Merge pull request #1020 from borglab/feature/robustTriangulation
commit
a74da73936
|
@ -923,27 +923,34 @@ class StereoCamera {
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
||||||
gtsam::Cal3_S2* sharedCal,
|
gtsam::Cal3_S2* sharedCal,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
||||||
gtsam::Cal3DS2* sharedCal,
|
gtsam::Cal3DS2* sharedCal,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
||||||
gtsam::Cal3Bundler* sharedCal,
|
gtsam::Cal3Bundler* sharedCal,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3_S2& cameras,
|
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3_S2& cameras,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Bundler& cameras,
|
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Bundler& cameras,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Fisheye& cameras,
|
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Fisheye& cameras,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Unified& cameras,
|
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Unified& cameras,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
double rank_tol, bool optimize);
|
double rank_tol, bool optimize,
|
||||||
|
const gtsam::SharedNoiseModel& model = nullptr);
|
||||||
gtsam::Point3 triangulateNonlinear(const gtsam::Pose3Vector& poses,
|
gtsam::Point3 triangulateNonlinear(const gtsam::Pose3Vector& poses,
|
||||||
gtsam::Cal3_S2* sharedCal,
|
gtsam::Cal3_S2* sharedCal,
|
||||||
const gtsam::Point2Vector& measurements,
|
const gtsam::Point2Vector& measurements,
|
||||||
|
|
|
@ -182,6 +182,94 @@ TEST(triangulation, fourPoses) {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//******************************************************************************
|
||||||
|
TEST(triangulation, threePoses_robustNoiseModel) {
|
||||||
|
|
||||||
|
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||||
|
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||||
|
Point2 z3 = camera3.project(landmark);
|
||||||
|
|
||||||
|
vector<Pose3> poses;
|
||||||
|
Point2Vector measurements;
|
||||||
|
poses += pose1, pose2, pose3;
|
||||||
|
measurements += z1, z2, z3;
|
||||||
|
|
||||||
|
// noise free, so should give exactly the landmark
|
||||||
|
boost::optional<Point3> actual =
|
||||||
|
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||||
|
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||||
|
|
||||||
|
// Add outlier
|
||||||
|
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||||
|
|
||||||
|
// now estimate does not match landmark
|
||||||
|
boost::optional<Point3> actual2 = //
|
||||||
|
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||||
|
// DLT is surprisingly robust, but still off (actual error is around 0.26m):
|
||||||
|
EXPECT( (landmark - *actual2).norm() >= 0.2);
|
||||||
|
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||||
|
|
||||||
|
// Again with nonlinear optimization
|
||||||
|
boost::optional<Point3> actual3 =
|
||||||
|
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||||
|
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||||
|
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||||
|
|
||||||
|
// Again with nonlinear optimization, this time with robust loss
|
||||||
|
auto model = noiseModel::Robust::Create(
|
||||||
|
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||||
|
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||||
|
poses, sharedCal, measurements, 1e-9, true, model);
|
||||||
|
// using the Huber loss we now have a quite small error!! nice!
|
||||||
|
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||||
|
}
|
||||||
|
|
||||||
|
//******************************************************************************
|
||||||
|
TEST(triangulation, fourPoses_robustNoiseModel) {
|
||||||
|
|
||||||
|
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||||
|
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||||
|
Point2 z3 = camera3.project(landmark);
|
||||||
|
|
||||||
|
vector<Pose3> poses;
|
||||||
|
Point2Vector measurements;
|
||||||
|
poses += pose1, pose1, pose2, pose3; // 2 measurements from pose 1
|
||||||
|
measurements += z1, z1, z2, z3;
|
||||||
|
|
||||||
|
// noise free, so should give exactly the landmark
|
||||||
|
boost::optional<Point3> actual =
|
||||||
|
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||||
|
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||||
|
|
||||||
|
// Add outlier
|
||||||
|
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||||
|
// add noise on other measurements:
|
||||||
|
measurements.at(1) += Point2(0.1, 0.2); // small noise
|
||||||
|
measurements.at(2) += Point2(0.2, 0.2);
|
||||||
|
measurements.at(3) += Point2(0.3, 0.1);
|
||||||
|
|
||||||
|
// now estimate does not match landmark
|
||||||
|
boost::optional<Point3> actual2 = //
|
||||||
|
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||||
|
// DLT is surprisingly robust, but still off (actual error is around 0.17m):
|
||||||
|
EXPECT( (landmark - *actual2).norm() >= 0.1);
|
||||||
|
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||||
|
|
||||||
|
// Again with nonlinear optimization
|
||||||
|
boost::optional<Point3> actual3 =
|
||||||
|
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||||
|
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||||
|
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||||
|
|
||||||
|
// Again with nonlinear optimization, this time with robust loss
|
||||||
|
auto model = noiseModel::Robust::Create(
|
||||||
|
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||||
|
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||||
|
poses, sharedCal, measurements, 1e-9, true, model);
|
||||||
|
// using the Huber loss we now have a quite small error!! nice!
