() = F.transpose() * (F - (E * (P * (E.transpose() * F))));
|
||||
gs_vector.noalias() = F.transpose() * (b - (E * (P * (E.transpose() * b))));
|
||||
|
||||
// Populate Gs and gs
|
||||
int GsCount2 = 0;
|
||||
for (DenseIndex i1 = 0; i1 < numKeys; i1++) { // for each camera
|
||||
DenseIndex i1D = i1 * D;
|
||||
gs.at(i1) = gs_vector.segment<D>(i1D);
|
||||
for (DenseIndex i2 = 0; i2 < numKeys; i2++) {
|
||||
if (i2 >= i1) {
|
||||
Gs.at(GsCount2) = H.block<D, D>(i1D, i2 * D);
|
||||
GsCount2++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Do Schur complement, given Jacobian as F,E,P, return SymmetricBlockMatrix
|
||||
* Fast version - works on with sparsity
|
||||
*/
|
||||
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
||||
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
|
||||
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
|
||||
// Schur complement trick
|
||||
// Gs = F' * F - F' * E * P * E' * F
|
||||
// gs = F' * (b - E * P * E' * b)
|
||||
|
||||
// a single point is observed in numKeys cameras
|
||||
size_t numKeys = this->keys_.size();
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
|
||||
|
||||
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
||||
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
|
||||
|
||||
// D = (Dx2) * (2)
|
||||
// (augmentedHessian.matrix()).block<D,1> (i1,numKeys+1) = Fi1.transpose() * b.segment < 2 > (2 * i1); // F' * b
|
||||
augmentedHessian(i1, numKeys) = Fi1.transpose()
|
||||
* b.segment<ZDim>(ZDim * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
augmentedHessian(i1, i1) = Fi1.transpose()
|
||||
* (Fi1 - Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1);
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
augmentedHessian(i1, i2) = -Fi1.transpose()
|
||||
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
|
||||
}
|
||||
} // end of for over cameras
|
||||
}
|
||||
|
||||
/**
|
||||
* Do Schur complement, given Jacobian as F,E,P, return Gs/gs
|
||||
* Fast version - works on with sparsity
|
||||
*/
|
||||
void sparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
||||
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
|
||||
/*output ->*/std::vector<Matrix>& Gs, std::vector<Vector>& gs) const {
|
||||
// Schur complement trick
|
||||
// Gs = F' * F - F' * E * P * E' * F
|
||||
// gs = F' * (b - E * P * E' * b)
|
||||
|
||||
// a single point is observed in numKeys cameras
|
||||
size_t numKeys = this->keys_.size();
|
||||
|
||||
int GsIndex = 0;
|
||||
// Blockwise Schur complement
|
||||
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera
|
||||
// GsIndex points to the upper triangular blocks
|
||||
// 0 1 2 3 4
|
||||
// X 5 6 7 8
|
||||
// X X 9 10 11
|
||||
// X X X 12 13
|
||||
// X X X X 14
|
||||
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
||||
|
||||
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
|
||||
|
||||
{ // for i1 = i2
|
||||
// D = (Dx2) * (2)
|
||||
gs.at(i1) = Fi1.transpose() * b.segment<ZDim>(ZDim * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
Gs.at(GsIndex) = Fi1.transpose()
|
||||
* (Fi1 - Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1);
|
||||
GsIndex++;
|
||||
}
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
Gs.at(GsIndex) = -Fi1.transpose()
|
||||
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
|
||||
GsIndex++;
|
||||
}
|
||||
} // end of for over cameras
|
||||
}
|
||||
|
||||
/**
|
||||
* Applies Schur complement (exploiting block structure) to get a smart factor on cameras,
|
||||
* and adds the contribution of the smart factor to a pre-allocated augmented Hessian.
|
||||
*/
|
||||
void updateSparseSchurComplement(const std::vector<KeyMatrix2D>& Fblocks,
|
||||
const Matrix& E, const Matrix3& P /*Point Covariance*/, const Vector& b,
|
||||
const double f, const FastVector<Key> allKeys,
|
||||
/*output ->*/SymmetricBlockMatrix& augmentedHessian) const {
|
||||
// Schur complement trick
|
||||
// Gs = F' * F - F' * E * P * E' * F
|
||||
// gs = F' * (b - E * P * E' * b)
|
||||
|
||||
MatrixDD matrixBlock;
|
||||
|
||||
FastMap<Key, size_t> KeySlotMap;
|
||||
for (size_t slot = 0; slot < allKeys.size(); slot++)
|
||||
KeySlotMap.insert(std::make_pair(allKeys[slot], slot));
|
||||
|
||||
// a single point is observed in numKeys cameras
|
||||
size_t numKeys = this->keys_.size(); // cameras observing current point
|
||||
size_t aug_numKeys = (augmentedHessian.rows() - 1) / D; // all cameras in the group
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i1 = 0; i1 < numKeys; i1++) { // for each camera in the current factor
|
||||
|
||||
const Matrix2D& Fi1 = Fblocks.at(i1).second;
|
||||
const Matrix23 Ei1_P = E.block<ZDim, 3>(ZDim * i1, 0) * P;
|
||||
|
||||
// D = (DxZDim) * (ZDim)
|
||||
// allKeys are the list of all camera keys in the group, e.g, (1,3,4,5,7)
|
||||
// we should map those to a slot in the local (grouped) hessian (0,1,2,3,4)
|
||||
// Key cameraKey_i1 = this->keys_[i1];
|
||||
DenseIndex aug_i1 = KeySlotMap[this->keys_[i1]];
|
||||
|
||||
// information vector - store previous vector
|
||||
// vectorBlock = augmentedHessian(aug_i1, aug_numKeys).knownOffDiagonal();
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i1, aug_numKeys) = augmentedHessian(aug_i1,
|
||||
aug_numKeys).knownOffDiagonal()
|
||||
+ Fi1.transpose() * b.segment<ZDim>(ZDim * i1) // F' * b
|
||||
- Fi1.transpose() * (Ei1_P * (E.transpose() * b)); // D = (DxZDim) * (ZDimx3) * (3*ZDimm) * (ZDimm x 1)
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
// main block diagonal - store previous block
|
||||
matrixBlock = augmentedHessian(aug_i1, aug_i1);
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i1, aug_i1) =
|
||||
matrixBlock
|
||||
+ (Fi1.transpose()
|
||||
* (Fi1
|
||||
- Ei1_P * E.block<ZDim, 3>(ZDim * i1, 0).transpose() * Fi1));
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t i2 = i1 + 1; i2 < numKeys; i2++) { // for each camera
|
||||
const Matrix2D& Fi2 = Fblocks.at(i2).second;
|
||||
|
||||
//Key cameraKey_i2 = this->keys_[i2];
|
||||
DenseIndex aug_i2 = KeySlotMap[this->keys_[i2]];
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxZDim) * (ZDimxD) )
|
||||
// off diagonal block - store previous block
|
||||
// matrixBlock = augmentedHessian(aug_i1, aug_i2).knownOffDiagonal();
|
||||
// add contribution of current factor
|
||||
augmentedHessian(aug_i1, aug_i2) =
|
||||
augmentedHessian(aug_i1, aug_i2).knownOffDiagonal()
|
||||
- Fi1.transpose()
|
||||
* (Ei1_P * E.block<ZDim, 3>(ZDim * i2, 0).transpose() * Fi2);
|
||||
}
|
||||
} // end of for over cameras
|
||||
|
||||
augmentedHessian(aug_numKeys, aug_numKeys)(0, 0) += f;
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -712,73 +321,100 @@ public:
|
|||
const double lambda, bool diagonalDamping,
|
||||
SymmetricBlockMatrix& augmentedHessian,
|
||||
const FastVector<Key> allKeys) const {
|
||||
|
||||
// int numKeys = this->keys_.size();
|
||||
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
double f = computeJacobians(Fblocks, E, b, cameras, point);
|
||||
Matrix3 P = PointCov(E, lambda, diagonalDamping);
|
||||
updateSparseSchurComplement(Fblocks, E, P, b, f, allKeys, augmentedHessian); // augmentedHessian.matrix().block<D,D> (i1,i2) = ...
|
||||
std::vector<MatrixZD> Fblocks;
|
||||
computeJacobians(Fblocks, E, b, cameras, point);
|
||||
Cameras::UpdateSchurComplement(Fblocks, E, b, allKeys, keys_,
|
||||
augmentedHessian);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return Jacobians as RegularImplicitSchurFactor with raw access
|
||||
*/
|
||||
boost::shared_ptr<RegularImplicitSchurFactor<D> > createRegularImplicitSchurFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
typename boost::shared_ptr<RegularImplicitSchurFactor<D> > f(
|
||||
new RegularImplicitSchurFactor<D>());
|
||||
computeJacobians(f->Fblocks(), f->E(), f->b(), cameras, point);
|
||||
f->PointCovariance() = PointCov(f->E(), lambda, diagonalDamping);
|
||||
f->initKeys();
|
||||
return f;
|
||||
/// Whiten the Jacobians computed by computeJacobians using noiseModel_
|
||||
void whitenJacobians(std::vector<MatrixZD>& F, Matrix& E, Vector& b) const {
|
||||
noiseModel_->WhitenSystem(E, b);
|
||||
// TODO make WhitenInPlace work with any dense matrix type
|
||||
for (size_t i = 0; i < F.size(); i++)
|
||||
F[i] = noiseModel_->Whiten(F[i]);
|
||||
}
|
||||
|
||||
/// Return Jacobians as RegularImplicitSchurFactor with raw access
|
||||
boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > //
|
||||
createRegularImplicitSchurFactor(const Cameras& cameras, const Point3& point,
|
||||
double lambda = 0.0, bool diagonalDamping = false) const {
|
||||
Matrix E;
|
||||
Vector b;
|
||||
std::vector<MatrixZD> F;
|
||||
computeJacobians(F, E, b, cameras, point);
|
||||
whitenJacobians(F, E, b);
|
||||
Matrix P = Cameras::PointCov(E, lambda, diagonalDamping);
|
||||
return boost::make_shared<RegularImplicitSchurFactor<CAMERA> >(keys_, F, E,
|
||||
P, b);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return Jacobians as JacobianFactorQ
|
||||
*/
|
||||
boost::shared_ptr<JacobianFactorQ<D, ZDim> > createJacobianQFactor(
|
||||
boost::shared_ptr<JacobianFactorQ<Dim, ZDim> > createJacobianQFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
computeJacobians(Fblocks, E, b, cameras, point);
|
||||
Matrix3 P = PointCov(E, lambda, diagonalDamping);
|
||||
return boost::make_shared<JacobianFactorQ<D, ZDim> >(Fblocks, E, P, b);
|
||||
std::vector<MatrixZD> F;
|
||||
computeJacobians(F, E, b, cameras, point);
|
||||
const size_t M = b.size();
|
||||
Matrix P = Cameras::PointCov(E, lambda, diagonalDamping);
|
||||
SharedIsotropic n = noiseModel::Isotropic::Sigma(M, noiseModel_->sigma());
|
||||
return boost::make_shared<JacobianFactorQ<Dim, ZDim> >(keys_, F, E, P, b, n);
|
||||
}
|
||||
|
||||
/**
|
||||
* Return Jacobians as JacobianFactor
|
||||
* Return Jacobians as JacobianFactorSVD
|
||||
* TODO lambda is currently ignored
|
||||
*/
|
||||
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
|
||||
const Cameras& cameras, const Point3& point, double lambda = 0.0) const {
|
||||
size_t numKeys = this->keys_.size();
|
||||
std::vector<KeyMatrix2D> Fblocks;
|
||||
size_t m = this->keys_.size();
|
||||
std::vector<MatrixZD> F;
|
||||
Vector b;
|
||||
Matrix Enull(ZDim * numKeys, ZDim * numKeys - 3);
|
||||
computeJacobiansSVD(Fblocks, Enull, b, cameras, point);
|
||||
return boost::make_shared<JacobianFactorSVD<6, ZDim> >(Fblocks, Enull, b);
|
||||
const size_t M = ZDim * m;
|
||||
Matrix E0(M, M - 3);
|
||||
computeJacobiansSVD(F, E0, b, cameras, point);
|
||||
SharedIsotropic n = noiseModel::Isotropic::Sigma(M - 3,
|
||||
noiseModel_->sigma());
|
||||
return boost::make_shared<JacobianFactorSVD<Dim, ZDim> >(keys_, F, E0, b, n);
|
||||
}
|
||||
|
||||
/// Create BIG block-diagonal matrix F from Fblocks
|
||||
static void FillDiagonalF(const std::vector<MatrixZD>& Fblocks, Matrix& F) {
|
||||
size_t m = Fblocks.size();
|
||||
F.resize(ZDim * m, Dim * m);
|
||||
F.setZero();
|
||||
for (size_t i = 0; i < m; ++i)
|
||||
F.block<ZDim, Dim>(ZDim * i, Dim * i) = Fblocks.at(i);
|
||||
}
|
||||
|
||||
|
||||
Pose3 body_P_sensor() const{
|
||||
if(body_P_sensor_)
|
||||
return *body_P_sensor_;
|
||||
else
|
||||
return Pose3(); // if unspecified, the transformation is the identity
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
/// Serialization function
|
||||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(measured_);
|
||||
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
|
||||
}
|
||||
}
|
||||
;
|
||||
};
|
||||
// end class SmartFactorBase
|
||||
|
||||
template<class CAMERA, size_t D>
|
||||
const int SmartFactorBase<CAMERA, D>::ZDim;
|
||||
// Definitions need to avoid link errors (above are only declarations)
|
||||
template<class CAMERA> const int SmartFactorBase<CAMERA>::Dim;
|
||||
template<class CAMERA> const int SmartFactorBase<CAMERA>::ZDim;
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
|
|||
|
|
@ -22,7 +22,6 @@
|
|||
#include <gtsam/slam/SmartFactorBase.h>
|
||||
|
||||
#include <gtsam/geometry/triangulation.h>
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
|
|
@ -32,108 +31,135 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Structure for storing some state memory, used to speed up optimization
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class SmartProjectionFactorState {
|
||||
/// Linearization mode: what factor to linearize to
|
||||
enum LinearizationMode {
|
||||
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
|
||||
};
|
||||
|
||||
protected:
|
||||
/// How to manage degeneracy
|
||||
enum DegeneracyMode {
|
||||
IGNORE_DEGENERACY, ZERO_ON_DEGENERACY, HANDLE_INFINITY
|
||||
};
|
||||
|
||||
/*
|
||||
* Parameters for the smart projection factors
|
||||
*/
|
||||
class GTSAM_EXPORT SmartProjectionParams {
|
||||
|
||||
public:
|
||||
|
||||
SmartProjectionFactorState() {
|
||||
}
|
||||
// Hessian representation (after Schur complement)
|
||||
bool calculatedHessian;
|
||||
Matrix H;
|
||||
Vector gs_vector;
|
||||
std::vector<Matrix> Gs;
|
||||
std::vector<Vector> gs;
|
||||
double f;
|
||||
};
|
||||
LinearizationMode linearizationMode; ///< How to linearize the factor
|
||||
DegeneracyMode degeneracyMode; ///< How to linearize the factor
|
||||
|
||||
enum LinearizationMode {
|
||||
HESSIAN, JACOBIAN_SVD, JACOBIAN_Q
|
||||
/// @name Parameters governing the triangulation
|
||||
/// @{
|
||||
mutable TriangulationParameters triangulation;
|
||||
const double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
|
||||
/// @}
|
||||
|
||||
/// @name Parameters governing how triangulation result is treated
|
||||
/// @{
|
||||
const bool throwCheirality; ///< If true, re-throws Cheirality exceptions (default: false)
|
||||
const bool verboseCheirality; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||
/// @}
|
||||
|
||||
// Constructor
|
||||
SmartProjectionParams(LinearizationMode linMode = HESSIAN,
|
||||
DegeneracyMode degMode = IGNORE_DEGENERACY, bool throwCheirality = false,
|
||||
bool verboseCheirality = false) :
|
||||
linearizationMode(linMode), degeneracyMode(degMode), retriangulationThreshold(
|
||||
1e-5), throwCheirality(throwCheirality), verboseCheirality(
|
||||
verboseCheirality) {
|
||||
}
|
||||
|
||||
virtual ~SmartProjectionParams() {
|
||||
}
|
||||
|
||||
void print(const std::string& str) const {
|
||||
std::cout << "linearizationMode: " << linearizationMode << "\n";
|
||||
std::cout << " degeneracyMode: " << degeneracyMode << "\n";
|
||||
std::cout << triangulation << std::endl;
|
||||
}
|
||||
|
||||
LinearizationMode getLinearizationMode() const {
|
||||
return linearizationMode;
|
||||
}
|
||||
DegeneracyMode getDegeneracyMode() const {
|
||||
return degeneracyMode;
|
||||
}
|
||||
TriangulationParameters getTriangulationParameters() const {
|
||||
return triangulation;
|
||||
}
|
||||
bool getVerboseCheirality() const {
|
||||
return verboseCheirality;
|
||||
}
|
||||
bool getThrowCheirality() const {
|
||||
return throwCheirality;
|
||||
}
|
||||
void setLinearizationMode(LinearizationMode linMode) {
|
||||
linearizationMode = linMode;
|
||||
}
|
||||
void setDegeneracyMode(DegeneracyMode degMode) {
|
||||
degeneracyMode = degMode;
|
||||
}
|
||||
void setRankTolerance(double rankTol) {
|
||||
triangulation.rankTolerance = rankTol;
|
||||
}
|
||||
void setEnableEPI(bool enableEPI) {
|
||||
triangulation.enableEPI = enableEPI;
|
||||
}
|
||||
void setLandmarkDistanceThreshold(bool landmarkDistanceThreshold) {
|
||||
triangulation.landmarkDistanceThreshold = landmarkDistanceThreshold;
|
||||
}
|
||||
void setDynamicOutlierRejectionThreshold(bool dynOutRejectionThreshold) {
|
||||
triangulation.dynamicOutlierRejectionThreshold = dynOutRejectionThreshold;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* SmartProjectionFactor: triangulates point and keeps an estimate of it around.
|
||||
*/
|
||||
template<class CALIBRATION, size_t D>
|
||||
class SmartProjectionFactor: public SmartFactorBase<PinholeCamera<CALIBRATION>,
|
||||
D> {
|
||||
template<class CAMERA>
|
||||
class SmartProjectionFactor: public SmartFactorBase<CAMERA> {
|
||||
|
||||
public:
|
||||
|
||||
private:
|
||||
typedef SmartFactorBase<CAMERA> Base;
|
||||
typedef SmartProjectionFactor<CAMERA> This;
|
||||
typedef SmartProjectionFactor<CAMERA> SmartProjectionCameraFactor;
|
||||
|
||||
protected:
|
||||
|
||||
// Some triangulation parameters
|
||||
const double rankTolerance_; ///< threshold to decide whether triangulation is degenerate_
|
||||
const double retriangulationThreshold_; ///< threshold to decide whether to re-triangulate
|
||||
/// @name Parameters
|
||||
/// @{
|
||||
const SmartProjectionParams params_;
|
||||
/// @}
|
||||
|
||||
/// @name Caching triangulation
|
||||
/// @{
|
||||
mutable TriangulationResult result_; ///< result from triangulateSafe
|
||||
mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses
|
||||
|
||||
const bool manageDegeneracy_; ///< if set to true will use the rotation-only version for degenerate cases
|
||||
|
||||
const bool enableEPI_; ///< if set to true, will refine triangulation using LM
|
||||
|
||||
const double linearizationThreshold_; ///< threshold to decide whether to re-linearize
|
||||
mutable std::vector<Pose3> cameraPosesLinearization_; ///< current linearization poses
|
||||
|
||||
mutable Point3 point_; ///< Current estimate of the 3D point
|
||||
|
||||
mutable bool degenerate_;
|
||||
mutable bool cheiralityException_;
|
||||
|
||||
// verbosity handling for Cheirality Exceptions
|
||||
const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
||||
const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||
|
||||
boost::shared_ptr<SmartProjectionFactorState> state_;
|
||||
|
||||
/// shorthand for smart projection factor state variable
|
||||
typedef boost::shared_ptr<SmartProjectionFactorState> SmartFactorStatePtr;
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef SmartFactorBase<PinholeCamera<CALIBRATION>, D> Base;
|
||||
|
||||
double landmarkDistanceThreshold_; // if the landmark is triangulated at a
|
||||
// distance larger than that the factor is considered degenerate
|
||||
|
||||
double dynamicOutlierRejectionThreshold_; // if this is nonnegative the factor will check if the
|
||||
// average reprojection error is smaller than this threshold after triangulation,
|
||||
// and the factor is disregarded if the error is large
|
||||
|
||||
/// shorthand for this class
|
||||
typedef SmartProjectionFactor<CALIBRATION, D> This;
|
||||
/// @}
|
||||
|
||||
public:
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/// shorthand for a pinhole camera
|
||||
typedef PinholeCamera<CALIBRATION> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
/// shorthand for a set of cameras
|
||||
typedef CameraSet<CAMERA> Cameras;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param rankTol tolerance used to check if point triangulation is degenerate
|
||||
* @param linThreshold threshold on relative pose changes used to decide whether to relinearize (selective relinearization)
|
||||
* @param manageDegeneracy is true, in presence of degenerate triangulation, the factor is converted to a rotation-only constraint,
|
||||
* otherwise the factor is simply neglected
|
||||
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
|
||||
* @param body_P_sensor is the transform from sensor to body frame (default identity)
|
||||
* @param body_P_sensor pose of the camera in the body frame
|
||||
* @param params internal parameters of the smart factors
|
||||
*/
|
||||
SmartProjectionFactor(const double rankTol, const double linThreshold,
|
||||
const bool manageDegeneracy, const bool enableEPI,
|
||||
boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
double landmarkDistanceThreshold = 1e10,
|
||||
double dynamicOutlierRejectionThreshold = -1, SmartFactorStatePtr state =
|
||||
SmartFactorStatePtr(new SmartProjectionFactorState())) :
|
||||
Base(body_P_sensor), rankTolerance_(rankTol), retriangulationThreshold_(
|
||||
1e-5), manageDegeneracy_(manageDegeneracy), enableEPI_(enableEPI), linearizationThreshold_(
|
||||
linThreshold), degenerate_(false), cheiralityException_(false), throwCheirality_(
|
||||
false), verboseCheirality_(false), state_(state), landmarkDistanceThreshold_(
|
||||
landmarkDistanceThreshold), dynamicOutlierRejectionThreshold_(
|
||||
dynamicOutlierRejectionThreshold) {
|
||||
SmartProjectionFactor(
|
||||
const boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
const SmartProjectionParams& params = SmartProjectionParams()) :
|
||||
Base(body_P_sensor), params_(params), //
|
||||
result_(TriangulationResult::Degenerate()) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
|
|
@ -147,24 +173,33 @@ public:
|
|||
*/
|
||||
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << s << "SmartProjectionFactor, z = \n";
|
||||
std::cout << "rankTolerance_ = " << rankTolerance_ << std::endl;
|
||||
std::cout << "degenerate_ = " << degenerate_ << std::endl;
|
||||
std::cout << "cheiralityException_ = " << cheiralityException_ << std::endl;
|
||||
std::cout << s << "SmartProjectionFactor\n";
|
||||
std::cout << "linearizationMode:\n" << params_.linearizationMode
|
||||
<< std::endl;
|
||||
std::cout << "triangulationParameters:\n" << params_.triangulation
|
||||
<< std::endl;
|
||||
std::cout << "result:\n" << result_ << std::endl;
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
/// Check if the new linearization point_ is the same as the one used for previous triangulation
|
||||
/// equals
|
||||
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
|
||||
const This *e = dynamic_cast<const This*>(&p);
|
||||
return e && params_.linearizationMode == e->params_.linearizationMode
|
||||
&& Base::equals(p, tol);
|
||||
}
|
||||
|
||||
/// Check if the new linearization point is the same as the one used for previous triangulation
|
||||
bool decideIfTriangulate(const Cameras& cameras) const {
|
||||
// several calls to linearize will be done from the same linearization point_, hence it is not needed to re-triangulate
|
||||
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
|
||||
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
|
||||
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point_
|
||||
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
|
||||
|
||||
size_t m = cameras.size();
|
||||
|
||||
bool retriangulate = false;
|
||||
|
||||
// if we do not have a previous linearization point_ or the new linearization point_ includes more poses
|
||||
// if we do not have a previous linearization point or the new linearization point includes more poses
|
||||
if (cameraPosesTriangulation_.empty()
|
||||
|| cameras.size() != cameraPosesTriangulation_.size())
|
||||
retriangulate = true;
|
||||
|
|
@ -172,7 +207,7 @@ public:
|
|||
if (!retriangulate) {
|
||||
for (size_t i = 0; i < cameras.size(); i++) {
|
||||
if (!cameras[i].pose().equals(cameraPosesTriangulation_[i],
|
||||
retriangulationThreshold_)) {
|
||||
params_.retriangulationThreshold)) {
|
||||
retriangulate = true; // at least two poses are different, hence we retriangulate
|
||||
break;
|
||||
}
|
||||
|
|
@ -187,137 +222,34 @@ public:
|
|||
cameraPosesTriangulation_.push_back(cameras[i].pose());
|
||||
}
|
||||
|
||||
return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation
|
||||
}
|
||||
|
||||
/// This function checks if the new linearization point_ is 'close' to the previous one used for linearization
|
||||
bool decideIfLinearize(const Cameras& cameras) const {
|
||||
// "selective linearization"
|
||||
// The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
|
||||
// (we only care about the "rigidity" of the poses, not about their absolute pose)
|
||||
|
||||
if (this->linearizationThreshold_ < 0) //by convention if linearizationThreshold is negative we always relinearize
|
||||
return true;
|
||||
|
||||
// if we do not have a previous linearization point_ or the new linearization point_ includes more poses
|
||||
if (cameraPosesLinearization_.empty()
|
||||
|| (cameras.size() != cameraPosesLinearization_.size()))
|
||||
return true;
|
||||
|
||||
Pose3 firstCameraPose, firstCameraPoseOld;
|
||||
for (size_t i = 0; i < cameras.size(); i++) {
|
||||
|
||||
if (i == 0) { // we store the initial pose, this is useful for selective re-linearization
|
||||
firstCameraPose = cameras[i].pose();
|
||||
firstCameraPoseOld = cameraPosesLinearization_[i];
|
||||
continue;
|
||||
}
|
||||
|
||||
// we compare the poses in the frame of the first pose
|
||||
Pose3 localCameraPose = firstCameraPose.between(cameras[i].pose());
|
||||
Pose3 localCameraPoseOld = firstCameraPoseOld.between(
|
||||
cameraPosesLinearization_[i]);
|
||||
if (!localCameraPose.equals(localCameraPoseOld,
|
||||
this->linearizationThreshold_))
|
||||
return true; // at least two "relative" poses are different, hence we re-linearize
|
||||
}
|
||||
return false; // if we arrive to this point_ all poses are the same and we don't need re-linearize
|
||||
return retriangulate; // if we arrive to this point all poses are the same and we don't need re-triangulation
|
||||
}
|
||||
|
||||
/// triangulateSafe
|
||||
size_t triangulateSafe(const Values& values) const {
|
||||
return triangulateSafe(this->cameras(values));
|
||||
}
|
||||
|
||||
/// triangulateSafe
|
||||
size_t triangulateSafe(const Cameras& cameras) const {
|
||||
TriangulationResult triangulateSafe(const Cameras& cameras) const {
|
||||
|
||||
size_t m = cameras.size();
|
||||
if (m < 2) { // if we have a single pose the corresponding factor is uninformative
|
||||
degenerate_ = true;
|
||||
return m;
|
||||
}
|
||||
if (m < 2) // if we have a single pose the corresponding factor is uninformative
|
||||
return TriangulationResult::Degenerate();
|
||||
|
||||
bool retriangulate = decideIfTriangulate(cameras);
|
||||
|
||||
if (retriangulate) {
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
// std::cout << "triangulatePoint3 i \n" << rankTolerance << std::endl;
|
||||
point_ = triangulatePoint3<Camera>(cameras, this->measured_,
|
||||
rankTolerance_, enableEPI_);
|
||||
degenerate_ = false;
|
||||
cheiralityException_ = false;
|
||||
|
||||
// Check landmark distance and reprojection errors to avoid outliers
|
||||
double totalReprojError = 0.0;
|
||||
size_t i = 0;
|
||||
BOOST_FOREACH(const Camera& camera, cameras) {
|
||||
Point3 cameraTranslation = camera.pose().translation();
|
||||
// we discard smart factors corresponding to points that are far away
|
||||
if (cameraTranslation.distance(point_) > landmarkDistanceThreshold_) {
|
||||
degenerate_ = true;
|
||||
break;
|
||||
}
|
||||
const Point2& zi = this->measured_.at(i);
|
||||
try {
|
||||
Point2 reprojectionError(camera.project(point_) - zi);
|
||||
totalReprojError += reprojectionError.vector().norm();
|
||||
} catch (CheiralityException) {
|
||||
cheiralityException_ = true;
|
||||
}
|
||||
i += 1;
|
||||
}
|
||||
// we discard smart factors that have large reprojection error
|
||||
if (dynamicOutlierRejectionThreshold_ > 0
|
||||
&& totalReprojError / m > dynamicOutlierRejectionThreshold_)
|
||||
degenerate_ = true;
|
||||
|
||||
} catch (TriangulationUnderconstrainedException&) {
|
||||
// if TriangulationUnderconstrainedException can be
|
||||
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
|
||||
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
|
||||
// in the second case we want to use a rotation-only smart factor
|
||||
degenerate_ = true;
|
||||
cheiralityException_ = false;
|
||||
} catch (TriangulationCheiralityException&) {
|
||||
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
|
||||
// we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
|
||||
cheiralityException_ = true;
|
||||
}
|
||||
}
|
||||
return m;
|
||||
if (retriangulate)
|
||||
result_ = gtsam::triangulateSafe(cameras, this->measured_,
|
||||
params_.triangulation);
|
||||
return result_;
|
||||
}
|
||||
|
||||
/// triangulate
|
||||
bool triangulateForLinearize(const Cameras& cameras) const {
|
||||
|
||||
bool isDebug = false;
|
||||
size_t nrCameras = this->triangulateSafe(cameras);
|
||||
|
||||
if (nrCameras < 2
|
||||
|| (!this->manageDegeneracy_
|
||||
&& (this->cheiralityException_ || this->degenerate_))) {
|
||||
if (isDebug) {
|
||||
std::cout
|
||||
<< "createRegularImplicitSchurFactor: degenerate configuration"
|
||||
<< std::endl;
|
||||
}
|
||||
return false;
|
||||
} else {
|
||||
|
||||
// instead, if we want to manage the exception..
|
||||
if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
|
||||
this->degenerate_ = true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
triangulateSafe(cameras); // imperative, might reset result_
|
||||
return (result_);
|
||||
}
|
||||
|
||||
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<D> > createHessianFactor(
|
||||
const Cameras& cameras, const double lambda = 0.0) const {
|
||||
boost::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor(
|
||||
const Cameras& cameras, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const {
|
||||
|
||||
bool isDebug = false;
|
||||
size_t numKeys = this->keys_.size();
|
||||
// Create structures for Hessian Factors
|
||||
std::vector<Key> js;
|
||||
|
|
@ -331,264 +263,198 @@ public:
|
|||
exit(1);
|
||||
}
|
||||
|
||||
this->triangulateSafe(cameras);
|
||||
triangulateSafe(cameras);
|
||||
|
||||
if (numKeys < 2
|
||||
|| (!this->manageDegeneracy_
|
||||
&& (this->cheiralityException_ || this->degenerate_))) {
|
||||
// std::cout << "In linearize: exception" << std::endl;
|
||||
if (params_.degeneracyMode == ZERO_ON_DEGENERACY && !result_) {
|
||||
// failed: return"empty" Hessian
|
||||
BOOST_FOREACH(Matrix& m, Gs)
|
||||
m = zeros(D, D);
|
||||
m = zeros(Base::Dim, Base::Dim);
|
||||
BOOST_FOREACH(Vector& v, gs)
|
||||
v = zero(D);
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_, Gs, gs,
|
||||
0.0);
|
||||
v = zero(Base::Dim);
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
|
||||
Gs, gs, 0.0);
|
||||
}
|
||||
|
||||
// instead, if we want to manage the exception..
|
||||
if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
|
||||
this->degenerate_ = true;
|
||||
}
|
||||
|
||||
bool doLinearize = this->decideIfLinearize(cameras);
|
||||
|
||||
if (this->linearizationThreshold_ >= 0 && doLinearize) // if we apply selective relinearization and we need to relinearize
|
||||
for (size_t i = 0; i < cameras.size(); i++)
|
||||
this->cameraPosesLinearization_[i] = cameras[i].pose();
|
||||
|
||||
if (!doLinearize) { // return the previous Hessian factor
|
||||
std::cout << "=============================" << std::endl;
|
||||
std::cout << "doLinearize " << doLinearize << std::endl;
|
||||
std::cout << "this->linearizationThreshold_ "
|
||||
<< this->linearizationThreshold_ << std::endl;
|
||||
std::cout << "this->degenerate_ " << this->degenerate_ << std::endl;
|
||||
std::cout
|
||||
<< "something wrong in SmartProjectionHessianFactor: selective relinearization should be disabled"
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_,
|
||||
this->state_->Gs, this->state_->gs, this->state_->f);
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
Matrix F, E;
|
||||
// Jacobian could be 3D Point3 OR 2D Unit3, difference is E.cols().
|
||||
std::vector<typename Base::MatrixZD> Fblocks;
|
||||
Matrix E;
|
||||
Vector b;
|
||||
double f = computeJacobians(F, E, b, cameras);
|
||||
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
|
||||
|
||||
// Schur complement trick
|
||||
// Frank says: should be possible to do this more efficiently?
|
||||
// And we care, as in grouped factors this is called repeatedly
|
||||
Matrix H(D * numKeys, D * numKeys);
|
||||
Vector gs_vector;
|
||||
// Whiten using noise model
|
||||
Base::whitenJacobians(Fblocks, E, b);
|
||||
|
||||
Matrix3 P = Base::PointCov(E, lambda);
|
||||
H.noalias() = F.transpose() * (F - (E * (P * (E.transpose() * F))));
|
||||
gs_vector.noalias() = F.transpose() * (b - (E * (P * (E.transpose() * b))));
|
||||
if (isDebug)
|
||||
std::cout << "gs_vector size " << gs_vector.size() << std::endl;
|
||||
// build augmented hessian
|
||||
SymmetricBlockMatrix augmentedHessian = //
|
||||
Cameras::SchurComplement(Fblocks, E, b, lambda, diagonalDamping);
|
||||
|
||||
// Populate Gs and gs
|
||||
int GsCount2 = 0;
|
||||
for (DenseIndex i1 = 0; i1 < (DenseIndex) numKeys; i1++) { // for each camera
|
||||
DenseIndex i1D = i1 * D;
|
||||
gs.at(i1) = gs_vector.segment<D>(i1D);
|
||||
for (DenseIndex i2 = 0; i2 < (DenseIndex) numKeys; i2++) {
|
||||
if (i2 >= i1) {
|
||||
Gs.at(GsCount2) = H.block<D, D>(i1D, i2 * D);
|
||||
GsCount2++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// ==================================================================
|
||||
if (this->linearizationThreshold_ >= 0) { // if we do not use selective relinearization we don't need to store these variables
|
||||
this->state_->Gs = Gs;
|
||||
this->state_->gs = gs;
|
||||
this->state_->f = f;
|
||||
}
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_, Gs, gs, f);
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_,
|
||||
augmentedHessian);
|
||||
}
|
||||
|
||||
// create factor
|
||||
boost::shared_ptr<RegularImplicitSchurFactor<D> > createRegularImplicitSchurFactor(
|
||||
boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > createRegularImplicitSchurFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
return Base::createRegularImplicitSchurFactor(cameras, point_, lambda);
|
||||
return Base::createRegularImplicitSchurFactor(cameras, *result_, lambda);
|
||||
else
|
||||
return boost::shared_ptr<RegularImplicitSchurFactor<D> >();
|
||||
// failed: return empty
|
||||
return boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> >();
|
||||
}
|
||||
|
||||
/// create factor
|
||||
boost::shared_ptr<JacobianFactorQ<D, 2> > createJacobianQFactor(
|
||||
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
return Base::createJacobianQFactor(cameras, point_, lambda);
|
||||
return Base::createJacobianQFactor(cameras, *result_, lambda);
|
||||
else
|
||||
return boost::make_shared<JacobianFactorQ<D, 2> >(this->keys_);
|
||||
// failed: return empty
|
||||
return boost::make_shared<JacobianFactorQ<Base::Dim, 2> >(this->keys_);
|
||||
}
|
||||
|
||||
/// Create a factor, takes values
|
||||
boost::shared_ptr<JacobianFactorQ<D, 2> > createJacobianQFactor(
|
||||
boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > createJacobianQFactor(
|
||||
const Values& values, double lambda) const {
|
||||
Cameras myCameras;
|
||||
// TODO triangulate twice ??
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
if (nonDegenerate)
|
||||
return createJacobianQFactor(myCameras, lambda);
|
||||
else
|
||||
return boost::make_shared<JacobianFactorQ<D, 2> >(this->keys_);
|
||||
return createJacobianQFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
/// different (faster) way to compute Jacobian factor
|
||||
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
return Base::createJacobianSVDFactor(cameras, point_, lambda);
|
||||
return Base::createJacobianSVDFactor(cameras, *result_, lambda);
|
||||
else
|
||||
return boost::make_shared<JacobianFactorSVD<D, 2> >(this->keys_);
|
||||
// failed: return empty
|
||||
return boost::make_shared<JacobianFactorSVD<Base::Dim, 2> >(this->keys_);
|
||||
}
|
||||
|
||||
/// Returns true if nonDegenerate
|
||||
bool computeCamerasAndTriangulate(const Values& values,
|
||||
Cameras& myCameras) const {
|
||||
Values valuesFactor;
|
||||
/// linearize to a Hessianfactor
|
||||
virtual boost::shared_ptr<RegularHessianFactor<Base::Dim> > linearizeToHessian(
|
||||
const Values& values, double lambda = 0.0) const {
|
||||
return createHessianFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
// Select only the cameras
|
||||
BOOST_FOREACH(const Key key, this->keys_)
|
||||
valuesFactor.insert(key, values.at(key));
|
||||
/// linearize to an Implicit Schur factor
|
||||
virtual boost::shared_ptr<RegularImplicitSchurFactor<CAMERA> > linearizeToImplicit(
|
||||
const Values& values, double lambda = 0.0) const {
|
||||
return createRegularImplicitSchurFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
myCameras = this->cameras(valuesFactor);
|
||||
size_t nrCameras = this->triangulateSafe(myCameras);
|
||||
/// linearize to a JacobianfactorQ
|
||||
virtual boost::shared_ptr<JacobianFactorQ<Base::Dim, 2> > linearizeToJacobian(
|
||||
const Values& values, double lambda = 0.0) const {
|
||||
return createJacobianQFactor(this->cameras(values), lambda);
|
||||
}
|
||||
|
||||
if (nrCameras < 2
|
||||
|| (!this->manageDegeneracy_
|
||||
&& (this->cheiralityException_ || this->degenerate_)))
|
||||
return false;
|
||||
|
||||
// instead, if we want to manage the exception..
|
||||
if (this->cheiralityException_ || this->degenerate_) // if we want to manage the exceptions with rotation-only factors
|
||||
this->degenerate_ = true;
|
||||
|
||||
if (this->degenerate_) {
|
||||
std::cout << "SmartProjectionFactor: this is not ready" << std::endl;
|
||||
std::cout << "this->cheiralityException_ " << this->cheiralityException_
|
||||
<< std::endl;
|
||||
std::cout << "this->degenerate_ " << this->degenerate_ << std::endl;
|
||||
/**
|
||||
* Linearize to Gaussian Factor
|
||||
* @param values Values structure which must contain camera poses for this factor
|
||||
* @return a Gaussian factor
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearizeDamped(const Cameras& cameras,
|
||||
const double lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different linear factors
|
||||
switch (params_.linearizationMode) {
|
||||
case HESSIAN:
|
||||
return createHessianFactor(cameras, lambda);
|
||||
case IMPLICIT_SCHUR:
|
||||
return createRegularImplicitSchurFactor(cameras, lambda);
|
||||
case JACOBIAN_SVD:
|
||||
return createJacobianSVDFactor(cameras, lambda);
|
||||
case JACOBIAN_Q:
|
||||
return createJacobianQFactor(cameras, lambda);
|
||||
default:
|
||||
throw std::runtime_error("SmartFactorlinearize: unknown mode");
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Assumes non-degenerate !
|
||||
void computeEP(Matrix& E, Matrix& P, const Cameras& cameras) const {
|
||||
return Base::computeEP(E, P, cameras, point_);
|
||||
/**
|
||||
* Linearize to Gaussian Factor
|
||||
* @param values Values structure which must contain camera poses for this factor
|
||||
* @return a Gaussian factor
|
||||
*/
|
||||
boost::shared_ptr<GaussianFactor> linearizeDamped(const Values& values,
|
||||
const double lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different linear factors
|
||||
Cameras cameras = this->cameras(values);
|
||||
return linearizeDamped(cameras, lambda);
|
||||
}
|
||||
|
||||
/// Takes values
|
||||
bool computeEP(Matrix& E, Matrix& P, const Values& values) const {
|
||||
Cameras myCameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
/// linearize
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(
|
||||
const Values& values) const {
|
||||
return linearizeDamped(values);
|
||||
}
|
||||
|
||||
/**
|
||||
* Triangulate and compute derivative of error with respect to point
|
||||
* @return whether triangulation worked
|
||||
*/
|
||||
bool triangulateAndComputeE(Matrix& E, const Cameras& cameras) const {
|
||||
bool nonDegenerate = triangulateForLinearize(cameras);
|
||||
if (nonDegenerate)
|
||||
computeEP(E, P, myCameras);
|
||||
cameras.project2(*result_, boost::none, E);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
/// Version that takes values, and creates the point
|
||||
bool computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
Matrix& E, Vector& b, const Values& values) const {
|
||||
Cameras myCameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
if (nonDegenerate)
|
||||
computeJacobians(Fblocks, E, b, myCameras);
|
||||
return nonDegenerate;
|
||||
/**
|
||||
* Triangulate and compute derivative of error with respect to point
|
||||
* @return whether triangulation worked
|
||||
*/
|
||||
bool triangulateAndComputeE(Matrix& E, const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
return triangulateAndComputeE(E, cameras);
|
||||
}
|
||||
|
||||
/// Compute F, E only (called below in both vanilla and SVD versions)
|
||||
/// Assumes the point has been computed
|
||||
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
||||
double computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
Matrix& E, Vector& b, const Cameras& cameras) const {
|
||||
void computeJacobiansWithTriangulatedPoint(
|
||||
std::vector<typename Base::MatrixZD>& Fblocks, Matrix& E, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
|
||||
if (this->degenerate_) {
|
||||
std::cout << "manage degeneracy " << manageDegeneracy_ << std::endl;
|
||||
std::cout << "point " << point_ << std::endl;
|
||||
std::cout
|
||||
<< "SmartProjectionFactor: Management of degeneracy is disabled - not ready to be used"
|
||||
<< std::endl;
|
||||
if (D > 6) {
|
||||
std::cout
|
||||
<< "Management of degeneracy is not yet ready when one also optimizes for the calibration "
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
int numKeys = this->keys_.size();
|
||||
E = zeros(2 * numKeys, 2);
|
||||
b = zero(2 * numKeys);
|
||||
double f = 0;
|
||||
for (size_t i = 0; i < this->measured_.size(); i++) {
|
||||
if (i == 0) { // first pose
|
||||
this->point_ = cameras[i].backprojectPointAtInfinity(
|
||||
this->measured_.at(i));
|
||||
// 3D parametrization of point at infinity: [px py 1]
|
||||
}
|
||||
Matrix Fi, Ei;
|
||||
Vector bi = -(cameras[i].projectPointAtInfinity(this->point_, Fi, Ei)
|
||||
- this->measured_.at(i)).vector();
|
||||
|
||||
this->noise_.at(i)->WhitenSystem(Fi, Ei, bi);
|
||||
f += bi.squaredNorm();
|
||||
Fblocks.push_back(typename Base::KeyMatrix2D(this->keys_[i], Fi));
|
||||
E.block<2, 2>(2 * i, 0) = Ei;
|
||||
subInsert(b, bi, 2 * i);
|
||||
}
|
||||
return f;
|
||||
if (!result_) {
|
||||
// Handle degeneracy
|
||||
// TODO check flag whether we should do this
|
||||
Unit3 backProjected = cameras[0].backprojectPointAtInfinity(
|
||||
this->measured_.at(0));
|
||||
Base::computeJacobians(Fblocks, E, b, cameras, backProjected);
|
||||
} else {
|
||||
// nondegenerate: just return Base version
|
||||
return Base::computeJacobians(Fblocks, E, b, cameras, point_);
|
||||
} // end else
|
||||
// valid result: just return Base version
|
||||
Base::computeJacobians(Fblocks, E, b, cameras, *result_);
|
||||
}
|
||||
}
|
||||
|
||||
/// Version that takes values, and creates the point
|
||||
bool triangulateAndComputeJacobians(
|
||||
std::vector<typename Base::MatrixZD>& Fblocks, Matrix& E, Vector& b,
|
||||
const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
bool nonDegenerate = triangulateForLinearize(cameras);
|
||||
if (nonDegenerate)
|
||||
computeJacobiansWithTriangulatedPoint(Fblocks, E, b, cameras);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
/// takes values
|
||||
bool computeJacobiansSVD(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
Matrix& Enull, Vector& b, const Values& values) const {
|
||||
typename Base::Cameras myCameras;
|
||||
double good = computeCamerasAndTriangulate(values, myCameras);
|
||||
if (good)
|
||||
computeJacobiansSVD(Fblocks, Enull, b, myCameras);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// SVD version
|
||||
double computeJacobiansSVD(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
Matrix& Enull, Vector& b, const Cameras& cameras) const {
|
||||
return Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, point_);
|
||||
}
|
||||
|
||||
/// Returns Matrix, TODO: maybe should not exist -> not sparse !