|
||||||
|
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||||
|
}
|
||||||
|
|
||||||
//******************************************************************************
|
//******************************************************************************
|
||||||
TEST(triangulation, fourPoses_distinct_Ks) {
|
TEST(triangulation, fourPoses_distinct_Ks) {
|
||||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||||
|
|
|
@ -14,6 +14,7 @@
|
||||||
* @brief Functions for triangulation
|
* @brief Functions for triangulation
|
||||||
* @date July 31, 2013
|
* @date July 31, 2013
|
||||||
* @author Chris Beall
|
* @author Chris Beall
|
||||||
|
* @author Luca Carlone
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
@ -105,18 +106,18 @@ template<class CALIBRATION>
|
||||||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||||
const std::vector<Pose3>& poses, boost::shared_ptr<CALIBRATION> sharedCal,
|
const std::vector<Pose3>& poses, boost::shared_ptr<CALIBRATION> sharedCal,
|
||||||
const Point2Vector& measurements, Key landmarkKey,
|
const Point2Vector& measurements, Key landmarkKey,
|
||||||
const Point3& initialEstimate) {
|
const Point3& initialEstimate,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
Values values;
|
Values values;
|
||||||
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
||||||
NonlinearFactorGraph graph;
|
NonlinearFactorGraph graph;
|
||||||
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
|
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
|
||||||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
|
||||||
for (size_t i = 0; i < measurements.size(); i++) {
|
for (size_t i = 0; i < measurements.size(); i++) {
|
||||||
const Pose3& pose_i = poses[i];
|
const Pose3& pose_i = poses[i];
|
||||||
typedef PinholePose<CALIBRATION> Camera;
|
typedef PinholePose<CALIBRATION> Camera;
|
||||||
Camera camera_i(pose_i, sharedCal);
|
Camera camera_i(pose_i, sharedCal);
|
||||||
graph.emplace_shared<TriangulationFactor<Camera> > //
|
graph.emplace_shared<TriangulationFactor<Camera> > //
|
||||||
(camera_i, measurements[i], unit2, landmarkKey);
|
(camera_i, measurements[i], model? model : unit2, landmarkKey);
|
||||||
}
|
}
|
||||||
return std::make_pair(graph, values);
|
return std::make_pair(graph, values);
|
||||||
}
|
}
|
||||||
|
@ -134,7 +135,8 @@ template<class CAMERA>
|
||||||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||||
const CameraSet<CAMERA>& cameras,
|
const CameraSet<CAMERA>& cameras,
|
||||||
const typename CAMERA::MeasurementVector& measurements, Key landmarkKey,
|
const typename CAMERA::MeasurementVector& measurements, Key landmarkKey,
|
||||||
const Point3& initialEstimate) {
|
const Point3& initialEstimate,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
Values values;
|
Values values;
|
||||||
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
||||||
NonlinearFactorGraph graph;
|
NonlinearFactorGraph graph;
|
||||||
|
@ -143,7 +145,7 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||||
for (size_t i = 0; i < measurements.size(); i++) {
|
for (size_t i = 0; i < measurements.size(); i++) {
|
||||||
const CAMERA& camera_i = cameras[i];
|
const CAMERA& camera_i = cameras[i];
|
||||||
graph.emplace_shared<TriangulationFactor<CAMERA> > //
|
graph.emplace_shared<TriangulationFactor<CAMERA> > //
|
||||||
(camera_i, measurements[i], unit, landmarkKey);
|
(camera_i, measurements[i], model? model : unit, landmarkKey);
|
||||||
}
|
}
|
||||||
return std::make_pair(graph, values);
|
return std::make_pair(graph, values);
|
||||||
}
|
}
|
||||||
|
@ -169,13 +171,14 @@ GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
|
||||||
template<class CALIBRATION>
|
template<class CALIBRATION>
|
||||||
Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
||||||
boost::shared_ptr<CALIBRATION> sharedCal,
|
boost::shared_ptr<CALIBRATION> sharedCal,
|
||||||
const Point2Vector& measurements, const Point3& initialEstimate) {
|
const Point2Vector& measurements, const Point3& initialEstimate,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