|
||||
// TODO should there be a lambda?
|
||||
double computeJacobiansSVD(Matrix& F, Matrix& Enull, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
return Base::computeJacobiansSVD(F, Enull, b, cameras, point_);
|
||||
}
|
||||
|
||||
/// Returns Matrix, TODO: maybe should not exist -> not sparse !
|
||||
double computeJacobians(Matrix& F, Matrix& E, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
return Base::computeJacobians(F, E, b, cameras, point_);
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, before applying noise model
|
||||
/// Assumes triangulation was done and degeneracy handled
|
||||
Vector reprojectionError(const Cameras& cameras) const {
|
||||
return Base::reprojectionError(cameras, point_);
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, before applying noise model
|
||||
Vector reprojectionError(const Values& values) const {
|
||||
Cameras myCameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
bool triangulateAndComputeJacobiansSVD(
|
||||
std::vector<typename Base::MatrixZD>& Fblocks, Matrix& Enull, Vector& b,
|
||||
const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
bool nonDegenerate = triangulateForLinearize(cameras);
|
||||
if (nonDegenerate)
|
||||
return reprojectionError(myCameras);
|
||||
Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, *result_);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, before applying noise model
|
||||
Vector reprojectionErrorAfterTriangulation(const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
bool nonDegenerate = triangulateForLinearize(cameras);
|
||||
if (nonDegenerate)
|
||||
return Base::unwhitenedError(cameras, *result_);
|
||||
else
|
||||
return zero(myCameras.size() * 2);
|
||||
return zero(cameras.size() * 2);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -600,86 +466,57 @@ public:
|
|||
double totalReprojectionError(const Cameras& cameras,
|
||||
boost::optional<Point3> externalPoint = boost::none) const {
|
||||
|
||||
size_t nrCameras;
|
||||
if (externalPoint) {
|
||||
nrCameras = this->keys_.size();
|
||||
point_ = *externalPoint;
|
||||
degenerate_ = false;
|
||||
cheiralityException_ = false;
|
||||
} else {
|
||||
nrCameras = this->triangulateSafe(cameras);
|
||||
}
|
||||
if (externalPoint)
|
||||
result_ = TriangulationResult(*externalPoint);
|
||||
else
|
||||
result_ = triangulateSafe(cameras);
|
||||
|
||||
if (nrCameras < 2
|
||||
|| (!this->manageDegeneracy_
|
||||
&& (this->cheiralityException_ || this->degenerate_))) {
|
||||
if (result_)
|
||||
// All good, just use version in base class
|
||||
return Base::totalReprojectionError(cameras, *result_);
|
||||
else if (params_.degeneracyMode == HANDLE_INFINITY) {
|
||||
// Otherwise, manage the exceptions with rotation-only factors
|
||||
const Point2& z0 = this->measured_.at(0);
|
||||
Unit3 backprojected = cameras.front().backprojectPointAtInfinity(z0);
|
||||
return Base::totalReprojectionError(cameras, backprojected);
|
||||
} else
|
||||
// if we don't want to manage the exceptions we discard the factor
|
||||
// std::cout << "In error evaluation: exception" << std::endl;
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
if (this->cheiralityException_) { // if we want to manage the exceptions with rotation-only factors
|
||||
std::cout
|
||||
<< "SmartProjectionHessianFactor: cheirality exception (this should not happen if CheiralityException is disabled)!"
|
||||
<< std::endl;
|
||||
this->degenerate_ = true;
|
||||
}
|
||||
|
||||
if (this->degenerate_) {
|
||||
// return 0.0; // TODO: this maybe should be zero?
|
||||
std::cout
|
||||
<< "SmartProjectionHessianFactor: trying to manage degeneracy (this should not happen is manageDegeneracy is disabled)!"
|
||||
<< std::endl;
|
||||
size_t i = 0;
|
||||
double overallError = 0;
|
||||
BOOST_FOREACH(const Camera& camera, cameras) {
|
||||
const Point2& zi = this->measured_.at(i);
|
||||
if (i == 0) // first pose
|
||||
this->point_ = camera.backprojectPointAtInfinity(zi); // 3D parametrization of point at infinity
|
||||
Point2 reprojectionError(
|
||||
camera.projectPointAtInfinity(this->point_) - zi);
|
||||
overallError += 0.5
|
||||
* this->noise_.at(i)->distance(reprojectionError.vector());
|
||||
i += 1;
|
||||
}
|
||||
return overallError;
|
||||
} else {
|
||||
// Just use version in base class
|
||||
return Base::totalReprojectionError(cameras, point_);
|
||||
/// Calculate total reprojection error
|
||||
virtual double error(const Values& values) const {
|
||||
if (this->active(values)) {
|
||||
return totalReprojectionError(Base::cameras(values));
|
||||
} else { // else of active flag
|
||||
return 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
/// Cameras are computed in derived class
|
||||
virtual Cameras cameras(const Values& values) const = 0;
|
||||
|
||||
/** return the landmark */
|
||||
boost::optional<Point3> point() const {
|
||||
return point_;
|
||||
TriangulationResult point() const {
|
||||
return result_;
|
||||
}
|
||||
|
||||
/** COMPUTE the landmark */
|
||||
boost::optional<Point3> point(const Values& values) const {
|
||||
triangulateSafe(values);
|
||||
return point_;
|
||||
TriangulationResult point(const Values& values) const {
|
||||
Cameras cameras = this->cameras(values);
|
||||
return triangulateSafe(cameras);
|
||||
}
|
||||
|
||||
/// Is result valid?
|
||||
bool isValid() const {
|
||||
return result_;
|
||||
}
|
||||
|
||||
/** return the degenerate state */
|
||||
inline bool isDegenerate() const {
|
||||
return (cheiralityException_ || degenerate_);
|
||||
bool isDegenerate() const {
|
||||
return result_.degenerate();
|
||||
}
|
||||
|
||||
/** return the cheirality status flag */
|
||||
inline bool isPointBehindCamera() const {
|
||||
return cheiralityException_;
|
||||
}
|
||||
/** return cheirality verbosity */
|
||||
inline bool verboseCheirality() const {
|
||||
return verboseCheirality_;
|
||||
}
|
||||
|
||||
/** return flag for throwing cheirality exceptions */
|
||||
inline bool throwCheirality() const {
|
||||
return throwCheirality_;
|
||||
bool isPointBehindCamera() const {
|
||||
return result_.behindCamera();
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
@ -687,11 +524,18 @@ private:
|
|||
/// Serialization function
|
||||
friend class boost::serialization::access;
|
||||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
||||
void serialize(ARCHIVE & ar, const unsigned int version) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
|
||||
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
|
||||
ar & BOOST_SERIALIZATION_NVP(params_.throwCheirality);
|
||||
ar & BOOST_SERIALIZATION_NVP(params_.verboseCheirality);
|
||||
}
|
||||
}
|
||||
;
|
||||
|
||||
/// traits
|
||||
template<class CAMERA>
|
||||
struct traits<SmartProjectionFactor<CAMERA> > : public Testable<
|
||||
SmartProjectionFactor<CAMERA> > {
|
||||
};
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
|
|||
|
|
@ -38,87 +38,37 @@ namespace gtsam {
|
|||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class CALIBRATION>
|
||||
class SmartProjectionPoseFactor: public SmartProjectionFactor<CALIBRATION, 6> {
|
||||
class SmartProjectionPoseFactor: public SmartProjectionFactor<
|
||||
PinholePose<CALIBRATION> > {
|
||||
|
||||
private:
|
||||
typedef PinholePose<CALIBRATION> Camera;
|
||||
typedef SmartProjectionFactor<Camera> Base;
|
||||
typedef SmartProjectionPoseFactor<CALIBRATION> This;
|
||||
|
||||
protected:
|
||||
|
||||
LinearizationMode linearizeTo_; ///< How to linearize the factor (HESSIAN, JACOBIAN_SVD, JACOBIAN_Q)
|
||||
|
||||
std::vector<boost::shared_ptr<CALIBRATION> > K_all_; ///< shared pointer to calibration object (one for each camera)
|
||||
boost::shared_ptr<CALIBRATION> K_; ///< calibration object (one for all cameras)
|
||||
|
||||
public:
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef SmartProjectionFactor<CALIBRATION, 6> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef SmartProjectionPoseFactor<CALIBRATION> This;
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param rankTol tolerance used to check if point triangulation is degenerate
|
||||
* @param linThreshold threshold on relative pose changes used to decide whether to relinearize (selective relinearization)
|
||||
* @param manageDegeneracy is true, in presence of degenerate triangulation, the factor is converted to a rotation-only constraint,
|
||||
* otherwise the factor is simply neglected
|
||||
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
|
||||
* @param body_P_sensor is the transform from sensor to body frame (default identity)
|
||||
* @param K (fixed) calibration, assumed to be the same for all cameras
|
||||
* @param body_P_sensor pose of the camera in the body frame
|
||||
* @param params internal parameters of the smart factors
|
||||
*/
|
||||
SmartProjectionPoseFactor(const double rankTol = 1,
|
||||
const double linThreshold = -1, const bool manageDegeneracy = false,
|
||||
const bool enableEPI = false, boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
LinearizationMode linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10,
|
||||
double dynamicOutlierRejectionThreshold = -1) :
|
||||
Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor,
|
||||
landmarkDistanceThreshold, dynamicOutlierRejectionThreshold), linearizeTo_(linearizeTo) {}
|
||||
SmartProjectionPoseFactor(const boost::shared_ptr<CALIBRATION> K,
|
||||
const boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
const SmartProjectionParams& params = SmartProjectionParams()) :
|
||||
Base(body_P_sensor, params), K_(K) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~SmartProjectionPoseFactor() {}
|
||||
|
||||
/**
|
||||
* add a new measurement and pose key
|
||||
* @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
|
||||
* @param poseKey is key corresponding to the camera observing the same landmark
|
||||
* @param noise_i is the measurement noise
|
||||
* @param K_i is the (known) camera calibration
|
||||
*/
|
||||
void add(const Point2 measured_i, const Key poseKey_i,
|
||||
const SharedNoiseModel noise_i,
|
||||
const boost::shared_ptr<CALIBRATION> K_i) {
|
||||
Base::add(measured_i, poseKey_i, noise_i);
|
||||
K_all_.push_back(K_i);
|
||||
}
|
||||
|
||||
/**
|
||||
* Variant of the previous one in which we include a set of measurements
|
||||
* @param measurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
|
||||
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
|
||||
* @param noises vector of measurement noises
|
||||
* @param Ks vector of calibration objects
|
||||
*/
|
||||
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
|
||||
std::vector<SharedNoiseModel> noises,
|
||||
std::vector<boost::shared_ptr<CALIBRATION> > Ks) {
|
||||
Base::add(measurements, poseKeys, noises);
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
K_all_.push_back(Ks.at(i));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Variant of the previous one in which we include a set of measurements with the same noise and calibration
|
||||
* @param mmeasurements vector of the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
|
||||
* @param poseKeys vector of keys corresponding to the camera observing the same landmark
|
||||
* @param noise measurement noise (same for all measurements)
|
||||
* @param K the (known) camera calibration (same for all measurements)
|
||||
*/
|
||||
void add(std::vector<Point2> measurements, std::vector<Key> poseKeys,
|
||||
const SharedNoiseModel noise, const boost::shared_ptr<CALIBRATION> K) {
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
Base::add(measurements.at(i), poseKeys.at(i), noise);
|
||||
K_all_.push_back(K);
|
||||
}
|
||||
virtual ~SmartProjectionPoseFactor() {
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -129,59 +79,15 @@ public:
|
|||
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << s << "SmartProjectionPoseFactor, z = \n ";
|
||||
BOOST_FOREACH(const boost::shared_ptr<CALIBRATION>& K, K_all_)
|
||||
K->print("calibration = ");
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
/// equals
|
||||
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
|
||||
const This *e = dynamic_cast<const This*>(&p);
|
||||
|
||||
return e && Base::equals(p, tol);
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain camera poses corresponding
|
||||
* to keys involved in this factor
|
||||
* @return vector of Values
|
||||
*/
|
||||
typename Base::Cameras cameras(const Values& values) const {
|
||||
typename Base::Cameras cameras;
|
||||
size_t i=0;
|
||||
BOOST_FOREACH(const Key& k, this->keys_) {
|
||||
Pose3 pose = values.at<Pose3>(k);
|
||||
if(Base::body_P_sensor_)
|
||||
pose = pose.compose(*(Base::body_P_sensor_));
|
||||
|
||||
typename Base::Camera camera(pose, *K_all_[i++]);
|
||||
cameras.push_back(camera);
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor
|
||||
* @param values Values structure which must contain camera poses for this factor
|
||||
* @return
|
||||
*/
|
||||
virtual boost::shared_ptr<GaussianFactor> linearize(
|
||||
const Values& values) const {
|
||||
// depending on flag set on construction we may linearize to different linear factors
|
||||
switch(linearizeTo_){
|
||||
case JACOBIAN_SVD :
|
||||
return this->createJacobianSVDFactor(cameras(values), 0.0);
|
||||
break;
|
||||
case JACOBIAN_Q :
|
||||
return this->createJacobianQFactor(cameras(values), 0.0);
|
||||
break;
|
||||
default:
|
||||
return this->createHessianFactor(cameras(values));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* error calculates the error of the factor.
|
||||
*/
|
||||
|
|
@ -193,9 +99,28 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
/** return the calibration object */
|
||||
inline const std::vector<boost::shared_ptr<CALIBRATION> > calibration() const {
|
||||
return K_all_;
|
||||
/** return calibration shared pointers */
|
||||
inline const boost::shared_ptr<CALIBRATION> calibration() const {
|
||||
return K_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Collect all cameras involved in this factor
|
||||
* @param values Values structure which must contain camera poses corresponding
|
||||
* to keys involved in this factor
|
||||
* @return vector of Values
|
||||
*/
|
||||
typename Base::Cameras cameras(const Values& values) const {
|
||||
typename Base::Cameras cameras;
|
||||
BOOST_FOREACH(const Key& k, this->keys_) {
|
||||
Pose3 pose = values.at<Pose3>(k);
|
||||
if (Base::body_P_sensor_)
|
||||
pose = pose.compose(*(Base::body_P_sensor_));
|
||||
|
||||
Camera camera(pose, K_);
|
||||
cameras.push_back(camera);
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
||||
private:
|
||||
|
|
@ -205,10 +130,11 @@ private:
|
|||
template<class ARCHIVE>
|
||||
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
||||
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
ar & BOOST_SERIALIZATION_NVP(K_all_);
|
||||
ar & BOOST_SERIALIZATION_NVP(K_);
|
||||
}
|
||||
|
||||
}; // end of class declaration
|
||||
};
|
||||
// end of class declaration
|
||||
|
||||
/// traits
|
||||
template<class CALIBRATION>
|
||||
|
|
|
|||
|
|
@ -16,8 +16,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/nonlinear/NonlinearFactor.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <boost/optional.hpp>
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
#include <boost/make_shared.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
|
@ -27,18 +26,24 @@ namespace gtsam {
|
|||
* The calibration and pose are assumed known.
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class CALIBRATION = Cal3_S2>
|
||||
template<class CAMERA>
|
||||
class TriangulationFactor: public NoiseModelFactor1<Point3> {
|
||||
|
||||
public:
|
||||
|
||||
/// Camera type
|
||||
typedef PinholeCamera<CALIBRATION> Camera;
|
||||
/// CAMERA type
|
||||
typedef CAMERA Camera;
|
||||
|
||||
protected:
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef NoiseModelFactor1<Point3> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef TriangulationFactor<CAMERA> This;
|
||||
|
||||
// Keep a copy of measurement and calibration for I/O
|
||||
const Camera camera_; ///< Camera in which this landmark was seen
|
||||
const CAMERA camera_; ///< CAMERA in which this landmark was seen
|
||||
const Point2 measured_; ///< 2D measurement
|
||||
|
||||
// verbosity handling for Cheirality Exceptions
|
||||
|
|
@ -47,12 +52,6 @@ protected:
|
|||
|
||||
public:
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef NoiseModelFactor1<Point3> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef TriangulationFactor<CALIBRATION> This;
|
||||
|
||||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
|
|
@ -70,7 +69,7 @@ public:
|
|||
* @param throwCheirality determines whether Cheirality exceptions are rethrown
|
||||
* @param verboseCheirality determines whether exceptions are printed for Cheirality
|
||||
*/
|
||||
TriangulationFactor(const Camera& camera, const Point2& measured,
|
||||
TriangulationFactor(const CAMERA& camera, const Point2& measured,
|
||||
const SharedNoiseModel& model, Key pointKey, bool throwCheirality = false,
|
||||
bool verboseCheirality = false) :
|
||||
Base(model, pointKey), camera_(camera), measured_(measured), throwCheirality_(
|
||||
|
|
@ -114,7 +113,7 @@ public:
|
|||
Vector evaluateError(const Point3& point, boost::optional<Matrix&> H2 =
|
||||
boost::none) const {
|
||||
try {
|
||||
Point2 error(camera_.project(point, boost::none, H2, boost::none) - measured_);
|
||||
Point2 error(camera_.project2(point, boost::none, H2) - measured_);
|
||||
return error.vector();
|
||||
} catch (CheiralityException& e) {
|
||||
if (H2)
|
||||
|
|
@ -154,7 +153,7 @@ public:
|
|||
|
||||
// Would be even better if we could pass blocks to project
|
||||
const Point3& point = x.at<Point3>(key());
|
||||
b = -(camera_.project(point, boost::none, A, boost::none) - measured_).vector();
|
||||
b = -(camera_.project2(point, boost::none, A) - measured_).vector();
|
||||
if (noiseModel_)
|
||||
this->noiseModel_->WhitenSystem(A, b);
|
||||
|
||||
|
|
|
|||
|
|
@ -28,6 +28,7 @@ inline Point2_ transform_to(const Pose2_& x, const Point2_& p) {
|
|||
// 3D Geometry
|
||||
|
||||
typedef Expression<Point3> Point3_;
|
||||
typedef Expression<Unit3> Unit3_;
|
||||
typedef Expression<Rot3> Rot3_;
|
||||
typedef Expression<Pose3> Pose3_;
|
||||
|
||||
|
|
@ -40,33 +41,52 @@ inline Point3_ transform_to(const Pose3_& x, const Point3_& p) {
|
|||
typedef Expression<Cal3_S2> Cal3_S2_;
|
||||
typedef Expression<Cal3Bundler> Cal3Bundler_;
|
||||
|
||||
/// Expression version of PinholeBase::Project
|
||||
inline Point2_ project(const Point3_& p_cam) {
|
||||
return Point2_(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
||||
Point2 (*f)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
|
||||
return Point2_(f, p_cam);
|
||||
}
|
||||
|
||||
template <class CAMERA>
|
||||
Point2 project4(const CAMERA& camera, const Point3& p,
|
||||
OptionalJacobian<2, CAMERA::dimension> Dcam, OptionalJacobian<2, 3> Dpoint) {
|
||||
inline Point2_ project(const Unit3_& p_cam) {
|
||||
Point2 (*f)(const Unit3&, OptionalJacobian<2, 2>) = &PinholeBase::Project;
|
||||
return Point2_(f, p_cam);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
// Helper template for project2 expression below
|
||||
template<class CAMERA, class POINT>
|
||||
Point2 project4(const CAMERA& camera, const POINT& p,
|
||||
OptionalJacobian<2, CAMERA::dimension> Dcam,
|
||||
OptionalJacobian<2, FixedDimension<POINT>::value> Dpoint) {
|
||||
return camera.project2(p, Dcam, Dpoint);
|
||||
}
|
||||
|
||||
template <class CAMERA>
|
||||
Point2_ project2(const Expression<CAMERA>& camera_, const Point3_& p_) {
|
||||
return Point2_(project4<CAMERA>, camera_, p_);
|
||||
}
|
||||
|
||||
template<class CAMERA, class POINT>
|
||||
Point2_ project2(const Expression<CAMERA>& camera_,
|
||||
const Expression<POINT>& p_) {
|
||||
return Point2_(internal::project4<CAMERA, POINT>, camera_, p_);
|
||||
}
|
||||
|
||||
namespace internal {
|
||||
// Helper template for project3 expression below
|
||||
template<class CALIBRATION, class POINT>
|
||||
inline Point2 project6(const Pose3& x, const Point3& p, const Cal3_S2& K,
|
||||
OptionalJacobian<2, 6> Dpose, OptionalJacobian<2, 3> Dpoint, OptionalJacobian<2, 5> Dcal) {
|
||||
OptionalJacobian<2, 6> Dpose, OptionalJacobian<2, 3> Dpoint,
|
||||
OptionalJacobian<2, 5> Dcal) {
|
||||
return PinholeCamera<Cal3_S2>(x, K).project(p, Dpose, Dpoint, Dcal);
|
||||
}
|
||||
|
||||
inline Point2_ project3(const Pose3_& x, const Point3_& p, const Cal3_S2_& K) {
|
||||
return Point2_(project6, x, p, K);
|
||||
}
|
||||
|
||||
template<class CAL>
|
||||
Point2_ uncalibrate(const Expression<CAL>& K, const Point2_& xy_hat) {
|
||||
return Point2_(K, &CAL::uncalibrate, xy_hat);
|
||||
template<class CALIBRATION, class POINT>
|
||||
inline Point2_ project3(const Pose3_& x, const Expression<POINT>& p,
|
||||
const Expression<CALIBRATION>& K) {
|
||||
return Point2_(internal::project6<CALIBRATION, POINT>, x, p, K);
|
||||
}
|
||||
|
||||
template<class CALIBRATION>
|
||||
Point2_ uncalibrate(const Expression<CALIBRATION>& K, const Point2_& xy_hat) {
|
||||
return Point2_(K, &CALIBRATION::uncalibrate, xy_hat);
|
||||
}
|
||||
|
||||
} // \namespace gtsam
|
||||
|
|
|
|||
|
|
@ -0,0 +1,145 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file SmartFactorScenarios.h
|
||||
* @brief Scenarios for testSmart*.cpp
|
||||
* @author Frank Dellaert
|
||||
* @date Feb 2015
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
#include <gtsam/slam/GeneralSFMFactor.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2);
|
||||
Point3 landmark2(5, -0.5, 1.2);
|
||||
Point3 landmark3(3, 0, 3.0);
|
||||
Point3 landmark4(10, 0.5, 1.2);
|
||||
Point3 landmark5(10, -0.5, 1.2);
|
||||
|
||||
// First camera pose, looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
// Second camera 1 meter to the right of first camera
|
||||
Pose3 pose_right = level_pose * Pose3(Rot3(), Point3(1, 0, 0));
|
||||
// Third camera 1 meter above the first camera
|
||||
Pose3 pose_above = level_pose * Pose3(Rot3(), Point3(0, -1, 0));
|
||||
|
||||
// Create a noise unit2 for the pixel error
|
||||
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
|
||||
|
||||
static double fov = 60; // degrees
|
||||
static size_t w = 640, h = 480;
|
||||
|
||||
/* ************************************************************************* */
|
||||
// default Cal3_S2 cameras
|
||||
namespace vanilla {
|
||||
typedef PinholeCamera<Cal3_S2> Camera;
|
||||
typedef SmartProjectionFactor<Camera> SmartFactor;
|
||||
static Cal3_S2 K(fov, w, h);
|
||||
static Cal3_S2 K2(1500, 1200, 0, w, h);
|
||||
Camera level_camera(level_pose, K2);
|
||||
Camera level_camera_right(pose_right, K2);
|
||||
Point2 level_uv = level_camera.project(landmark1);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
Camera cam1(level_pose, K2);
|
||||
Camera cam2(pose_right, K2);
|
||||
Camera cam3(pose_above, K2);
|
||||
typedef GeneralSFMFactor<Camera, Point3> SFMFactor;
|
||||
SmartProjectionParams params;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// default Cal3_S2 poses
|
||||
namespace vanillaPose {
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
static Cal3_S2::shared_ptr sharedK(new Cal3_S2(fov, w, h));
|
||||
Camera level_camera(level_pose, sharedK);
|
||||
Camera level_camera_right(pose_right, sharedK);
|
||||
Camera cam1(level_pose, sharedK);
|
||||
Camera cam2(pose_right, sharedK);
|
||||
Camera cam3(pose_above, sharedK);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
// default Cal3_S2 poses
|
||||
namespace vanillaPose2 {
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
static Cal3_S2::shared_ptr sharedK2(new Cal3_S2(1500, 1200, 0, 640, 480));
|
||||
Camera level_camera(level_pose, sharedK2);
|
||||
Camera level_camera_right(pose_right, sharedK2);
|
||||
Camera cam1(level_pose, sharedK2);
|
||||
Camera cam2(pose_right, sharedK2);
|
||||
Camera cam3(pose_above, sharedK2);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
// Cal3Bundler cameras
|
||||
namespace bundler {
|
||||
typedef PinholeCamera<Cal3Bundler> Camera;
|
||||
typedef SmartProjectionFactor<Camera> SmartFactor;
|
||||
static Cal3Bundler K(500, 1e-3, 1e-3, 0, 0);
|
||||
Camera level_camera(level_pose, K);
|
||||
Camera level_camera_right(pose_right, K);
|
||||
Point2 level_uv = level_camera.project(landmark1);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
Pose3 pose1 = level_pose;
|
||||
Camera cam1(level_pose, K);
|
||||
Camera cam2(pose_right, K);
|
||||
Camera cam3(pose_above, K);
|
||||
typedef GeneralSFMFactor<Camera, Point3> SFMFactor;
|
||||
}
|
||||
/* *************************************************************************/
|
||||
// Cal3Bundler poses
|
||||
namespace bundlerPose {
|
||||
typedef PinholePose<Cal3Bundler> Camera;
|
||||
typedef SmartProjectionPoseFactor<Cal3Bundler> SmartFactor;
|
||||
static boost::shared_ptr<Cal3Bundler> sharedBundlerK(
|
||||
new Cal3Bundler(500, 1e-3, 1e-3, 1000, 2000));
|
||||
Camera level_camera(level_pose, sharedBundlerK);
|
||||
Camera level_camera_right(pose_right, sharedBundlerK);
|
||||
Camera cam1(level_pose, sharedBundlerK);
|
||||
Camera cam2(pose_right, sharedBundlerK);
|
||||
Camera cam3(pose_above, sharedBundlerK);
|
||||
}
|
||||
/* *************************************************************************/
|
||||
|
||||
template<class CAMERA>
|
||||
CAMERA perturbCameraPose(const CAMERA& camera) {
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
Pose3 cameraPose = camera.pose();
|
||||
Pose3 perturbedCameraPose = cameraPose.compose(noise_pose);
|
||||
return CAMERA(perturbedCameraPose, camera.calibration());
|
||||
}
|
||||
|
||||
template<class CAMERA>
|
||||
void projectToMultipleCameras(const CAMERA& cam1, const CAMERA& cam2,
|
||||
const CAMERA& cam3, Point3 landmark, vector<Point2>& measurements_cam) {
|
||||
Point2 cam1_uv1 = cam1.project(landmark);
|
||||
Point2 cam2_uv1 = cam2.project(landmark);
|
||||
Point2 cam3_uv1 = cam3.project(landmark);
|
||||
measurements_cam.push_back(cam1_uv1);
|
||||
measurements_cam.push_back(cam2_uv1);
|
||||
measurements_cam.push_back(cam3_uv1);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
||||
|
|
@ -160,7 +160,7 @@ TEST (EssentialMatrixFactor2, factor) {
|
|||
|
||||
// Check evaluation
|
||||
Point3 P1 = data.tracks[i].p, P2 = data.cameras[1].pose().transform_to(P1);
|
||||
const Point2 pi = SimpleCamera::project_to_camera(P2);
|
||||
const Point2 pi = PinholeBase::Project(P2);
|
||||
Point2 reprojectionError(pi - pB(i));
|
||||
Vector expected = reprojectionError.vector();
|
||||
|
||||
|
|
|
|||
|
|
@ -19,11 +19,13 @@
|
|||
#include <gtsam/slam/JacobianFactorQ.h>
|
||||
#include <gtsam/slam/JacobianFactorQR.h>
|
||||
#include <gtsam/slam/RegularImplicitSchurFactor.h>
|
||||
#include <gtsam/geometry/CalibratedCamera.h>
|
||||
#include <gtsam/geometry/Point2.h>
|
||||
|
||||
#include <gtsam/base/timing.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/linear/NoiseModel.h>
|
||||
#include <gtsam/linear/GaussianFactor.h>
|
||||
#include <gtsam/base/timing.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
|
|
@ -39,8 +41,8 @@ using namespace gtsam;
|
|||
const Matrix26 F0 = Matrix26::Ones();
|
||||
const Matrix26 F1 = 2 * Matrix26::Ones();
|
||||
const Matrix26 F3 = 3 * Matrix26::Ones();
|
||||
const vector<pair<Key, Matrix26> > Fblocks = list_of<pair<Key, Matrix> > //
|
||||
(make_pair(0, F0))(make_pair(1, F1))(make_pair(3, F3));
|
||||
const vector<Matrix26> FBlocks = list_of<Matrix26>(F0)(F1)(F3);
|
||||
const FastVector<Key> keys = list_of<Key>(0)(1)(3);
|
||||
// RHS and sigmas
|
||||
const Vector b = (Vector(6) << 1., 2., 3., 4., 5., 6.).finished();
|
||||
|
||||
|
|
@ -51,7 +53,7 @@ TEST( regularImplicitSchurFactor, creation ) {
|
|||
E.block<2,2>(0, 0) = eye(2);
|
||||
E.block<2,3>(2, 0) = 2 * ones(2, 3);
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
RegularImplicitSchurFactor<6> expected(Fblocks, E, P, b);
|
||||
RegularImplicitSchurFactor<CalibratedCamera> expected(keys, FBlocks, E, P, b);
|
||||
Matrix expectedP = expected.getPointCovariance();
|
||||
EXPECT(assert_equal(expectedP, P));
|
||||
}
|
||||
|
|
@ -84,15 +86,15 @@ TEST( regularImplicitSchurFactor, addHessianMultiply ) {
|
|||
F << F0, zeros(2, d * 3), zeros(2, d), F1, zeros(2, d*2), zeros(2, d * 3), F3;
|
||||
|
||||
// Calculate expected result F'*alpha*(I - E*P*E')*F*x
|
||||
FastVector<Key> keys;
|
||||
keys += 0,1,2,3;
|
||||
Vector x = xvalues.vector(keys);
|
||||
FastVector<Key> keys2;
|
||||
keys2 += 0,1,2,3;
|
||||
Vector x = xvalues.vector(keys2);
|
||||
Vector expected = zero(24);
|
||||
RegularImplicitSchurFactor<6>::multiplyHessianAdd(F, E, P, alpha, x, expected);
|
||||
EXPECT(assert_equal(expected, yExpected.vector(keys), 1e-8));
|
||||
RegularImplicitSchurFactor<CalibratedCamera>::multiplyHessianAdd(F, E, P, alpha, x, expected);
|
||||
EXPECT(assert_equal(expected, yExpected.vector(keys2), 1e-8));
|
||||
|
||||
// Create ImplicitSchurFactor
|
||||
RegularImplicitSchurFactor<6> implicitFactor(Fblocks, E, P, b);
|
||||
RegularImplicitSchurFactor<CalibratedCamera> implicitFactor(keys, FBlocks, E, P, b);
|
||||
|
||||
VectorValues zero = 0 * yExpected;// quick way to get zero w right structure
|
||||
{ // First Version
|
||||
|
|
@ -122,32 +124,34 @@ TEST( regularImplicitSchurFactor, addHessianMultiply ) {
|
|||
|
||||
// Create JacobianFactor with same error
|
||||
const SharedDiagonal model;
|
||||
JacobianFactorQ<6, 2> jf(Fblocks, E, P, b, model);
|
||||
JacobianFactorQ<6, 2> jfQ(keys, FBlocks, E, P, b, model);
|
||||
|
||||
{ // error
|
||||
double expectedError = jf.error(xvalues);
|
||||
double actualError = implicitFactor.errorJF(xvalues);
|
||||
DOUBLES_EQUAL(expectedError,actualError,1e-7)
|
||||
// error
|
||||
double expectedError = 11875.083333333334;
|
||||
{
|
||||
EXPECT_DOUBLES_EQUAL(expectedError,jfQ.error(xvalues),1e-7)
|
||||
EXPECT_DOUBLES_EQUAL(expectedError,implicitFactor.errorJF(xvalues),1e-7)
|
||||
EXPECT_DOUBLES_EQUAL(11903.500000000007,implicitFactor.error(xvalues),1e-7)
|
||||
}
|
||||
|
||||
{ // JacobianFactor with same error
|
||||
{
|
||||
VectorValues yActual = zero;
|
||||
jf.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
jfQ.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
jf.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
jfQ.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
jf.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
jfQ.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // check hessian Diagonal
|
||||
VectorValues diagExpected = jf.hessianDiagonal();
|
||||
VectorValues diagExpected = jfQ.hessianDiagonal();
|
||||
VectorValues diagActual = implicitFactor.hessianDiagonal();
|
||||
EXPECT(assert_equal(diagExpected, diagActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // check hessian Block Diagonal
|
||||
map<Key,Matrix> BD = jf.hessianBlockDiagonal();
|
||||
map<Key,Matrix> BD = jfQ.hessianBlockDiagonal();
|
||||
map<Key,Matrix> actualBD = implicitFactor.hessianBlockDiagonal();
|
||||
LONGS_EQUAL(3,actualBD.size());
|
||||
EXPECT(assert_equal(BD[0],actualBD[0]));
|
||||
|
|
@ -157,40 +161,46 @@ TEST( regularImplicitSchurFactor, addHessianMultiply ) {
|
|||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
jf.multiplyHessianAdd(alpha, xdata, y);
|
||||
jfQ.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
jf.multiplyHessianAdd(alpha, xdata, y);
|
||||
jfQ.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
jf.multiplyHessianAdd(-1, xdata, y);
|
||||
jfQ.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
|
||||
VectorValues expectedVV;
|
||||
expectedVV.insert(0,-3.5*ones(6));
|
||||
expectedVV.insert(1,10*ones(6)/3);
|
||||
expectedVV.insert(3,-19.5*ones(6));
|
||||
{ // Check gradientAtZero
|
||||
VectorValues expected = jf.gradientAtZero();
|
||||
VectorValues actual = implicitFactor.gradientAtZero();
|
||||
EXPECT(assert_equal(expected, actual, 1e-8));
|
||||
EXPECT(assert_equal(expectedVV, jfQ.gradientAtZero(), 1e-8));
|
||||
EXPECT(assert_equal(expectedVV, implicitFactor.gradientAtZero(), 1e-8));
|
||||
}
|
||||
|
||||
// Create JacobianFactorQR
|
||||
JacobianFactorQR<6, 2> jfq(Fblocks, E, P, b, model);
|
||||
JacobianFactorQR<6, 2> jfQR(keys, FBlocks, E, P, b, model);
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, jfQR.error(xvalues),1e-7)
|
||||
EXPECT(assert_equal(expectedVV, jfQR.gradientAtZero(), 1e-8));
|
||||
{
|
||||
const SharedDiagonal model;
|
||||
VectorValues yActual = zero;
|
||||
jfq.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
jfQR.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(yExpected, yActual, 1e-8));
|
||||
jfq.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
jfQR.multiplyHessianAdd(alpha, xvalues, yActual);
|
||||
EXPECT(assert_equal(2 * yExpected, yActual, 1e-8));
|
||||
jfq.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
jfQR.multiplyHessianAdd(-1, xvalues, yActual);
|
||||
EXPECT(assert_equal(zero, yActual, 1e-8));
|
||||
}
|
||||
|
||||
{ // Raw memory Version
|
||||
std::fill(y, y + 24, 0);// zero y !