|
|
||||||
// Create a factor graph and initial values
|
// Create a factor graph and initial values
|
||||||
Values values;
|
Values values;
|
||||||
NonlinearFactorGraph graph;
|
NonlinearFactorGraph graph;
|
||||||
boost::tie(graph, values) = triangulationGraph<CALIBRATION> //
|
boost::tie(graph, values) = triangulationGraph<CALIBRATION> //
|
||||||
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate);
|
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate, model);
|
||||||
|
|
||||||
return optimize(graph, values, Symbol('p', 0));
|
return optimize(graph, values, Symbol('p', 0));
|
||||||
}
|
}
|
||||||
|
@ -190,13 +193,14 @@ Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
||||||
template<class CAMERA>
|
template<class CAMERA>
|
||||||
Point3 triangulateNonlinear(
|
Point3 triangulateNonlinear(
|
||||||
const CameraSet<CAMERA>& cameras,
|
const CameraSet<CAMERA>& cameras,
|
||||||
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate) {
|
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
|
|
||||||
// Create a factor graph and initial values
|
// Create a factor graph and initial values
|
||||||
Values values;
|
Values values;
|
||||||
NonlinearFactorGraph graph;
|
NonlinearFactorGraph graph;
|
||||||
boost::tie(graph, values) = triangulationGraph<CAMERA> //
|
boost::tie(graph, values) = triangulationGraph<CAMERA> //
|
||||||
(cameras, measurements, Symbol('p', 0), initialEstimate);
|
(cameras, measurements, Symbol('p', 0), initialEstimate, model);
|
||||||
|
|
||||||
return optimize(graph, values, Symbol('p', 0));
|
return optimize(graph, values, Symbol('p', 0));
|
||||||
}
|
}
|
||||||
|
@ -239,7 +243,8 @@ template<class CALIBRATION>
|
||||||
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
||||||
boost::shared_ptr<CALIBRATION> sharedCal,
|
boost::shared_ptr<CALIBRATION> sharedCal,
|
||||||
const Point2Vector& measurements, double rank_tol = 1e-9,
|
const Point2Vector& measurements, double rank_tol = 1e-9,
|
||||||
bool optimize = false) {
|
bool optimize = false,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
|
|
||||||
assert(poses.size() == measurements.size());
|
assert(poses.size() == measurements.size());
|
||||||
if (poses.size() < 2)
|
if (poses.size() < 2)
|
||||||
|
@ -254,7 +259,7 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
||||||
// Then refine using non-linear optimization
|
// Then refine using non-linear optimization
|
||||||
if (optimize)
|
if (optimize)
|
||||||
point = triangulateNonlinear<CALIBRATION> //
|
point = triangulateNonlinear<CALIBRATION> //
|
||||||
(poses, sharedCal, measurements, point);
|
(poses, sharedCal, measurements, point, model);
|
||||||
|
|
||||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||||
// verify that the triangulated point lies in front of all cameras
|
// verify that the triangulated point lies in front of all cameras
|
||||||
|
@ -284,7 +289,8 @@ template<class CAMERA>
|
||||||
Point3 triangulatePoint3(
|
Point3 triangulatePoint3(
|
||||||
const CameraSet<CAMERA>& cameras,
|
const CameraSet<CAMERA>& cameras,
|
||||||
const typename CAMERA::MeasurementVector& measurements, double rank_tol = 1e-9,
|
const typename CAMERA::MeasurementVector& measurements, double rank_tol = 1e-9,
|
||||||
bool optimize = false) {
|
bool optimize = false,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
|
|
||||||
size_t m = cameras.size();
|
size_t m = cameras.size();
|
||||||
assert(measurements.size() == m);
|
assert(measurements.size() == m);
|
||||||
|
@ -298,7 +304,7 @@ Point3 triangulatePoint3(
|
||||||
|
|
||||||
// The n refine using non-linear optimization
|
// The n refine using non-linear optimization
|
||||||
if (optimize)
|
if (optimize)
|
||||||
point = triangulateNonlinear<CAMERA>(cameras, measurements, point);
|
point = triangulateNonlinear<CAMERA>(cameras, measurements, point, model);
|
||||||
|
|
||||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||||
// verify that the triangulated point lies in front of all cameras