|
||||
jfq.multiplyHessianAdd(alpha, xdata, y);
|
||||
jfQR.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(expected, XMap(y), 1e-8));
|
||||
jfq.multiplyHessianAdd(alpha, xdata, y);
|
||||
jfQR.multiplyHessianAdd(alpha, xdata, y);
|
||||
EXPECT(assert_equal(Vector(2 * expected), XMap(y), 1e-8));
|
||||
jfq.multiplyHessianAdd(-1, xdata, y);
|
||||
jfQR.multiplyHessianAdd(-1, xdata, y);
|
||||
EXPECT(assert_equal(Vector(0 * expected), XMap(y), 1e-8));
|
||||
}
|
||||
delete [] y;
|
||||
|
|
@ -214,7 +224,7 @@ TEST(regularImplicitSchurFactor, hessianDiagonal)
|
|||
E.block<2,3>(2, 0) << 1,2,3,4,5,6;
|
||||
E.block<2,3>(4, 0) << 0.5,1,2,3,4,5;
|
||||
Matrix3 P = (E.transpose() * E).inverse();
|
||||
RegularImplicitSchurFactor<6> factor(Fblocks, E, P, b);
|
||||
RegularImplicitSchurFactor<CalibratedCamera> factor(keys, FBlocks, E, P, b);
|
||||
|
||||
// hessianDiagonal
|
||||
VectorValues expected;
|
||||
|
|
@ -255,6 +265,18 @@ TEST(regularImplicitSchurFactor, hessianDiagonal)
|
|||
EXPECT(assert_equal(F0t*(I2-E0*P*E0.transpose())*F0,actualBD[0]));
|
||||
EXPECT(assert_equal(F1.transpose()*F1-FtE1*P*FtE1.transpose(),actualBD[1]));
|
||||
EXPECT(assert_equal(F3.transpose()*F3-FtE3*P*FtE3.transpose(),actualBD[3]));
|
||||
|
||||
// augmentedInformation (test just checks diagonals)
|
||||
Matrix actualInfo = factor.augmentedInformation();
|
||||
EXPECT(assert_equal(actualBD[0],actualInfo.block<6,6>(0,0)));
|
||||
EXPECT(assert_equal(actualBD[1],actualInfo.block<6,6>(6,6)));
|
||||
EXPECT(assert_equal(actualBD[3],actualInfo.block<6,6>(12,12)));
|
||||
|
||||
// information (test just checks diagonals)
|
||||
Matrix actualInfo2 = factor.information();
|
||||
EXPECT(assert_equal(actualBD[0],actualInfo2.block<6,6>(0,0)));
|
||||
EXPECT(assert_equal(actualBD[1],actualInfo2.block<6,6>(6,6)));
|
||||
EXPECT(assert_equal(actualBD[3],actualInfo2.block<6,6>(12,12)));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
|
|||
|
|
@ -26,7 +26,7 @@ using namespace gtsam;
|
|||
/* ************************************************************************* */
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
class PinholeFactor: public SmartFactorBase<PinholeCamera<Cal3Bundler>, 9> {
|
||||
class PinholeFactor: public SmartFactorBase<PinholeCamera<Cal3Bundler> > {
|
||||
virtual double error(const Values& values) const {
|
||||
return 0.0;
|
||||
}
|
||||
|
|
@ -45,7 +45,7 @@ TEST(SmartFactorBase, Pinhole) {
|
|||
|
||||
/* ************************************************************************* */
|
||||
#include <gtsam/geometry/StereoCamera.h>
|
||||
class StereoFactor: public SmartFactorBase<StereoCamera, 9> {
|
||||
class StereoFactor: public SmartFactorBase<StereoCamera> {
|
||||
virtual double error(const Values& values) const {
|
||||
return 0.0;
|
||||
}
|
||||
|
|
|
|||
|
|
@ -0,0 +1,856 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testSmartProjectionCameraFactor.cpp
|
||||
* @brief Unit tests for SmartProjectionCameraFactor Class
|
||||
* @author Chris Beall
|
||||
* @author Luca Carlone
|
||||
* @author Zsolt Kira
|
||||
* @author Frank Dellaert
|
||||
* @date Sept 2013
|
||||
*/
|
||||
|
||||
#include "smartFactorScenarios.h"
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <boost/assign/std/map.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace boost::assign;
|
||||
|
||||
static bool isDebugTest = false;
|
||||
|
||||
// Convenience for named keys
|
||||
using symbol_shorthand::X;
|
||||
using symbol_shorthand::L;
|
||||
|
||||
static Key x1(1);
|
||||
Symbol l1('l', 1), l2('l', 2), l3('l', 3);
|
||||
Key c1 = 1, c2 = 2, c3 = 3;
|
||||
|
||||
static Point2 measurement1(323.0, 240.0);
|
||||
|
||||
static double rankTol = 1.0;
|
||||
|
||||
template<class CALIBRATION>
|
||||
PinholeCamera<CALIBRATION> perturbCameraPoseAndCalibration(
|
||||
const PinholeCamera<CALIBRATION>& camera) {
|
||||
GTSAM_CONCEPT_MANIFOLD_TYPE(CALIBRATION)
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
Pose3 cameraPose = camera.pose();
|
||||
Pose3 perturbedCameraPose = cameraPose.compose(noise_pose);
|
||||
typename gtsam::traits<CALIBRATION>::TangentVector d;
|
||||
d.setRandom();
|
||||
d *= 0.1;
|
||||
CALIBRATION perturbedCalibration = camera.calibration().retract(d);
|
||||
return PinholeCamera<CALIBRATION>(perturbedCameraPose, perturbedCalibration);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionCameraFactor, perturbCameraPose) {
|
||||
using namespace vanilla;
|
||||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
Pose3 perturbed_level_pose = level_pose.compose(noise_pose);
|
||||
Camera actualCamera(perturbed_level_pose, K2);
|
||||
|
||||
Camera expectedCamera = perturbCameraPose(level_camera);
|
||||
CHECK(assert_equal(expectedCamera, actualCamera));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionCameraFactor, Constructor) {
|
||||
using namespace vanilla;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionCameraFactor, Constructor2) {
|
||||
using namespace vanilla;
|
||||
params.setRankTolerance(rankTol);
|
||||
SmartFactor factor1(boost::none, params);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionCameraFactor, Constructor3) {
|
||||
using namespace vanilla;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(measurement1, x1, unit2);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionCameraFactor, Constructor4) {
|
||||
using namespace vanilla;
|
||||
params.setRankTolerance(rankTol);
|
||||
SmartFactor factor1(boost::none, params);
|
||||
factor1.add(measurement1, x1, unit2);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionCameraFactor, Equals ) {
|
||||
using namespace vanilla;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(measurement1, x1, unit2);
|
||||
|
||||
SmartFactor::shared_ptr factor2(new SmartFactor());
|
||||
factor2->add(measurement1, x1, unit2);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, noiseless ) {
|
||||
using namespace vanilla;
|
||||
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
values.insert(c2, level_camera_right);
|
||||
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(level_uv, c1, unit2);
|
||||
factor1->add(level_uv_right, c2, unit2);
|
||||
|
||||
double expectedError = 0.0;
|
||||
DOUBLES_EQUAL(expectedError, factor1->error(values), 1e-7);
|
||||
CHECK(
|
||||
assert_equal(zero(4),
|
||||
factor1->reprojectionErrorAfterTriangulation(values), 1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, noisy ) {
|
||||
|
||||
using namespace vanilla;
|
||||
|
||||
// Project one landmark into two cameras and add noise on first
|
||||
Point2 level_uv = level_camera.project(landmark1) + Point2(0.2, 0.2);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
Camera perturbed_level_camera_right = perturbCameraPose(level_camera_right);
|
||||
values.insert(c2, perturbed_level_camera_right);
|
||||
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(level_uv, c1, unit2);
|
||||
factor1->add(level_uv_right, c2, unit2);
|
||||
|
||||
// Point is now uninitialized before a triangulation event
|
||||
EXPECT(!factor1->point());
|
||||
|
||||
double expectedError = 58640;
|
||||
double actualError1 = factor1->error(values);
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, actualError1, 1);
|
||||
|
||||
// Check triangulated point
|
||||
CHECK(factor1->point());
|
||||
EXPECT(
|
||||
assert_equal(Point3(13.7587, 1.43851, -1.14274), *factor1->point(), 1e-4));
|
||||
|
||||
// Check whitened errors
|
||||
Vector expected(4);
|
||||
expected << -7, 235, 58, -242;
|
||||
SmartFactor::Cameras cameras1 = factor1->cameras(values);
|
||||
Point3 point1 = *factor1->point();
|
||||
Vector actual = factor1->whitenedError(cameras1, point1);
|
||||
EXPECT(assert_equal(expected, actual, 1));
|
||||
|
||||
SmartFactor::shared_ptr factor2(new SmartFactor());
|
||||
vector<Point2> measurements;
|
||||
measurements.push_back(level_uv);
|
||||
measurements.push_back(level_uv_right);
|
||||
|
||||
vector<SharedNoiseModel> noises;
|
||||
noises.push_back(unit2);
|
||||
noises.push_back(unit2);
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(c1);
|
||||
views.push_back(c2);
|
||||
|
||||
factor2->add(measurements, views, noises);
|
||||
|
||||
double actualError2 = factor2->error(values);
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, perturbPoseAndOptimize ) {
|
||||
|
||||
using namespace vanilla;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
// Create and fill smartfactors
|
||||
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
|
||||
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
|
||||
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
|
||||
vector<Key> views;
|
||||
views.push_back(c1);
|
||||
views.push_back(c2);
|
||||
views.push_back(c3);
|
||||
smartFactor1->add(measurements_cam1, views, unit2);
|
||||
smartFactor2->add(measurements_cam2, views, unit2);
|
||||
smartFactor3->add(measurements_cam3, views, unit2);
|
||||
|
||||
// Create factor graph and add priors on two cameras
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6 + 5, 1e-5);
|
||||
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
|
||||
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
|
||||
|
||||
// Create initial estimate
|
||||
Values initial;
|
||||
initial.insert(c1, cam1);
|
||||
initial.insert(c2, cam2);
|
||||
initial.insert(c3, perturbCameraPose(cam3));
|
||||
if (isDebugTest)
|
||||
initial.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
|
||||
|
||||
// Points are now uninitialized before a triangulation event
|
||||
EXPECT(!smartFactor1->point());
|
||||
EXPECT(!smartFactor2->point());
|
||||
EXPECT(!smartFactor3->point());
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(75711, smartFactor1->error(initial), 1);
|
||||
EXPECT_DOUBLES_EQUAL(58524, smartFactor2->error(initial), 1);
|
||||
EXPECT_DOUBLES_EQUAL(77564, smartFactor3->error(initial), 1);
|
||||
|
||||
// Error should trigger this and initialize the points, abort if not so
|
||||
CHECK(smartFactor1->point());
|
||||
CHECK(smartFactor2->point());
|
||||
CHECK(smartFactor3->point());
|
||||
|
||||
EXPECT(
|
||||
assert_equal(Point3(2.57696, -0.182566, 1.04085), *smartFactor1->point(),
|
||||
1e-4));
|
||||
EXPECT(
|
||||
assert_equal(Point3(2.80114, -0.702153, 1.06594), *smartFactor2->point(),
|
||||
1e-4));
|
||||
EXPECT(
|
||||
assert_equal(Point3(1.82593, -0.289569, 2.13438), *smartFactor3->point(),
|
||||
1e-4));
|
||||
|
||||
// Check whitened errors
|
||||
Vector expected(6);
|
||||
expected << 256, 29, -26, 29, -206, -202;
|
||||
Point3 point1 = *smartFactor1->point();
|
||||
SmartFactor::Cameras cameras1 = smartFactor1->cameras(initial);
|
||||
Vector reprojectionError = cameras1.reprojectionError(point1,
|
||||
measurements_cam1);
|
||||
EXPECT(assert_equal(expected, reprojectionError, 1));
|
||||
Vector actual = smartFactor1->whitenedError(cameras1, point1);
|
||||
EXPECT(assert_equal(expected, actual, 1));
|
||||
|
||||
// Optimize
|
||||
LevenbergMarquardtParams lmParams;
|
||||
if (isDebugTest) {
|
||||
lmParams.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
lmParams.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
}
|
||||
LevenbergMarquardtOptimizer optimizer(graph, initial, lmParams);
|
||||
Values result = optimizer.optimize();
|
||||
|
||||
EXPECT(assert_equal(landmark1, *smartFactor1->point(), 1e-7));
|
||||
EXPECT(assert_equal(landmark2, *smartFactor2->point(), 1e-7));
|
||||
EXPECT(assert_equal(landmark3, *smartFactor3->point(), 1e-7));
|
||||
|
||||
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(initial);
|
||||
// VectorValues delta = GFG->optimize();
|
||||
|
||||
if (isDebugTest)
|
||||
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");
|
||||
EXPECT(assert_equal(cam1, result.at<Camera>(c1)));
|
||||
EXPECT(assert_equal(cam2, result.at<Camera>(c2)));
|
||||
EXPECT(assert_equal(result.at<Camera>(c3).pose(), cam3.pose(), 1e-4));
|
||||
EXPECT(
|
||||
assert_equal(result.at<Camera>(c3).calibration(), cam3.calibration(), 2));
|
||||
if (isDebugTest)
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, perturbPoseAndOptimizeFromSfM_tracks ) {
|
||||
|
||||
using namespace vanilla;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(c1);
|
||||
views.push_back(c2);
|
||||
views.push_back(c3);
|
||||
|
||||
SfM_Track track1;
|
||||
for (size_t i = 0; i < 3; ++i) {
|
||||
SfM_Measurement measures;
|
||||
measures.first = i + 1; // cameras are from 1 to 3
|
||||
measures.second = measurements_cam1.at(i);
|
||||
track1.measurements.push_back(measures);
|
||||
}
|
||||
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
|
||||
smartFactor1->add(track1, unit2);
|
||||
|
||||
SfM_Track track2;
|
||||
for (size_t i = 0; i < 3; ++i) {
|
||||
SfM_Measurement measures;
|
||||
measures.first = i + 1; // cameras are from 1 to 3
|
||||
measures.second = measurements_cam2.at(i);
|
||||
track2.measurements.push_back(measures);
|
||||
}
|
||||
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
|
||||
smartFactor2->add(track2, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
|
||||
smartFactor3->add(measurements_cam3, views, unit2);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6 + 5, 1e-5);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
|
||||
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
|
||||
|
||||
Values values;
|
||||
values.insert(c1, cam1);
|
||||
values.insert(c2, cam2);
|
||||
values.insert(c3, perturbCameraPose(cam3));
|
||||
if (isDebugTest)
|
||||
values.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
|
||||
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
|
||||
// VectorValues delta = GFG->optimize();
|
||||
|
||||
if (isDebugTest)
|
||||
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");
|
||||
EXPECT(assert_equal(cam1, result.at<Camera>(c1)));
|
||||
EXPECT(assert_equal(cam2, result.at<Camera>(c2)));
|
||||
EXPECT(assert_equal(result.at<Camera>(c3).pose(), cam3.pose(), 1e-4));
|
||||
EXPECT(
|
||||
assert_equal(result.at<Camera>(c3).calibration(), cam3.calibration(), 2));
|
||||
if (isDebugTest)
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, perturbCamerasAndOptimize ) {
|
||||
|
||||
using namespace vanilla;
|
||||
|
||||
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3,
|
||||
measurements_cam4, measurements_cam5;
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark5, measurements_cam5);
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(c1);
|
||||
views.push_back(c2);
|
||||
views.push_back(c3);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
|
||||
smartFactor1->add(measurements_cam1, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
|
||||
smartFactor2->add(measurements_cam2, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
|
||||
smartFactor3->add(measurements_cam3, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor4(new SmartFactor());
|
||||
smartFactor4->add(measurements_cam4, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor5(new SmartFactor());
|
||||
smartFactor5->add(measurements_cam5, views, unit2);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6 + 5, 1e-5);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.push_back(smartFactor4);
|
||||
graph.push_back(smartFactor5);
|
||||
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
|
||||
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
|
||||
|
||||
Values values;
|
||||
values.insert(c1, cam1);
|
||||
values.insert(c2, cam2);
|
||||
values.insert(c3, perturbCameraPoseAndCalibration(cam3));
|
||||
if (isDebugTest)
|
||||
values.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
lmParams.relativeErrorTol = 1e-8;
|
||||
lmParams.absoluteErrorTol = 0;
|
||||
lmParams.maxIterations = 20;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
|
||||
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
|
||||
// VectorValues delta = GFG->optimize();
|
||||
|
||||
if (isDebugTest)
|
||||
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");
|
||||
EXPECT(assert_equal(cam1, result.at<Camera>(c1)));
|
||||
EXPECT(assert_equal(cam2, result.at<Camera>(c2)));
|
||||
EXPECT(assert_equal(result.at<Camera>(c3).pose(), cam3.pose(), 1e-1));
|
||||
EXPECT(
|
||||
assert_equal(result.at<Camera>(c3).calibration(), cam3.calibration(), 20));
|
||||
if (isDebugTest)
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, Cal3Bundler ) {
|
||||
|
||||
using namespace bundler;
|
||||
|
||||
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3,
|
||||
measurements_cam4, measurements_cam5;
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark5, measurements_cam5);
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(c1);
|
||||
views.push_back(c2);
|
||||
views.push_back(c3);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
|
||||
smartFactor1->add(measurements_cam1, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
|
||||
smartFactor2->add(measurements_cam2, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
|
||||
smartFactor3->add(measurements_cam3, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor4(new SmartFactor());
|
||||
smartFactor4->add(measurements_cam4, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor5(new SmartFactor());
|
||||
smartFactor5->add(measurements_cam5, views, unit2);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(9, 1e-6);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
|
||||
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
|
||||
|
||||
Values values;
|
||||
values.insert(c1, cam1);
|
||||
values.insert(c2, cam2);
|
||||
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||
values.insert(c3, perturbCameraPose(cam3));
|
||||
if (isDebugTest)
|
||||
values.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
lmParams.relativeErrorTol = 1e-8;
|
||||
lmParams.absoluteErrorTol = 0;
|
||||
lmParams.maxIterations = 20;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
|
||||
if (isDebugTest)
|
||||
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");
|
||||
EXPECT(assert_equal(cam1, result.at<Camera>(c1), 1e-4));
|
||||
EXPECT(assert_equal(cam2, result.at<Camera>(c2), 1e-4));
|
||||
EXPECT(assert_equal(result.at<Camera>(c3).pose(), cam3.pose(), 1e-1));
|
||||
EXPECT(
|
||||
assert_equal(result.at<Camera>(c3).calibration(), cam3.calibration(), 1));
|
||||
if (isDebugTest)
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, Cal3Bundler2 ) {
|
||||
|
||||
using namespace bundler;
|
||||
|
||||
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3,
|
||||
measurements_cam4, measurements_cam5;
|
||||
|
||||
// 1. Project three landmarks into three cameras and triangulate
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark4, measurements_cam4);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark5, measurements_cam5);
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(c1);
|
||||
views.push_back(c2);
|
||||
views.push_back(c3);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(new SmartFactor());
|
||||
smartFactor1->add(measurements_cam1, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(new SmartFactor());
|
||||
smartFactor2->add(measurements_cam2, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(new SmartFactor());
|
||||
smartFactor3->add(measurements_cam3, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor4(new SmartFactor());
|
||||
smartFactor4->add(measurements_cam4, views, unit2);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor5(new SmartFactor());
|
||||
smartFactor5->add(measurements_cam5, views, unit2);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(9, 1e-6);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.push_back(PriorFactor<Camera>(c1, cam1, noisePrior));
|
||||
graph.push_back(PriorFactor<Camera>(c2, cam2, noisePrior));
|
||||
|
||||
Values values;
|
||||
values.insert(c1, cam1);
|
||||
values.insert(c2, cam2);
|
||||
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||
values.insert(c3, perturbCameraPoseAndCalibration(cam3));
|
||||
if (isDebugTest)
|
||||
values.at<Camera>(c3).print("Smart: Pose3 before optimization: ");
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
lmParams.relativeErrorTol = 1e-8;
|
||||
lmParams.absoluteErrorTol = 0;
|
||||
lmParams.maxIterations = 20;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
if (isDebugTest)
|
||||
lmParams.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
|
||||
if (isDebugTest)
|
||||
result.at<Camera>(c3).print("Smart: Pose3 after optimization: ");
|
||||
EXPECT(assert_equal(cam1, result.at<Camera>(c1), 1e-4));
|
||||
EXPECT(assert_equal(cam2, result.at<Camera>(c2), 1e-4));
|
||||
EXPECT(assert_equal(result.at<Camera>(c3).pose(), cam3.pose(), 1e-1));
|
||||
EXPECT(
|
||||
assert_equal(result.at<Camera>(c3).calibration(), cam3.calibration(), 2));
|
||||
if (isDebugTest)
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, noiselessBundler ) {
|
||||
|
||||
using namespace bundler;
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
values.insert(c2, level_camera_right);
|
||||
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(level_uv, c1, unit2);
|
||||
factor1->add(level_uv_right, c2, unit2);
|
||||
|
||||
double actualError = factor1->error(values);
|
||||
|
||||
double expectedError = 0.0;
|
||||
DOUBLES_EQUAL(expectedError, actualError, 1e-3);
|
||||
|
||||
Point3 oldPoint; // this takes the point stored in the factor (we are not interested in this)
|
||||
if (factor1->point())
|
||||
oldPoint = *(factor1->point());
|
||||
|
||||
Point3 expectedPoint;
|
||||
if (factor1->point(values))
|
||||
expectedPoint = *(factor1->point(values));
|
||||
|
||||
EXPECT(assert_equal(expectedPoint, landmark1, 1e-3));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, comparisonGeneralSfMFactor ) {
|
||||
|
||||
using namespace bundler;
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
values.insert(c2, level_camera_right);
|
||||
|
||||
NonlinearFactorGraph smartGraph;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(level_uv, c1, unit2);
|
||||
factor1->add(level_uv_right, c2, unit2);
|
||||
smartGraph.push_back(factor1);
|
||||
double expectedError = factor1->error(values);
|
||||
double expectedErrorGraph = smartGraph.error(values);
|
||||
Point3 expectedPoint;
|
||||
if (factor1->point())
|
||||
expectedPoint = *(factor1->point());
|
||||
// cout << "expectedPoint " << expectedPoint.vector() << endl;
|
||||
|
||||
// COMMENTS:
|
||||
// 1) triangulation introduces small errors, then for a fair comparison we use expectedPoint as
|
||||
// value in the generalGrap
|
||||
NonlinearFactorGraph generalGraph;
|
||||
SFMFactor sfm1(level_uv, unit2, c1, l1);
|
||||
SFMFactor sfm2(level_uv_right, unit2, c2, l1);
|
||||
generalGraph.push_back(sfm1);
|
||||
generalGraph.push_back(sfm2);
|
||||
values.insert(l1, expectedPoint); // note: we get rid of possible errors in the triangulation
|
||||
Vector e1 = sfm1.evaluateError(values.at<Camera>(c1), values.at<Point3>(l1));
|
||||
Vector e2 = sfm2.evaluateError(values.at<Camera>(c2), values.at<Point3>(l1));
|
||||
double actualError = 0.5
|
||||
* (norm_2(e1) * norm_2(e1) + norm_2(e2) * norm_2(e2));
|
||||
double actualErrorGraph = generalGraph.error(values);
|
||||
|
||||
DOUBLES_EQUAL(expectedErrorGraph, actualErrorGraph, 1e-7);
|
||||
DOUBLES_EQUAL(expectedErrorGraph, expectedError, 1e-7);
|
||||
DOUBLES_EQUAL(actualErrorGraph, actualError, 1e-7);
|
||||
DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, comparisonGeneralSfMFactor1 ) {
|
||||
|
||||
using namespace bundler;
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
values.insert(c2, level_camera_right);
|
||||
|
||||
NonlinearFactorGraph smartGraph;
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(level_uv, c1, unit2);
|
||||
factor1->add(level_uv_right, c2, unit2);
|
||||
smartGraph.push_back(factor1);
|
||||
Matrix expectedHessian = smartGraph.linearize(values)->hessian().first;
|
||||
Vector expectedInfoVector = smartGraph.linearize(values)->hessian().second;
|
||||
Point3 expectedPoint;
|
||||
if (factor1->point())
|
||||
expectedPoint = *(factor1->point());
|
||||
|
||||
// COMMENTS:
|
||||
// 1) triangulation introduces small errors, then for a fair comparison we use expectedPoint as
|
||||
// value in the generalGrap
|
||||
NonlinearFactorGraph generalGraph;
|
||||
SFMFactor sfm1(level_uv, unit2, c1, l1);
|
||||
SFMFactor sfm2(level_uv_right, unit2, c2, l1);
|
||||
generalGraph.push_back(sfm1);
|
||||
generalGraph.push_back(sfm2);
|
||||
values.insert(l1, expectedPoint); // note: we get rid of possible errors in the triangulation
|
||||
Matrix actualFullHessian = generalGraph.linearize(values)->hessian().first;
|
||||
Matrix actualFullInfoVector = generalGraph.linearize(values)->hessian().second;
|
||||
Matrix actualHessian = actualFullHessian.block(0, 0, 18, 18)
|
||||
- actualFullHessian.block(0, 18, 18, 3)
|
||||
* (actualFullHessian.block(18, 18, 3, 3)).inverse()
|
||||
* actualFullHessian.block(18, 0, 3, 18);
|
||||
Vector actualInfoVector = actualFullInfoVector.block(0, 0, 18, 1)
|
||||
- actualFullHessian.block(0, 18, 18, 3)
|
||||
* (actualFullHessian.block(18, 18, 3, 3)).inverse()
|
||||
* actualFullInfoVector.block(18, 0, 3, 1);
|
||||
|
||||
EXPECT(assert_equal(expectedHessian, actualHessian, 1e-7));
|
||||
EXPECT(assert_equal(expectedInfoVector, actualInfoVector, 1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
// Have to think about how to compare multiplyHessianAdd in generalSfMFactor and smartFactors
|
||||
//TEST( SmartProjectionCameraFactor, comparisonGeneralSfMFactor2 ){
|
||||
//
|
||||
// Values values;
|
||||
// values.insert(c1, level_camera);
|
||||
// values.insert(c2, level_camera_right);
|
||||
//
|
||||
// NonlinearFactorGraph smartGraph;
|
||||
// SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
// factor1->add(level_uv, c1, unit2);
|
||||
// factor1->add(level_uv_right, c2, unit2);
|
||||
// smartGraph.push_back(factor1);
|
||||
// GaussianFactorGraph::shared_ptr gfgSmart = smartGraph.linearize(values);
|
||||
//
|
||||
// Point3 expectedPoint;
|
||||
// if(factor1->point())
|
||||
// expectedPoint = *(factor1->point());
|
||||
//
|
||||
// // COMMENTS:
|
||||
// // 1) triangulation introduces small errors, then for a fair comparison we use expectedPoint as
|
||||
// // value in the generalGrap
|
||||
// NonlinearFactorGraph generalGraph;
|
||||
// SFMFactor sfm1(level_uv, unit2, c1, l1);
|
||||
// SFMFactor sfm2(level_uv_right, unit2, c2, l1);
|
||||
// generalGraph.push_back(sfm1);
|
||||
// generalGraph.push_back(sfm2);
|
||||
// values.insert(l1, expectedPoint); // note: we get rid of possible errors in the triangulation
|
||||
// GaussianFactorGraph::shared_ptr gfg = generalGraph.linearize(values);
|
||||
//
|
||||
// double alpha = 1.0;
|
||||
//
|
||||
// VectorValues yExpected, yActual, ytmp;
|
||||
// VectorValues xtmp = map_list_of
|
||||
// (c1, (Vec(9) << 0,0,0,0,0,0,0,0,0))
|
||||
// (c2, (Vec(9) << 0,0,0,0,0,0,0,0,0))
|
||||
// (l1, (Vec(3) << 5.5, 0.5, 1.2));
|
||||
// gfg ->multiplyHessianAdd(alpha, xtmp, ytmp);
|
||||
//
|
||||
// VectorValues x = map_list_of
|
||||
// (c1, (Vec(9) << 1,2,3,4,5,6,7,8,9))
|
||||
// (c2, (Vec(9) << 11,12,13,14,15,16,17,18,19))
|
||||
// (l1, (Vec(3) << 5.5, 0.5, 1.2));
|
||||
//
|
||||
// gfgSmart->multiplyHessianAdd(alpha, ytmp + x, yActual);
|
||||
// gfg ->multiplyHessianAdd(alpha, x, yExpected);
|
||||
//
|
||||
// EXPECT(assert_equal(yActual,yExpected, 1e-7));
|
||||
//}
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, computeImplicitJacobian ) {
|
||||
|
||||
using namespace bundler;
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
values.insert(c2, level_camera_right);
|
||||
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
factor1->add(level_uv, c1, unit2);
|
||||
factor1->add(level_uv_right, c2, unit2);
|
||||
Matrix expectedE;
|
||||
Vector expectedb;
|
||||
|
||||
CameraSet<Camera> cameras;
|
||||
cameras.push_back(level_camera);
|
||||
cameras.push_back(level_camera_right);
|
||||
|
||||
factor1->error(values); // this is important to have a triangulation of the point
|
||||
Point3 point;
|
||||
if (factor1->point())
|
||||
point = *(factor1->point());
|
||||
vector<Matrix29> Fblocks;
|
||||
factor1->computeJacobians(Fblocks, expectedE, expectedb, cameras, point);
|
||||
|
||||
NonlinearFactorGraph generalGraph;
|
||||
SFMFactor sfm1(level_uv, unit2, c1, l1);
|
||||
SFMFactor sfm2(level_uv_right, unit2, c2, l1);
|
||||
generalGraph.push_back(sfm1);
|
||||
generalGraph.push_back(sfm2);
|
||||
values.insert(l1, point); // note: we get rid of possible errors in the triangulation
|
||||
Matrix actualFullHessian = generalGraph.linearize(values)->hessian().first;
|
||||
Matrix actualVinv = (actualFullHessian.block(18, 18, 3, 3)).inverse();
|
||||
|
||||
Matrix3 expectedVinv = factor1->PointCov(expectedE);
|
||||
EXPECT(assert_equal(expectedVinv, actualVinv, 1e-7));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionCameraFactor, implicitJacobianFactor ) {
|
||||
|
||||
using namespace bundler;
|
||||
|
||||
Values values;
|
||||
values.insert(c1, level_camera);
|
||||
values.insert(c2, level_camera_right);
|
||||
double rankTol = 1;
|
||||
bool useEPI = false;
|
||||
|
||||
// Hessian version
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(rankTol);
|
||||
params.setLinearizationMode(gtsam::HESSIAN);
|
||||
params.setDegeneracyMode(gtsam::IGNORE_DEGENERACY);
|
||||
params.setEnableEPI(useEPI);
|
||||
|
||||
SmartFactor::shared_ptr explicitFactor(
|
||||
new SmartFactor(boost::none, params));
|
||||
explicitFactor->add(level_uv, c1, unit2);
|
||||
explicitFactor->add(level_uv_right, c2, unit2);
|
||||
|
||||
GaussianFactor::shared_ptr gaussianHessianFactor = explicitFactor->linearize(
|
||||
values);
|
||||
HessianFactor& hessianFactor =
|
||||
dynamic_cast<HessianFactor&>(*gaussianHessianFactor);
|
||||
|
||||
// Implicit Schur version
|
||||
params.setLinearizationMode(gtsam::IMPLICIT_SCHUR);
|
||||
SmartFactor::shared_ptr implicitFactor(
|
||||
new SmartFactor(boost::none, params));
|
||||
implicitFactor->add(level_uv, c1, unit2);
|
||||
implicitFactor->add(level_uv_right, c2, unit2);
|
||||
GaussianFactor::shared_ptr gaussianImplicitSchurFactor =
|
||||
implicitFactor->linearize(values);
|
||||
CHECK(gaussianImplicitSchurFactor);
|
||||
typedef RegularImplicitSchurFactor<Camera> Implicit9;
|
||||
Implicit9& implicitSchurFactor =
|
||||
dynamic_cast<Implicit9&>(*gaussianImplicitSchurFactor);
|
||||
|
||||
VectorValues x = map_list_of(c1,
|
||||
(Vector(9) << 1, 2, 3, 4, 5, 6, 7, 8, 9).finished())(c2,
|
||||
(Vector(9) << 11, 12, 13, 14, 15, 16, 17, 18, 19).finished());
|
||||
|
||||
VectorValues yExpected, yActual;
|
||||
double alpha = 1.0;
|
||||
hessianFactor.multiplyHessianAdd(alpha, x, yActual);
|
||||
implicitSchurFactor.multiplyHessianAdd(alpha, x, yExpected);
|
||||
EXPECT(assert_equal(yActual, yExpected, 1e-7));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
|
|
@ -17,6 +17,7 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/geometry/triangulation.h>
|
||||
#include <gtsam/geometry/SimpleCamera.h>
|
||||
#include <gtsam/geometry/Cal3Bundler.h>
|
||||
#include <gtsam/base/numericalDerivative.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
|
@ -35,7 +36,7 @@ static const boost::shared_ptr<Cal3_S2> sharedCal = //
|
|||
// Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
static const Rot3 upright = Rot3::ypr(-M_PI / 2, 0., -M_PI / 2);
|
||||
static const Pose3 pose1 = Pose3(upright, gtsam::Point3(0, 0, 1));
|
||||
PinholeCamera<Cal3_S2> camera1(pose1, *sharedCal);
|
||||
SimpleCamera camera1(pose1, *sharedCal);
|
||||
|
||||
// landmark ~5 meters infront of camera
|
||||
static const Point3 landmark(5, 0.5, 1.2);
|
||||
|
|
@ -48,7 +49,7 @@ TEST( triangulation, TriangulationFactor ) {
|
|||
// Create the factor with a measurement that is 3 pixels off in x
|
||||
Key pointKey(1);
|
||||
SharedNoiseModel model;
|
||||
typedef TriangulationFactor<> Factor;
|
||||
typedef TriangulationFactor<SimpleCamera> Factor;
|
||||
Factor factor(camera1, z1, model, pointKey);
|
||||
|
||||
// Use the factor to calculate the Jacobians
|
||||
|
|
|
|||
|
|
@ -26,16 +26,14 @@
|
|||
* -makes monocular observations of many landmarks
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose3.h>
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <gtsam/geometry/Cal3_S2Stereo.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/nonlinear/NonlinearEquality.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
|
||||
#include <gtsam/slam/SmartProjectionPoseFactor.h>
|
||||
|
||||
#include <string>
|
||||
#include <fstream>
|
||||
|
|
@ -46,6 +44,7 @@ using namespace gtsam;
|
|||
|
||||
int main(int argc, char** argv){
|
||||
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
|
||||
Values initial_estimate;
|
||||
|
|
@ -68,18 +67,17 @@ int main(int argc, char** argv){
|
|||
cout << "Reading camera poses" << endl;
|
||||
ifstream pose_file(pose_loc.c_str());
|
||||
|
||||
int pose_id;
|
||||
int i;
|
||||
MatrixRowMajor m(4,4);
|
||||
//read camera pose parameters and use to make initial estimates of camera poses
|
||||
while (pose_file >> pose_id) {
|
||||
for (int i = 0; i < 16; i++) {
|
||||
while (pose_file >> i) {
|
||||
for (int i = 0; i < 16; i++)
|
||||
pose_file >> m.data()[i];
|
||||
}
|
||||
initial_estimate.insert(Symbol('x', pose_id), Pose3(m));
|
||||
initial_estimate.insert(i, Pose3(m));
|
||||
}
|
||||
|
||||
// camera and landmark keys
|
||||
size_t x, l;
|
||||
// landmark keys
|
||||
size_t l;
|
||||
|
||||
// pixel coordinates uL, uR, v (same for left/right images due to rectification)
|
||||
// landmark coordinates X, Y, Z in camera frame, resulting from triangulation
|
||||
|
|
@ -89,24 +87,24 @@ int main(int argc, char** argv){
|
|||
|
||||
//read stereo measurements and construct smart factors
|
||||
|
||||
SmartFactor::shared_ptr factor(new SmartFactor());
|
||||
SmartFactor::shared_ptr factor(new SmartFactor(K));
|
||||
size_t current_l = 3; // hardcoded landmark ID from first measurement
|
||||
|
||||
while (factor_file >> x >> l >> uL >> uR >> v >> X >> Y >> Z) {
|
||||
while (factor_file >> i >> l >> uL >> uR >> v >> X >> Y >> Z) {
|
||||
|
||||
if(current_l != l) {
|
||||
graph.push_back(factor);
|
||||
factor = SmartFactor::shared_ptr(new SmartFactor());
|
||||
factor = SmartFactor::shared_ptr(new SmartFactor(K));
|
||||
current_l = l;
|
||||
}
|
||||
factor->add(Point2(uL,v), Symbol('x',x), model, K);
|
||||
factor->add(Point2(uL,v), i, model);
|
||||
}
|
||||
|
||||
Pose3 first_pose = initial_estimate.at<Pose3>(Symbol('x',1));
|
||||
Pose3 firstPose = initial_estimate.at<Pose3>(1);
|
||||
//constrain the first pose such that it cannot change from its original value during optimization
|
||||
// NOTE: NonlinearEquality forces the optimizer to use QR rather than Cholesky
|
||||
// QR is much slower than Cholesky, but numerically more stable
|
||||
graph.push_back(NonlinearEquality<Pose3>(Symbol('x',1),first_pose));
|
||||
graph.push_back(NonlinearEquality<Pose3>(1,firstPose));
|
||||
|
||||
LevenbergMarquardtParams params;
|
||||
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
|
|
|
|||
|
|
@ -33,49 +33,25 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* Structure for storing some state memory, used to speed up optimization
|
||||
* @addtogroup SLAM
|
||||
*/
|
||||
class SmartStereoProjectionFactorState {
|
||||
|
||||
protected:
|
||||
|
||||
public:
|
||||
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
SmartStereoProjectionFactorState() {
|
||||
}
|
||||
// Hessian representation (after Schur complement)
|
||||
bool calculatedHessian;
|
||||
Matrix H;
|
||||
Vector gs_vector;
|
||||
std::vector<Matrix> Gs;
|
||||
std::vector<Vector> gs;
|
||||
double f;
|
||||
};
|
||||
|
||||
enum LinearizationMode {
|
||||
HESSIAN, JACOBIAN_SVD, JACOBIAN_Q
|
||||
};
|
||||
|
||||
/**
|
||||
* SmartStereoProjectionFactor: triangulates point
|
||||
*/
|
||||
template<class CALIBRATION, size_t D>
|
||||
class SmartStereoProjectionFactor: public SmartFactorBase<StereoCamera, D> {
|
||||
template<class CALIBRATION>
|
||||
class SmartStereoProjectionFactor: public SmartFactorBase<StereoCamera> {
|
||||
protected:
|
||||
|
||||
// Some triangulation parameters
|
||||
const double rankTolerance_; ///< threshold to decide whether triangulation is degenerate_
|
||||
/// @name Caching triangulation
|
||||
/// @{
|
||||
const TriangulationParameters parameters_;
|
||||
// TODO:
|
||||
// mutable TriangulationResult result_; ///< result from triangulateSafe
|
||||
|
||||
const double retriangulationThreshold_; ///< threshold to decide whether to re-triangulate
|
||||
mutable std::vector<Pose3> cameraPosesTriangulation_; ///< current triangulation poses
|
||||
/// @}
|
||||
|
||||
const bool manageDegeneracy_; ///< if set to true will use the rotation-only version for degenerate cases
|
||||
|
||||
const bool enableEPI_; ///< if set to true, will refine triangulation using LM
|
||||
|
||||
const double linearizationThreshold_; ///< threshold to decide whether to re-linearize
|
||||
mutable std::vector<Pose3> cameraPosesLinearization_; ///< current linearization poses
|
||||
|
||||
|
|
@ -84,29 +60,22 @@ protected:
|
|||
mutable bool degenerate_;
|
||||
mutable bool cheiralityException_;
|
||||
|
||||
// verbosity handling for Cheirality Exceptions
|
||||
const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
||||
const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||
|
||||
boost::shared_ptr<SmartStereoProjectionFactorState> state_;
|
||||
|
||||
/// shorthand for smart projection factor state variable
|
||||
typedef boost::shared_ptr<SmartStereoProjectionFactorState> SmartFactorStatePtr;
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef SmartFactorBase<StereoCamera, D> Base;
|
||||
|
||||
double landmarkDistanceThreshold_; // if the landmark is triangulated at a
|
||||
// distance larger than that the factor is considered degenerate
|
||||
|
||||
double dynamicOutlierRejectionThreshold_; // if this is nonnegative the factor will check if the
|
||||
// average reprojection error is smaller than this threshold after triangulation,
|
||||
// and the factor is disregarded if the error is large
|
||||
typedef SmartFactorBase<StereoCamera> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef SmartStereoProjectionFactor<CALIBRATION, D> This;
|
||||
typedef SmartStereoProjectionFactor<CALIBRATION> This;
|
||||
|
||||
enum {ZDim = 3}; ///< Dimension trait of measurement type
|
||||
enum {
|
||||
ZDim = 3
|
||||
}; ///< Dimension trait of measurement type
|
||||
|
||||
/// @name Parameters governing how triangulation result is treated
|
||||
/// @{
|
||||
const bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
|
||||
const bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
|
||||
/// @}
|
||||
|
||||
public:
|
||||
|
||||
|
|
@ -128,18 +97,15 @@ public:
|
|||
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
|
||||
* @param body_P_sensor is the transform from body to sensor frame (default identity)
|
||||
*/
|
||||
SmartStereoProjectionFactor(const double rankTol, const double linThreshold,
|
||||
const bool manageDegeneracy, const bool enableEPI,
|
||||
boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
double landmarkDistanceThreshold = 1e10,
|
||||
double dynamicOutlierRejectionThreshold = -1,
|
||||
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartStereoProjectionFactorState())) :
|
||||
Base(body_P_sensor), rankTolerance_(rankTol), retriangulationThreshold_(
|
||||
1e-5), manageDegeneracy_(manageDegeneracy), enableEPI_(enableEPI), linearizationThreshold_(
|
||||
SmartStereoProjectionFactor(const double rankTolerance,
|
||||
const double linThreshold, const bool manageDegeneracy,
|
||||
const bool enableEPI, double landmarkDistanceThreshold = 1e10,
|
||||
double dynamicOutlierRejectionThreshold = -1) :
|
||||
parameters_(rankTolerance, enableEPI, landmarkDistanceThreshold,
|
||||
dynamicOutlierRejectionThreshold), //
|
||||
retriangulationThreshold_(1e-5), manageDegeneracy_(manageDegeneracy), linearizationThreshold_(
|
||||
linThreshold), degenerate_(false), cheiralityException_(false), throwCheirality_(
|
||||
false), verboseCheirality_(false), state_(state),
|
||||
landmarkDistanceThreshold_(landmarkDistanceThreshold),
|
||||
dynamicOutlierRejectionThreshold_(dynamicOutlierRejectionThreshold) {
|
||||
false), verboseCheirality_(false) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
|
|
@ -153,11 +119,12 @@ public:
|
|||
*/
|
||||
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
|
||||
DefaultKeyFormatter) const {
|
||||
std::cout << s << "SmartStereoProjectionFactor, z = \n";
|
||||
std::cout << "rankTolerance_ = " << rankTolerance_ << std::endl;
|
||||
std::cout << s << "SmartStereoProjectionFactor\n";
|
||||
std::cout << "triangulationParameters:\n" << parameters_ << std::endl;
|
||||
std::cout << "degenerate_ = " << degenerate_ << std::endl;
|
||||
std::cout << "cheiralityException_ = " << cheiralityException_ << std::endl;
|
||||
std::cout << "linearizationThreshold_ = " << linearizationThreshold_ << std::endl;
|
||||
std::cout << "linearizationThreshold_ = " << linearizationThreshold_
|
||||
<< std::endl;
|
||||
Base::print("", keyFormatter);
|
||||
}
|
||||
|
||||
|
|
@ -197,40 +164,6 @@ public:
|
|||
return retriangulate; // if we arrive to this point_ all poses are the same and we don't need re-triangulation
|
||||
}
|
||||
|
||||
/// This function checks if the new linearization point_ is 'close' to the previous one used for linearization
|
||||
bool decideIfLinearize(const Cameras& cameras) const {
|
||||
// "selective linearization"
|
||||
// The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
|
||||
// (we only care about the "rigidity" of the poses, not about their absolute pose)
|
||||
|
||||
if (this->linearizationThreshold_ < 0) //by convention if linearizationThreshold is negative we always relinearize
|
||||
return true;
|
||||
|
||||
// if we do not have a previous linearization point_ or the new linearization point_ includes more poses
|
||||
if (cameraPosesLinearization_.empty()
|
||||
|| (cameras.size() != cameraPosesLinearization_.size()))
|
||||
return true;
|
||||
|
||||
Pose3 firstCameraPose, firstCameraPoseOld;
|
||||
for (size_t i = 0; i < cameras.size(); i++) {
|
||||
|
||||
if (i == 0) { // we store the initial pose, this is useful for selective re-linearization
|
||||
firstCameraPose = cameras[i].pose();
|
||||
firstCameraPoseOld = cameraPosesLinearization_[i];
|
||||
continue;
|
||||
}
|
||||
|
||||
// we compare the poses in the frame of the first pose
|
||||
Pose3 localCameraPose = firstCameraPose.between(cameras[i].pose());
|
||||
Pose3 localCameraPoseOld = firstCameraPoseOld.between(
|
||||
cameraPosesLinearization_[i]);
|
||||
if (!localCameraPose.equals(localCameraPoseOld,
|
||||
this->linearizationThreshold_))
|
||||
return true; // at least two "relative" poses are different, hence we re-linearize
|
||||
}
|
||||
return false; // if we arrive to this point_ all poses are the same and we don't need re-linearize
|
||||
}
|
||||
|
||||
/// triangulateSafe
|
||||
size_t triangulateSafe(const Values& values) const {
|
||||
return triangulateSafe(this->cameras(values));
|
||||
|
|
@ -268,7 +201,7 @@ public:
|
|||
mono_cameras.push_back(PinholeCamera<Cal3_S2>(pose, K));
|
||||
}
|
||||
point_ = triangulatePoint3<PinholeCamera<Cal3_S2> >(mono_cameras, mono_measurements,
|
||||
rankTolerance_, enableEPI_);
|
||||
parameters_.rankTolerance, parameters_.enableEPI);
|
||||
|
||||
// // // End temporary hack
|
||||
|
||||
|
|
@ -281,11 +214,11 @@ public:
|
|||
|
||||
// Check landmark distance and reprojection errors to avoid outliers
|
||||
double totalReprojError = 0.0;
|
||||
size_t i=0;
|
||||
size_t i = 0;
|
||||
BOOST_FOREACH(const Camera& camera, cameras) {
|
||||
Point3 cameraTranslation = camera.pose().translation();
|
||||
// we discard smart factors corresponding to points that are far away
|
||||
if(cameraTranslation.distance(point_) > landmarkDistanceThreshold_){
|
||||
if (cameraTranslation.distance(point_) > parameters_.landmarkDistanceThreshold) {
|
||||
degenerate_ = true;
|
||||
break;
|
||||
}
|
||||
|
|
@ -300,8 +233,8 @@ public:
|
|||
}
|
||||
//std::cout << "totalReprojError error: " << totalReprojError << std::endl;
|
||||
// we discard smart factors that have large reprojection error
|
||||
if(dynamicOutlierRejectionThreshold_ > 0 &&
|
||||
totalReprojError/m > dynamicOutlierRejectionThreshold_)
|
||||
if (parameters_.dynamicOutlierRejectionThreshold > 0
|
||||
&& totalReprojError / m > parameters_.dynamicOutlierRejectionThreshold)
|
||||
degenerate_ = true;
|
||||
|
||||
} catch (TriangulationUnderconstrainedException&) {
|
||||
|
|
@ -345,15 +278,15 @@ public:
|
|||
}
|
||||
|
||||
/// linearize returns a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<D> > createHessianFactor(
|
||||
boost::shared_ptr<RegularHessianFactor<Base::Dim> > createHessianFactor(
|
||||
const Cameras& cameras, const double lambda = 0.0) const {
|
||||
|
||||
bool isDebug = false;
|
||||
size_t numKeys = this->keys_.size();
|
||||
// Create structures for Hessian Factors
|
||||
std::vector < Key > js;
|
||||
std::vector < Matrix > Gs(numKeys * (numKeys + 1) / 2);
|
||||
std::vector < Vector > gs(numKeys);
|
||||
std::vector<Key> js;
|
||||
std::vector<Matrix> Gs(numKeys * (numKeys + 1) / 2);
|
||||
std::vector<Vector> gs(numKeys);
|
||||
|
||||
if (this->measured_.size() != cameras.size()) {
|
||||
std::cout
|
||||
|
|
@ -362,138 +295,123 @@ public:
|
|||
exit(1);
|
||||
}
|
||||
|
||||
this->triangulateSafe(cameras);
|
||||
if (isDebug) std::cout << "point_ = " << point_ << std::endl;
|
||||
triangulateSafe(cameras);
|
||||
if (isDebug)
|
||||
std::cout << "point_ = " << point_ << std::endl;
|
||||
|
||||
if (numKeys < 2
|
||||
|| (!this->manageDegeneracy_
|
||||
&& (this->cheiralityException_ || this->degenerate_))) {
|
||||
if (isDebug) std::cout << "In linearize: exception" << std::endl;
|
||||
if (isDebug)
|
||||
std::cout << "In linearize: exception" << std::endl;
|
||||
BOOST_FOREACH(Matrix& m, Gs)
|
||||
m = zeros(D, D);
|
||||
m = zeros(Base::Dim, Base::Dim);
|
||||
BOOST_FOREACH(Vector& v, gs)
|
||||
v = zero(D);
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_, Gs, gs,
|
||||
v = zero(Base::Dim);
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_, Gs, gs,
|
||||
0.0);
|
||||
}
|
||||
|
||||
// instead, if we want to manage the exception..