|
// verify that the triangulated point lies in front of all cameras
|
||||||
|
@ -317,9 +323,10 @@ template<class CALIBRATION>
|
||||||
Point3 triangulatePoint3(
|
Point3 triangulatePoint3(
|
||||||
const CameraSet<PinholeCamera<CALIBRATION> >& cameras,
|
const CameraSet<PinholeCamera<CALIBRATION> >& cameras,
|
||||||
const Point2Vector& measurements, double rank_tol = 1e-9,
|
const Point2Vector& measurements, double rank_tol = 1e-9,
|
||||||
bool optimize = false) {
|
bool optimize = false,
|
||||||
|
const SharedNoiseModel& model = nullptr) {
|
||||||
return triangulatePoint3<PinholeCamera<CALIBRATION> > //
|
return triangulatePoint3<PinholeCamera<CALIBRATION> > //
|
||||||
(cameras, measurements, rank_tol, optimize);
|
(cameras, measurements, rank_tol, optimize, model);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct GTSAM_EXPORT TriangulationParameters {
|
struct GTSAM_EXPORT TriangulationParameters {
|
||||||
|
@ -341,20 +348,25 @@ struct GTSAM_EXPORT TriangulationParameters {
|
||||||
*/
|
*/
|
||||||
double dynamicOutlierRejectionThreshold;
|
double dynamicOutlierRejectionThreshold;
|
||||||
|
|
||||||
|
SharedNoiseModel noiseModel; ///< used in the nonlinear triangulation
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Constructor
|
* Constructor
|
||||||
* @param rankTol tolerance used to check if point triangulation is degenerate
|
* @param rankTol tolerance used to check if point triangulation is degenerate
|
||||||
* @param enableEPI if true refine triangulation with embedded LM iterations
|
* @param enableEPI if true refine triangulation with embedded LM iterations
|
||||||
* @param landmarkDistanceThreshold flag as degenerate if point further than this
|
* @param landmarkDistanceThreshold flag as degenerate if point further than this
|
||||||
* @param dynamicOutlierRejectionThreshold or if average error larger than this
|
* @param dynamicOutlierRejectionThreshold or if average error larger than this
|
||||||
|
* @param noiseModel noise model to use during nonlinear triangulation
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
TriangulationParameters(const double _rankTolerance = 1.0,
|
TriangulationParameters(const double _rankTolerance = 1.0,
|
||||||
const bool _enableEPI = false, double _landmarkDistanceThreshold = -1,
|
const bool _enableEPI = false, double _landmarkDistanceThreshold = -1,
|
||||||
double _dynamicOutlierRejectionThreshold = -1) :
|
double _dynamicOutlierRejectionThreshold = -1,
|
||||||
|
const SharedNoiseModel& _noiseModel = nullptr) :
|
||||||
rankTolerance(_rankTolerance), enableEPI(_enableEPI), //
|
rankTolerance(_rankTolerance), enableEPI(_enableEPI), //
|
||||||
landmarkDistanceThreshold(_landmarkDistanceThreshold), //
|
landmarkDistanceThreshold(_landmarkDistanceThreshold), //
|
||||||
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold) {
|
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold),
|
||||||
|
noiseModel(_noiseModel){
|
||||||
}
|
}
|
||||||
|
|
||||||
// stream to output
|
// stream to output
|
||||||
|
@ -366,6 +378,7 @@ struct GTSAM_EXPORT TriangulationParameters {
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
os << "dynamicOutlierRejectionThreshold = "
|
os << "dynamicOutlierRejectionThreshold = "
|
||||||
<< p.dynamicOutlierRejectionThreshold << std::endl;
|
<< p.dynamicOutlierRejectionThreshold << std::endl;
|
||||||
|
os << "noise model" << std::endl;
|
||||||
return os;
|
return os;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -468,8 +481,9 @@ TriangulationResult triangulateSafe(const CameraSet<CAMERA>& cameras,
|
||||||
else
|
else
|
||||||
// We triangulate the 3D position of the landmark
|
// We triangulate the 3D position of the landmark
|
||||||
try {
|
try {
|
||||||
Point3 point = triangulatePoint3<CAMERA>(cameras, measured,
|
Point3 point =
|
||||||
params.rankTolerance, params.enableEPI);
|
triangulatePoint3<CAMERA>(cameras, measured, params.rankTolerance,
|
||||||
|
params.enableEPI, params.noiseModel);
|
||||||
|
|
||||||