|
||||
if (this->cheiralityException_ || this->degenerate_) { // if we want to manage the exceptions with rotation-only factors
|
||||
this->degenerate_ = true;
|
||||
if (isDebug) std::cout << "degenerate_ = true" << std::endl;
|
||||
if (isDebug)
|
||||
std::cout << "degenerate_ = true" << std::endl;
|
||||
}
|
||||
|
||||
bool doLinearize = this->decideIfLinearize(cameras);
|
||||
|
||||
if (isDebug) std::cout << "doLinearize = " << doLinearize << std::endl;
|
||||
|
||||
if (this->linearizationThreshold_ >= 0 && doLinearize) // if we apply selective relinearization and we need to relinearize
|
||||
if (this->linearizationThreshold_ >= 0) // if we apply selective relinearization and we need to relinearize
|
||||
for (size_t i = 0; i < cameras.size(); i++)
|
||||
this->cameraPosesLinearization_[i] = cameras[i].pose();
|
||||
|
||||
if (!doLinearize) { // return the previous Hessian factor
|
||||
std::cout << "=============================" << std::endl;
|
||||
std::cout << "doLinearize " << doLinearize << std::endl;
|
||||
std::cout << "this->linearizationThreshold_ "
|
||||
<< this->linearizationThreshold_ << std::endl;
|
||||
std::cout << "this->degenerate_ " << this->degenerate_ << std::endl;
|
||||
std::cout
|
||||
<< "something wrong in SmartProjectionHessianFactor: selective relinearization should be disabled"
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_,
|
||||
this->state_->Gs, this->state_->gs, this->state_->f);
|
||||
}
|
||||
|
||||
// ==================================================================
|
||||
std::vector<typename Base::MatrixZD> Fblocks;
|
||||
Matrix F, E;
|
||||
Vector b;
|
||||
double f = computeJacobians(F, E, b, cameras);
|
||||
computeJacobians(Fblocks, E, b, cameras);
|
||||
Base::FillDiagonalF(Fblocks, F); // expensive !!!
|
||||
|
||||
// Schur complement trick
|
||||
// Frank says: should be possible to do this more efficiently?
|
||||
// And we care, as in grouped factors this is called repeatedly
|
||||
Matrix H(D * numKeys, D * numKeys);
|
||||
Matrix H(Base::Dim * numKeys, Base::Dim * numKeys);
|
||||
Vector gs_vector;
|
||||
|
||||
Matrix3 P = Base::PointCov(E,lambda);
|
||||
Matrix3 P = Cameras::PointCov(E, lambda);
|
||||
H.noalias() = F.transpose() * (F - (E * (P * (E.transpose() * F))));
|
||||
gs_vector.noalias() = F.transpose() * (b - (E * (P * (E.transpose() * b))));
|
||||
|
||||
if (isDebug) std::cout << "gs_vector size " << gs_vector.size() << std::endl;
|
||||
if (isDebug) std::cout << "H:\n" << H << std::endl;
|
||||
if (isDebug)
|
||||
std::cout << "gs_vector size " << gs_vector.size() << std::endl;
|
||||
if (isDebug)
|
||||
std::cout << "H:\n" << H << std::endl;
|
||||
|
||||
// Populate Gs and gs
|
||||
int GsCount2 = 0;
|
||||
for (DenseIndex i1 = 0; i1 < (DenseIndex)numKeys; i1++) { // for each camera
|
||||
DenseIndex i1D = i1 * D;
|
||||
gs.at(i1) = gs_vector.segment < D > (i1D);
|
||||
for (DenseIndex i2 = 0; i2 < (DenseIndex)numKeys; i2++) {
|
||||
for (DenseIndex i1 = 0; i1 < (DenseIndex) numKeys; i1++) { // for each camera
|
||||
DenseIndex i1D = i1 * Base::Dim;
|
||||
gs.at(i1) = gs_vector.segment<Base::Dim>(i1D);
|
||||
for (DenseIndex i2 = 0; i2 < (DenseIndex) numKeys; i2++) {
|
||||
if (i2 >= i1) {
|
||||
Gs.at(GsCount2) = H.block < D, D > (i1D, i2 * D);
|
||||
Gs.at(GsCount2) = H.block<Base::Dim, Base::Dim>(i1D, i2 * Base::Dim);
|
||||
GsCount2++;
|
||||
}
|
||||
}
|
||||
}
|
||||
// ==================================================================
|
||||
if (this->linearizationThreshold_ >= 0) { // if we do not use selective relinearization we don't need to store these variables
|
||||
this->state_->Gs = Gs;
|
||||
this->state_->gs = gs;
|
||||
this->state_->f = f;
|
||||
}
|
||||
return boost::make_shared<RegularHessianFactor<D> >(this->keys_, Gs, gs, f);
|
||||
double f = b.squaredNorm();
|
||||
return boost::make_shared<RegularHessianFactor<Base::Dim> >(this->keys_, Gs, gs, f);
|
||||
}
|
||||
|
||||
// // create factor
|
||||
// boost::shared_ptr<ImplicitSchurFactor<D> > createImplicitSchurFactor(
|
||||
// boost::shared_ptr<ImplicitSchurFactor<Base::Dim> > createImplicitSchurFactor(
|
||||
// const Cameras& cameras, double lambda) const {
|
||||
// if (triangulateForLinearize(cameras))
|
||||
// return Base::createImplicitSchurFactor(cameras, point_, lambda);
|
||||
// else
|
||||
// return boost::shared_ptr<ImplicitSchurFactor<D> >();
|
||||
// return boost::shared_ptr<ImplicitSchurFactor<Base::Dim> >();
|
||||
// }
|
||||
//
|
||||
// /// create factor
|
||||
// boost::shared_ptr<JacobianFactorQ<D> > createJacobianQFactor(
|
||||
// boost::shared_ptr<JacobianFactorQ<Base::Dim> > createJacobianQFactor(
|
||||
// const Cameras& cameras, double lambda) const {
|
||||
// if (triangulateForLinearize(cameras))
|
||||
// return Base::createJacobianQFactor(cameras, point_, lambda);
|
||||
// else
|
||||
// return boost::make_shared< JacobianFactorQ<D> >(this->keys_);
|
||||
// return boost::make_shared< JacobianFactorQ<Base::Dim> >(this->keys_);
|
||||
// }
|
||||
//
|
||||
// /// Create a factor, takes values
|
||||
// boost::shared_ptr<JacobianFactorQ<D> > createJacobianQFactor(
|
||||
// boost::shared_ptr<JacobianFactorQ<Base::Dim> > createJacobianQFactor(
|
||||
// const Values& values, double lambda) const {
|
||||
// Cameras myCameras;
|
||||
// Cameras cameras;
|
||||
// // TODO triangulate twice ??
|
||||
// bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
// bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
|
||||
// if (nonDegenerate)
|
||||
// return createJacobianQFactor(myCameras, lambda);
|
||||
// return createJacobianQFactor(cameras, lambda);
|
||||
// else
|
||||
// return boost::make_shared< JacobianFactorQ<D> >(this->keys_);
|
||||
// return boost::make_shared< JacobianFactorQ<Base::Dim> >(this->keys_);
|
||||
// }
|
||||
//
|
||||
/// different (faster) way to compute Jacobian factor
|
||||
boost::shared_ptr< JacobianFactor > createJacobianSVDFactor(const Cameras& cameras,
|
||||
double lambda) const {
|
||||
boost::shared_ptr<JacobianFactor> createJacobianSVDFactor(
|
||||
const Cameras& cameras, double lambda) const {
|
||||
if (triangulateForLinearize(cameras))
|
||||
return Base::createJacobianSVDFactor(cameras, point_, lambda);
|
||||
else
|
||||
return boost::make_shared< JacobianFactorSVD<D, ZDim> >(this->keys_);
|
||||
return boost::make_shared<JacobianFactorSVD<Base::Dim, ZDim> >(this->keys_);
|
||||
}
|
||||
|
||||
/// Returns true if nonDegenerate
|
||||
bool computeCamerasAndTriangulate(const Values& values,
|
||||
Cameras& myCameras) const {
|
||||
Cameras& cameras) const {
|
||||
Values valuesFactor;
|
||||
|
||||
// Select only the cameras
|
||||
BOOST_FOREACH(const Key key, this->keys_)
|
||||
valuesFactor.insert(key, values.at(key));
|
||||
|
||||
myCameras = this->cameras(valuesFactor);
|
||||
size_t nrCameras = this->triangulateSafe(myCameras);
|
||||
cameras = this->cameras(valuesFactor);
|
||||
size_t nrCameras = this->triangulateSafe(cameras);
|
||||
|
||||
if (nrCameras < 2
|
||||
|| (!this->manageDegeneracy_
|
||||
|
|
@ -505,7 +423,8 @@ public:
|
|||
this->degenerate_ = true;
|
||||
|
||||
if (this->degenerate_) {
|
||||
std::cout << "SmartStereoProjectionFactor: this is not ready" << std::endl;
|
||||
std::cout << "SmartStereoProjectionFactor: this is not ready"
|
||||
<< std::endl;
|
||||
std::cout << "this->cheiralityException_ " << this->cheiralityException_
|
||||
<< std::endl;
|
||||
std::cout << "this->degenerate_ " << this->degenerate_ << std::endl;
|
||||
|
|
@ -513,34 +432,32 @@ public:
|
|||
return true;
|
||||
}
|
||||
|
||||
/// Assumes non-degenerate !
|
||||
void computeEP(Matrix& E, Matrix& PointCov, const Cameras& cameras) const {
|
||||
Base::computeEP(E, PointCov, cameras, point_);
|
||||
}
|
||||
|
||||
/// Takes values
|
||||
bool computeEP(Matrix& E, Matrix& PointCov, const Values& values) const {
|
||||
Cameras myCameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
/**
|
||||
* Triangulate and compute derivative of error with respect to point
|
||||
* @return whether triangulation worked
|
||||
*/
|
||||
bool triangulateAndComputeE(Matrix& E, const Values& values) const {
|
||||
Cameras cameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
|
||||
if (nonDegenerate)
|
||||
computeEP(E, PointCov, myCameras);
|
||||
cameras.project2(point_, boost::none, E);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
/// Version that takes values, and creates the point
|
||||
bool computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
bool computeJacobians(std::vector<typename Base::MatrixZD>& Fblocks,
|
||||
Matrix& E, Vector& b, const Values& values) const {
|
||||
Cameras myCameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
Cameras cameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
|
||||
if (nonDegenerate)
|
||||
computeJacobians(Fblocks, E, b, myCameras, 0.0);
|
||||
computeJacobians(Fblocks, E, b, cameras, 0.0);
|
||||
return nonDegenerate;
|
||||
}
|
||||
|
||||
/// Compute F, E only (called below in both vanilla and SVD versions)
|
||||
/// Assumes the point has been computed
|
||||
/// Note E can be 2m*3 or 2m*2, in case point is degenerate
|
||||
double computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
void computeJacobians(std::vector<typename Base::MatrixZD>& Fblocks,
|
||||
Matrix& E, Vector& b, const Cameras& cameras) const {
|
||||
if (this->degenerate_) {
|
||||
throw("FIXME: computeJacobians degenerate case commented out!");
|
||||
|
|
@ -571,73 +488,36 @@ public:
|
|||
//
|
||||
// this->noise_.at(i)->WhitenSystem(Fi, Ei, bi);
|
||||
// f += bi.squaredNorm();
|
||||
// Fblocks.push_back(typename Base::KeyMatrix2D(this->keys_[i], Fi));
|
||||
// Fblocks.push_back(typename Base::MatrixZD(this->keys_[i], Fi));
|
||||
// E.block < 2, 2 > (2 * i, 0) = Ei;
|
||||
// subInsert(b, bi, 2 * i);
|
||||
// }
|
||||
// return f;
|
||||
} else {
|
||||
// nondegenerate: just return Base version
|
||||
return Base::computeJacobians(Fblocks, E, b, cameras, point_);
|
||||
Base::computeJacobians(Fblocks, E, b, cameras, point_);
|
||||
} // end else
|
||||
}
|
||||
|
||||
// /// Version that computes PointCov, with optional lambda parameter
|
||||
// double computeJacobians(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
// Matrix& E, Matrix& PointCov, Vector& b, const Cameras& cameras,
|
||||
// const double lambda = 0.0) const {
|
||||
//
|
||||
// double f = computeJacobians(Fblocks, E, b, cameras);
|
||||
//
|
||||
// // Point covariance inv(E'*E)
|
||||
// PointCov.noalias() = (E.transpose() * E + lambda * eye(E.cols())).inverse();
|
||||
//
|
||||
// return f;
|
||||
// }
|
||||
//
|
||||
// /// takes values
|
||||
// bool computeJacobiansSVD(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
// Matrix& Enull, Vector& b, const Values& values) const {
|
||||
// typename Base::Cameras myCameras;
|
||||
// double good = computeCamerasAndTriangulate(values, myCameras);
|
||||
// if (good)
|
||||
// computeJacobiansSVD(Fblocks, Enull, b, myCameras);
|
||||
// return true;
|
||||
// }
|
||||
//
|
||||
// /// SVD version
|
||||
// double computeJacobiansSVD(std::vector<typename Base::KeyMatrix2D>& Fblocks,
|
||||
// Matrix& Enull, Vector& b, const Cameras& cameras) const {
|
||||
// return Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, point_);
|
||||
// }
|
||||
//
|
||||
// /// Returns Matrix, TODO: maybe should not exist -> not sparse !
|
||||
// // TODO should there be a lambda?
|
||||
// double computeJacobiansSVD(Matrix& F, Matrix& Enull, Vector& b,
|
||||
// const Cameras& cameras) const {
|
||||
// return Base::computeJacobiansSVD(F, Enull, b, cameras, point_);
|
||||
// }
|
||||
|
||||
/// Returns Matrix, TODO: maybe should not exist -> not sparse !
|
||||
double computeJacobians(Matrix& F, Matrix& E, Vector& b,
|
||||
const Cameras& cameras) const {
|
||||
return Base::computeJacobians(F, E, b, cameras, point_);
|
||||
/// takes values
|
||||
bool triangulateAndComputeJacobiansSVD(
|
||||
std::vector<typename Base::MatrixZD>& Fblocks, Matrix& Enull, Vector& b,
|
||||
const Values& values) const {
|
||||
typename Base::Cameras cameras;
|
||||
double good = computeCamerasAndTriangulate(values, cameras);
|
||||
if (good)
|
||||
return Base::computeJacobiansSVD(Fblocks, Enull, b, cameras, point_);
|
||||
return true;
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, before applying noise model
|
||||
/// Assumes triangulation was done and degeneracy handled
|
||||
Vector reprojectionError(const Cameras& cameras) const {
|
||||
return Base::reprojectionError(cameras, point_);
|
||||
}
|
||||
|
||||
/// Calculate vector of re-projection errors, before applying noise model
|
||||
Vector reprojectionError(const Values& values) const {
|
||||
Cameras myCameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, myCameras);
|
||||
Vector reprojectionErrorAfterTriangulation(const Values& values) const {
|
||||
Cameras cameras;
|
||||
bool nonDegenerate = computeCamerasAndTriangulate(values, cameras);
|
||||
if (nonDegenerate)
|
||||
return reprojectionError(myCameras);
|
||||
return Base::unwhitenedError(cameras, point_);
|
||||
else
|
||||
return zero(myCameras.size() * 3);
|
||||
return zero(cameras.size() * 3);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -675,7 +555,7 @@ public:
|
|||
}
|
||||
|
||||
if (this->degenerate_) {
|
||||
return 0.0; // TODO: this maybe should be zero?
|
||||
return 0.0; // TODO: this maybe should be zero?
|
||||
// std::cout
|
||||
// << "SmartProjectionHessianFactor: trying to manage degeneracy (this should not happen is manageDegeneracy is disabled)!"
|
||||
// << std::endl;
|
||||
|
|
@ -744,9 +624,9 @@ private:
|
|||
};
|
||||
|
||||
/// traits
|
||||
template<class CALIBRATION, size_t D>
|
||||
struct traits<SmartStereoProjectionFactor<CALIBRATION, D> > :
|
||||
public Testable<SmartStereoProjectionFactor<CALIBRATION, D> > {
|
||||
template<class CALIBRATION>
|
||||
struct traits<SmartStereoProjectionFactor<CALIBRATION> > : public Testable<
|
||||
SmartStereoProjectionFactor<CALIBRATION> > {
|
||||
};
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
|
|||
|
|
@ -15,6 +15,7 @@
|
|||
* @author Luca Carlone
|
||||
* @author Chris Beall
|
||||
* @author Zsolt Kira
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
|
@ -38,7 +39,14 @@ namespace gtsam {
|
|||
* @addtogroup SLAM
|
||||
*/
|
||||
template<class CALIBRATION>
|
||||
class SmartStereoProjectionPoseFactor: public SmartStereoProjectionFactor<CALIBRATION, 6> {
|
||||
class SmartStereoProjectionPoseFactor: public SmartStereoProjectionFactor<CALIBRATION> {
|
||||
|
||||
public:
|
||||
/// Linearization mode: what factor to linearize to
|
||||
enum LinearizationMode {
|
||||
HESSIAN, IMPLICIT_SCHUR, JACOBIAN_Q, JACOBIAN_SVD
|
||||
};
|
||||
|
||||
protected:
|
||||
|
||||
LinearizationMode linearizeTo_; ///< How to linearize the factor (HESSIAN, JACOBIAN_SVD, JACOBIAN_Q)
|
||||
|
|
@ -50,7 +58,7 @@ public:
|
|||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
/// shorthand for base class type
|
||||
typedef SmartStereoProjectionFactor<CALIBRATION, 6> Base;
|
||||
typedef SmartStereoProjectionFactor<CALIBRATION> Base;
|
||||
|
||||
/// shorthand for this class
|
||||
typedef SmartStereoProjectionPoseFactor<CALIBRATION> This;
|
||||
|
|
@ -65,15 +73,16 @@ public:
|
|||
* @param manageDegeneracy is true, in presence of degenerate triangulation, the factor is converted to a rotation-only constraint,
|
||||
* otherwise the factor is simply neglected
|
||||
* @param enableEPI if set to true linear triangulation is refined with embedded LM iterations
|
||||
* @param body_P_sensor is the transform from body to sensor frame (default identity)
|
||||
*/
|
||||
SmartStereoProjectionPoseFactor(const double rankTol = 1,
|
||||
const double linThreshold = -1, const bool manageDegeneracy = false,
|
||||
const bool enableEPI = false, boost::optional<Pose3> body_P_sensor = boost::none,
|
||||
LinearizationMode linearizeTo = HESSIAN, double landmarkDistanceThreshold = 1e10,
|
||||
const bool enableEPI = false, LinearizationMode linearizeTo = HESSIAN,
|
||||
double landmarkDistanceThreshold = 1e10,
|
||||
double dynamicOutlierRejectionThreshold = -1) :
|
||||
Base(rankTol, linThreshold, manageDegeneracy, enableEPI, body_P_sensor,
|
||||
landmarkDistanceThreshold, dynamicOutlierRejectionThreshold), linearizeTo_(linearizeTo) {}
|
||||
Base(rankTol, linThreshold, manageDegeneracy, enableEPI,
|
||||
landmarkDistanceThreshold, dynamicOutlierRejectionThreshold), linearizeTo_(
|
||||
linearizeTo) {
|
||||
}
|
||||
|
||||
/** Virtual destructor */
|
||||
virtual ~SmartStereoProjectionPoseFactor() {}
|
||||
|
|
|
|||
|
|
@ -18,8 +18,8 @@
|
|||
* @date Sept 2013
|
||||
*/
|
||||
|
||||
// TODO #include <gtsam/slam/tests/smartFactorScenarios.h>
|
||||
#include <gtsam_unstable/slam/SmartStereoProjectionPoseFactor.h>
|
||||
|
||||
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
||||
#include <gtsam/slam/PoseTranslationPrior.h>
|
||||
#include <gtsam/slam/ProjectionFactor.h>
|
||||
|
|
@ -32,8 +32,6 @@ using namespace std;
|
|||
using namespace boost::assign;
|
||||
using namespace gtsam;
|
||||
|
||||
static bool isDebugTest = false;
|
||||
|
||||
// make a realistic calibration matrix
|
||||
static double fov = 60; // degrees
|
||||
static size_t w = 640, h = 480;
|
||||
|
|
@ -66,7 +64,6 @@ static Pose3 body_P_sensor1(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2),
|
|||
Point3(0.25, -0.10, 1.0));
|
||||
|
||||
typedef SmartStereoProjectionPoseFactor<Cal3_S2Stereo> SmartFactor;
|
||||
typedef SmartStereoProjectionPoseFactor<Cal3Bundler> SmartFactorBundler;
|
||||
|
||||
vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
|
||||
const StereoCamera& cam2, const StereoCamera& cam3, Point3 landmark) {
|
||||
|
|
@ -83,9 +80,10 @@ vector<StereoPoint2> stereo_projectToMultipleCameras(const StereoCamera& cam1,
|
|||
return measurements_cam;
|
||||
}
|
||||
|
||||
LevenbergMarquardtParams params;
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartStereoProjectionPoseFactor, Constructor) {
|
||||
fprintf(stderr, "Test 1 Complete");
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
}
|
||||
|
||||
|
|
@ -106,15 +104,6 @@ TEST( SmartStereoProjectionPoseFactor, Constructor4) {
|
|||
factor1.add(measurement1, poseKey1, model, K);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartStereoProjectionPoseFactor, ConstructorWithTransform) {
|
||||
bool manageDegeneracy = true;
|
||||
bool enableEPI = false;
|
||||
SmartFactor factor1(rankTol, linThreshold, manageDegeneracy, enableEPI,
|
||||
body_P_sensor1);
|
||||
factor1.add(measurement1, poseKey1, model, K);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartStereoProjectionPoseFactor, Equals ) {
|
||||
SmartFactor::shared_ptr factor1(new SmartFactor());
|
||||
|
|
@ -128,8 +117,6 @@ TEST( SmartStereoProjectionPoseFactor, Equals ) {
|
|||
|
||||
/* *************************************************************************/
|
||||
TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
|
||||
// cout << " ************************ SmartStereoProjectionPoseFactor: noisy ****************************" << endl;
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
|
|
@ -169,8 +156,6 @@ TEST_UNSAFE( SmartStereoProjectionPoseFactor, noiseless ) {
|
|||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartStereoProjectionPoseFactor, noisy ) {
|
||||
// cout << " ************************ SmartStereoProjectionPoseFactor: noisy ****************************" << endl;
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(0, 0, 1));
|
||||
|
|
@ -226,10 +211,6 @@ TEST( SmartStereoProjectionPoseFactor, noisy ) {
|
|||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
||||
cout
|
||||
<< " ************************ SmartStereoProjectionPoseFactor: 3 cams + 3 landmarks **********************"
|
||||
<< endl;
|
||||
|
||||
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 1));
|
||||
StereoCamera cam1(pose1, K2);
|
||||
|
|
@ -286,31 +267,31 @@ TEST( SmartStereoProjectionPoseFactor, 3poses_smart_projection_factor ) {
|
|||
values.insert(x2, pose2);
|
||||
// initialize third pose with some noise, we expect it to move back to original pose3
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
if (isDebugTest)
|
||||
values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)), values.at<Pose3>(x3)));
|
||||
|
||||
LevenbergMarquardtParams params;
|
||||
if (isDebugTest)
|
||||
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
if (isDebugTest)
|
||||
params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
EXPECT_DOUBLES_EQUAL(1888864, graph.error(values), 1);
|
||||
|
||||
Values result;
|
||||
gttic_ (SmartStereoProjectionPoseFactor);
|
||||
gttic_(SmartStereoProjectionPoseFactor);
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
result = optimizer.optimize();
|
||||
gttoc_(SmartStereoProjectionPoseFactor);
|
||||
tictoc_finishedIteration_();
|
||||
|
||||
// GaussianFactorGraph::shared_ptr GFG = graph.linearize(values);
|
||||
// VectorValues delta = GFG->optimize();
|
||||
EXPECT_DOUBLES_EQUAL(0, graph.error(result), 1e-6);
|
||||
|
||||
GaussianFactorGraph::shared_ptr GFG = graph.linearize(result);
|
||||
VectorValues delta = GFG->optimize();
|
||||
VectorValues expected = VectorValues::Zero(delta);
|
||||
EXPECT(assert_equal(expected, delta, 1e-6));
|
||||
|
||||
// result.print("results of 3 camera, 3 landmark optimization \n");
|
||||
if (isDebugTest)
|
||||
result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
|
||||
EXPECT(assert_equal(pose3, result.at<Pose3>(x3)));
|
||||
if (isDebugTest)
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
|
|
@ -345,15 +326,15 @@ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
|
|||
cam2, cam3, landmark3);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD));
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD));
|
||||
smartFactor1->add(measurements_cam1, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD));
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD));
|
||||
smartFactor2->add(measurements_cam2, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD));
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD));
|
||||
smartFactor3->add(measurements_cam3, views, model, K);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
|
@ -373,7 +354,6 @@ TEST( SmartStereoProjectionPoseFactor, jacobianSVD ) {
|
|||
values.insert(x2, pose2);
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
|
||||
LevenbergMarquardtParams params;
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
result = optimizer.optimize();
|
||||
|
|
@ -414,17 +394,17 @@ TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
|
|||
cam2, cam3, landmark3);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist));
|
||||
smartFactor1->add(measurements_cam1, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist));
|
||||
smartFactor2->add(measurements_cam2, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist));
|
||||
smartFactor3->add(measurements_cam3, views, model, K);
|
||||
|
||||
|
|
@ -446,7 +426,6 @@ TEST( SmartStereoProjectionPoseFactor, landmarkDistance ) {
|
|||
values.insert(x3, pose3 * noise_pose);
|
||||
|
||||
// All factors are disabled and pose should remain where it is
|
||||
LevenbergMarquardtParams params;
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
result = optimizer.optimize();
|
||||
|
|
@ -493,22 +472,22 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
measurements_cam4.at(0) = measurements_cam4.at(0) + StereoPoint2(10, 10, 1); // add outlier
|
||||
|
||||
SmartFactor::shared_ptr smartFactor1(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
|
||||
smartFactor1->add(measurements_cam1, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor2(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
|
||||
smartFactor2->add(measurements_cam2, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor3(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
|
||||
smartFactor3->add(measurements_cam3, views, model, K);
|
||||
|
||||
SmartFactor::shared_ptr smartFactor4(
|
||||
new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_SVD,
|
||||
new SmartFactor(1, -1, false, false, SmartFactor::JACOBIAN_SVD,
|
||||
excludeLandmarksFutherThanDist, dynamicOutlierRejectionThreshold));
|
||||
smartFactor4->add(measurements_cam4, views, model, K);
|
||||
|
||||
|
|
@ -530,7 +509,6 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
values.insert(x3, pose3);
|
||||
|
||||
// All factors are disabled and pose should remain where it is
|
||||
LevenbergMarquardtParams params;
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
result = optimizer.optimize();
|
||||
|
|
@ -567,13 +545,13 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
// stereo_projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
//
|
||||
// SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
|
||||
// SmartFactor::shared_ptr smartFactor1(new SmartFactor(1, -1, false, false, JACOBIAN_Q));
|
||||
// smartFactor1->add(measurements_cam1, views, model, K);
|
||||
//
|
||||
// SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
|
||||
// SmartFactor::shared_ptr smartFactor2(new SmartFactor(1, -1, false, false, JACOBIAN_Q));
|
||||
// smartFactor2->add(measurements_cam2, views, model, K);
|
||||
//
|
||||
// SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, boost::none, JACOBIAN_Q));
|
||||
// SmartFactor::shared_ptr smartFactor3(new SmartFactor(1, -1, false, false, JACOBIAN_Q));
|
||||
// smartFactor3->add(measurements_cam3, views, model, K);
|
||||
//
|
||||
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
|
@ -592,8 +570,7 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
// values.insert(x2, pose2);
|
||||
// values.insert(x3, pose3*noise_pose);
|
||||
//
|
||||
// LevenbergMarquardtParams params;
|
||||
// Values result;
|
||||
//// Values result;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
// result = optimizer.optimize();
|
||||
// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
||||
|
|
@ -601,7 +578,6 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartStereoProjectionPoseFactor, 3poses_projection_factor ){
|
||||
// // cout << " ************************ Normal ProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
|
||||
//
|
||||
// vector<Key> views;
|
||||
// views.push_back(x1);
|
||||
|
|
@ -653,15 +629,10 @@ TEST( SmartStereoProjectionPoseFactor, dynamicOutlierRejection ) {
|
|||
// values.insert(L(1), landmark1);
|
||||
// values.insert(L(2), landmark2);
|
||||
// values.insert(L(3), landmark3);
|
||||
// if(isDebugTest) values.at<Pose3>(x3).print("Pose3 before optimization: ");
|
||||
//
|
||||
// LevenbergMarquardtParams params;
|
||||
// if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
||||
// if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
||||
// Values result = optimizer.optimize();
|
||||
//
|
||||
// if(isDebugTest) result.at<Pose3>(x3).print("Pose3 after optimization: ");
|
||||
// EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
||||
//}
|
||||
//
|
||||
|
|
@ -723,8 +694,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
values.insert(x3, pose3 * noise_pose);
|
||||
if (isDebugTest)
|
||||
values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
|
||||
|
||||
// TODO: next line throws Cheirality exception on Mac
|
||||
boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(
|
||||
|
|
@ -749,7 +718,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
+ hessianFactor3->augmentedInformation();
|
||||
|
||||
// Check Information vector
|
||||
// cout << AugInformationMatrix.size() << endl;
|
||||
Vector InfoVector = AugInformationMatrix.block(0, 18, 18, 1); // 18x18 Hessian + information vector
|
||||
|
||||
// Check Hessian
|
||||
|
|
@ -758,7 +726,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartStereoProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_factor ){
|
||||
// // cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 2 landmarks: Rotation Only**********************" << endl;
|
||||
//
|
||||
// vector<Key> views;
|
||||
// views.push_back(x1);
|
||||
|
|
@ -811,11 +778,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
// values.insert(x2, pose2*noise_pose);
|
||||
// // initialize third pose with some noise, we expect it to move back to original pose3
|
||||
// values.insert(x3, pose3*noise_pose*noise_pose);
|
||||
// if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
|
||||
//
|
||||
// LevenbergMarquardtParams params;
|
||||
// if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
|
||||
// if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
//
|
||||
// Values result;
|
||||
// gttic_(SmartStereoProjectionPoseFactor);
|
||||
|
|
@ -825,15 +787,11 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
// tictoc_finishedIteration_();
|
||||
//
|
||||
// // result.print("results of 3 camera, 3 landmark optimization \n");
|
||||
// if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
|
||||
// cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << endl;
|
||||
// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
||||
// if(isDebugTest) tictoc_print_();
|
||||
//}
|
||||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartStereoProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor ){
|
||||
// // cout << " ************************ SmartStereoProjectionPoseFactor: 3 cams + 3 landmarks: Rotation Only**********************" << endl;
|
||||
//
|
||||
// vector<Key> views;
|
||||
// views.push_back(x1);
|
||||
|
|
@ -894,11 +852,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
// values.insert(x2, pose2);
|
||||
// // initialize third pose with some noise, we expect it to move back to original pose3
|
||||
// values.insert(x3, pose3*noise_pose);
|
||||
// if(isDebugTest) values.at<Pose3>(x3).print("Smart: Pose3 before optimization: ");
|
||||
//
|
||||
// LevenbergMarquardtParams params;
|
||||
// if(isDebugTest) params.verbosityLM = LevenbergMarquardtParams::TRYDELTA;
|
||||
// if(isDebugTest) params.verbosity = NonlinearOptimizerParams::ERROR;
|
||||
//
|
||||
// Values result;
|
||||
// gttic_(SmartStereoProjectionPoseFactor);
|
||||
|
|
@ -908,15 +861,11 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
// tictoc_finishedIteration_();
|
||||
//
|
||||
// // result.print("results of 3 camera, 3 landmark optimization \n");
|
||||
// if(isDebugTest) result.at<Pose3>(x3).print("Smart: Pose3 after optimization: ");
|
||||
// cout << "TEST COMMENTED: rotation only version of smart factors has been deprecated " << endl;
|
||||
// // EXPECT(assert_equal(pose3,result.at<Pose3>(x3)));
|
||||
// if(isDebugTest) tictoc_print_();
|
||||
//}
|
||||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartStereoProjectionPoseFactor, Hessian ){
|
||||
// // cout << " ************************ SmartStereoProjectionPoseFactor: Hessian **********************" << endl;
|
||||
//
|
||||
// vector<Key> views;
|
||||
// views.push_back(x1);
|
||||
|
|
@ -949,7 +898,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
// values.insert(x2, pose2);
|
||||
//
|
||||
// boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(values);
|
||||
// if(isDebugTest) hessianFactor->print("Hessian factor \n");
|
||||
//
|
||||
// // compute triangulation from linearization point
|
||||
// // compute reprojection errors (sum squared)
|
||||
|
|
@ -960,8 +908,6 @@ TEST( SmartStereoProjectionPoseFactor, CheckHessian) {
|
|||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
|
||||
// cout << " ************************ SmartStereoProjectionPoseFactor: rotated Hessian **********************" << endl;
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
|
|
@ -1031,8 +977,6 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotation ) {
|
|||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
||||
// cout << " ************************ SmartStereoProjectionPoseFactor: rotated Hessian (degenerate) **********************" << endl;
|
||||
|
||||
vector<Key> views;
|
||||
views.push_back(x1);
|
||||
views.push_back(x2);
|
||||
|
|
@ -1063,8 +1007,6 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
|||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
|
||||
values);
|
||||
if (isDebugTest)
|
||||
hessianFactor->print("Hessian factor \n");
|
||||
|
||||
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
|
||||
|
||||
|
|
@ -1075,8 +1017,6 @@ TEST( SmartStereoProjectionPoseFactor, HessianWithRotationDegenerate ) {
|
|||
|
||||
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
|
||||
rotValues);
|
||||
if (isDebugTest)
|
||||
hessianFactorRot->print("Hessian factor \n");
|
||||
|
||||
// Hessian is invariant to rotations in the nondegenerate case
|
||||
EXPECT(
|
||||
|
|
|
|||
|
|
@ -37,6 +37,10 @@ using namespace gtsam;
|
|||
Point2 measured(-17, 30);
|
||||
SharedNoiseModel model = noiseModel::Unit::Create(2);
|
||||
|
||||
// This deals with the overload problem and makes the expressions factor
|
||||
// understand that we work on Point3
|
||||
Point2 (*Project)(const Point3&, OptionalJacobian<2, 3>) = &PinholeBase::Project;
|
||||
|
||||
namespace leaf {
|
||||
// Create some values
|
||||
struct MyValues: public Values {
|
||||
|
|
@ -313,7 +317,7 @@ TEST(ExpressionFactor, tree) {
|
|||
|
||||
// Create expression tree
|
||||
Point3_ p_cam(x, &Pose3::transform_to, p);
|
||||
Point2_ xy_hat(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
||||
Point2_ xy_hat(Project, p_cam);
|
||||
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
|
||||
|
||||
// Create factor and check value, dimension, linearization
|
||||
|
|
@ -331,8 +335,6 @@ TEST(ExpressionFactor, tree) {
|
|||
boost::shared_ptr<GaussianFactor> gf2 = f2.linearize(values);
|
||||
EXPECT( assert_equal(*expected, *gf2, 1e-9));
|
||||
|
||||
Expression<Point2>::TernaryFunction<Pose3, Point3, Cal3_S2>::type fff = project6;
|
||||
|
||||
// Try ternary version
|
||||
ExpressionFactor<Point2> f3(model, measured, project3(x, p, K));
|
||||
EXPECT_DOUBLES_EQUAL(expected_error, f3.error(values), 1e-9);
|
||||
|
|
@ -489,7 +491,7 @@ TEST(ExpressionFactor, tree_finite_differences) {
|
|||
|
||||
// Create expression tree
|
||||
Point3_ p_cam(x, &Pose3::transform_to, p);
|
||||
Point2_ xy_hat(PinholeCamera<Cal3_S2>::project_to_camera, p_cam);
|
||||
Point2_ xy_hat(Project, p_cam);
|
||||
Point2_ uv_hat(K, &Cal3_S2::uncalibrate, xy_hat);
|
||||
|
||||
const double fd_step = 1e-5;
|
||||
|
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* @file DummyFactor.h
|
||||
* @brief Just to help in timing overhead
|
||||
* @author Frank Dellaert
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/slam/RegularImplicitSchurFactor.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* DummyFactor
|
||||
*/
|
||||
template<size_t D> //
|
||||
class DummyFactor: public RegularImplicitSchurFactor<D> {
|
||||
|
||||
public:
|
||||
|
||||
typedef Eigen::Matrix<double, 2, D> Matrix2D;
|
||||
typedef std::pair<Key, Matrix2D> KeyMatrix2D;
|
||||
|
||||
DummyFactor() {
|
||||
}
|
||||
|
||||
DummyFactor(const std::vector<KeyMatrix2D>& Fblocks, const Matrix& E,
|
||||
const Matrix3& P, const Vector& b) :RegularImplicitSchurFactor<D>(Fblocks,E,P,b)
|
||||
{
|
||||
}
|
||||
|
||||
virtual ~DummyFactor() {
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/**
|
||||
* @brief Dummy version to measure overhead of key access
|
||||
*/
|
||||
void multiplyHessian(double alpha, const VectorValues& x,
|
||||
VectorValues& y) const {
|
||||
|
||||
BOOST_FOREACH(const KeyMatrix2D& Fi, this->Fblocks_) {
|
||||
static const Vector empty;
|
||||
Key key = Fi.first;
|
||||
std::pair<VectorValues::iterator, bool> it = y.tryInsert(key, empty);
|
||||
Vector& yi = it.first->second;
|
||||
yi = x.at(key);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
// DummyFactor
|
||||
|
||||
}
|
||||
|
||||
|
|
@ -0,0 +1,152 @@
|
|||
/**
|
||||
* @file timeSchurFactors.cpp
|
||||
* @brief Time various Schur-complement Jacobian factors
|
||||
* @author Frank Dellaert
|
||||
* @date Oct 27, 2013
|
||||
*/
|
||||
|
||||
#include "DummyFactor.h"
|
||||
#include <gtsam/base/timing.h>
|
||||
|
||||
#include <gtsam/slam/JacobianFactorQ.h>
|
||||
#include "gtsam/slam/JacobianFactorQR.h"
|
||||
#include <gtsam/slam/RegularImplicitSchurFactor.h>
|
||||
|
||||
#include <boost/assign/list_of.hpp>
|
||||
#include <boost/assign/std/vector.hpp>
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace boost::assign;
|
||||
using namespace gtsam;
|
||||
|
||||
#define SLOW
|
||||
#define RAW
|
||||
#define HESSIAN
|
||||
#define NUM_ITERATIONS 1000
|
||||
|
||||
// Create CSV file for results
|
||||
ofstream os("timeSchurFactors.csv");
|
||||
|
||||
/*************************************************************************************/
|
||||
template<size_t D>
|
||||
void timeAll(size_t m, size_t N) {
|
||||
|
||||
cout << m << endl;
|
||||
|
||||
// create F
|
||||
typedef Eigen::Matrix<double, 2, D> Matrix2D;
|
||||
typedef pair<Key, Matrix2D> KeyMatrix2D;
|
||||
vector < pair<Key, Matrix2D> > Fblocks;
|
||||
for (size_t i = 0; i < m; i++)
|
||||
Fblocks.push_back(KeyMatrix2D(i, (i + 1) * Matrix::Ones(2, D)));
|
||||
|
||||
// create E
|
||||
Matrix E(2 * m, 3);
|
||||
for (size_t i = 0; i < m; i++)
|
||||
E.block < 2, 3 > (2 * i, 0) = Matrix::Ones(2, 3);
|
||||
|
||||
// Calculate point covariance
|
||||
Matrix P = (E.transpose() * E).inverse();
|
||||
|
||||
// RHS and sigmas
|
||||
const Vector b = gtsam::repeat(2 * m, 1);
|
||||
const SharedDiagonal model;
|
||||
|
||||
// parameters for multiplyHessianAdd
|
||||
double alpha = 0.5;
|
||||
VectorValues xvalues, yvalues;
|
||||
for (size_t i = 0; i < m; i++)
|
||||
xvalues.insert(i, gtsam::repeat(D, 2));
|
||||
|
||||
// Implicit
|
||||
RegularImplicitSchurFactor<D> implicitFactor(Fblocks, E, P, b);
|
||||
// JacobianFactor with same error
|
||||
JacobianFactorQ<D, 2> jf(Fblocks, E, P, b, model);
|
||||
// JacobianFactorQR with same error
|
||||
JacobianFactorQR<D, 2> jqr(Fblocks, E, P, b, model);
|
||||
// Hessian
|
||||
HessianFactor hessianFactor(jqr);
|
||||
|
||||
#define TIME(label,factor,xx,yy) {\
|
||||
for (size_t t = 0; t < N; t++) \
|
||||
factor.multiplyHessianAdd(alpha, xx, yy);\
|
||||
gttic_(label);\
|
||||
for (size_t t = 0; t < N; t++) {\
|
||||
factor.multiplyHessianAdd(alpha, xx, yy);\
|
||||
}\
|
||||
gttoc_(label);\
|
||||
tictoc_getNode(timer, label)\
|
||||
os << timer->secs()/NUM_ITERATIONS << ", ";\
|
||||
}
|
||||
|
||||
#ifdef SLOW
|
||||
TIME(Implicit, implicitFactor, xvalues, yvalues)
|
||||
TIME(Jacobian, jf, xvalues, yvalues)
|
||||
TIME(JacobianQR, jqr, xvalues, yvalues)
|
||||
#endif
|
||||
|
||||
#ifdef HESSIAN
|
||||
TIME(Hessian, hessianFactor, xvalues, yvalues)
|
||||
#endif
|
||||
|
||||
#ifdef OVERHEAD
|
||||
DummyFactor<D> dummy(Fblocks, E, P, b);
|
||||
TIME(Overhead,dummy,xvalues,yvalues)
|
||||
#endif
|
||||
|
||||
#ifdef RAW
|
||||
{ // Raw memory Version
|
||||
FastVector < Key > keys;
|
||||
for (size_t i = 0; i < m; i++)
|
||||
keys += i;
|
||||
Vector x = xvalues.vector(keys);
|
||||
double* xdata = x.data();
|
||||
|
||||
// create a y
|
||||
Vector y = zero(m * D);
|
||||
TIME(RawImplicit, implicitFactor, xdata, y.data())
|
||||
TIME(RawJacobianQ, jf, xdata, y.data())
|
||||
TIME(RawJacobianQR, jqr, xdata, y.data())
|
||||
}
|
||||
#endif
|
||||
|
||||
os << m << endl;
|
||||
|
||||
} // timeAll
|
||||
|
||||
/*************************************************************************************/
|
||||
int main(void) {
|
||||
#ifdef SLOW
|
||||
os << "Implicit,";
|
||||
os << "JacobianQ,";
|
||||
os << "JacobianQR,";
|
||||
#endif
|
||||
#ifdef HESSIAN
|
||||
os << "Hessian,";
|
||||
#endif
|
||||
#ifdef OVERHEAD
|
||||
os << "Overhead,";
|
||||
#endif
|
||||
#ifdef RAW
|
||||
os << "RawImplicit,";
|
||||
os << "RawJacobianQ,";
|
||||
os << "RawJacobianQR,";
|
||||
#endif
|
||||
os << "m" << endl;
|
||||
// define images
|
||||
vector < size_t > ms;
|
||||
// ms += 2;
|
||||
// ms += 3, 4, 5, 6, 7, 8, 9, 10;
|
||||
// ms += 11,12,13,14,15,16,17,18,19;
|
||||
// ms += 20, 30, 40, 50;
|
||||
// ms += 20,30,40,50,60,70,80,90,100;
|
||||
for (size_t m = 2; m <= 50; m += 2)
|
||||
ms += m;
|
||||
//for (size_t m=10;m<=100;m+=10) ms += m;
|
||||
// loop over number of images
|
||||
BOOST_FOREACH(size_t m,ms)
|
||||
timeAll<6>(m, NUM_ITERATIONS);
|
||||
}
|
||||
|
||||
//*************************************************************************************
|
||||
Loading…
Reference in New Issue