// Check landmark distance and re-projection errors to avoid outliers
|
// Check landmark distance and re-projection errors to avoid outliers
|
||||||
size_t i = 0;
|
size_t i = 0;
|
||||||
|
|
|
@ -6,28 +6,40 @@ All Rights Reserved
|
||||||
See LICENSE for the license information
|
See LICENSE for the license information
|
||||||
|
|
||||||
Test Triangulation
|
Test Triangulation
|
||||||
Author: Frank Dellaert & Fan Jiang (Python)
|
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
|
||||||
"""
|
"""
|
||||||
import unittest
|
import unittest
|
||||||
|
from typing import Iterable, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import gtsam
|
import gtsam
|
||||||
from gtsam import (Cal3_S2, Cal3Bundler, CameraSetCal3_S2,
|
from gtsam import (
|
||||||
CameraSetCal3Bundler, PinholeCameraCal3_S2,
|
Cal3_S2,
|
||||||
PinholeCameraCal3Bundler, Point2Vector, Point3, Pose3,
|
Cal3Bundler,
|
||||||
Pose3Vector, Rot3)
|
CameraSetCal3_S2,
|
||||||
|
CameraSetCal3Bundler,
|
||||||
|
PinholeCameraCal3_S2,
|
||||||
|
PinholeCameraCal3Bundler,
|
||||||
|
Point2,
|
||||||
|
Point2Vector,
|
||||||
|
Point3,
|
||||||
|
Pose3,
|
||||||
|
Pose3Vector,
|
||||||
|
Rot3,
|
||||||
|
)
|
||||||
from gtsam.utils.test_case import GtsamTestCase
|
from gtsam.utils.test_case import GtsamTestCase
|
||||||
|
|
||||||
|
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
|
||||||
|
|
||||||
class TestVisualISAMExample(GtsamTestCase):
|
|
||||||
""" Tests for triangulation with shared and individual calibrations """
|
class TestTriangulationExample(GtsamTestCase):
|
||||||
|
"""Tests for triangulation with shared and individual calibrations"""
|
||||||
|
|
||||||
def setUp(self):
|
def setUp(self):
|
||||||
""" Set up two camera poses """
|
"""Set up two camera poses"""
|
||||||
# Looking along X-axis, 1 meter above ground plane (x-y)
|
# Looking along X-axis, 1 meter above ground plane (x-y)
|
||||||
upright = Rot3.Ypr(-np.pi / 2, 0., -np.pi / 2)
|
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
|
||||||
pose1 = Pose3(upright, Point3(0, 0, 1))
|
|
||||||
|
|
||||||
# create second camera 1 meter to the right of first camera
|
# create second camera 1 meter to the right of first camera
|
||||||
pose2 = pose1.compose(Pose3(Rot3(), Point3(1, 0, 0)))
|
pose2 = pose1.compose(Pose3(Rot3(), Point3(1, 0, 0)))
|
||||||
|
@ -39,15 +51,24 @@ class TestVisualISAMExample(GtsamTestCase):
|
||||||
# landmark ~5 meters infront of camera
|
# landmark ~5 meters infront of camera
|
||||||
self.landmark = Point3(5, 0.5, 1.2)
|
self.landmark = Point3(5, 0.5, 1.2)
|
||||||
|
|
||||||
def generate_measurements(self, calibration, camera_model, cal_params, camera_set=None):
|
def generate_measurements(
|
||||||
|
self,
|
||||||
|
calibration: Union[Cal3Bundler, Cal3_S2],
|
||||||
|
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
|
||||||
|
cal_params: Iterable[Iterable[Union[int, float]]],
|
||||||
|
camera_set: Optional[Union[CameraSetCal3Bundler,
|
||||||
|
CameraSetCal3_S2]] = None,
|
||||||
|
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
|
||||||
|
List[Cal3Bundler], List[Cal3_S2]]]:
|
||||||
"""
|
"""
|
||||||
Generate vector of measurements for given calibration and camera model.
|
Generate vector of measurements for given calibration and camera model.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
calibration: Camera calibration e.g. Cal3_S2
|
calibration: Camera calibration e.g. Cal3_S2
|
||||||
camera_model: Camera model e.g. PinholeCameraCal3_S2
|
camera_model: Camera model e.g. PinholeCameraCal3_S2
|
||||||
cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2]
|
cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2]
|
||||||
camera_set: Cameraset object (for individual calibrations)
|
camera_set: Cameraset object (for individual calibrations)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
list of measurements and list/CameraSet object for cameras
|
list of measurements and list/CameraSet object for cameras
|
||||||
"""
|
"""
|
||||||
|
@ -66,14 +87,15 @@ class TestVisualISAMExample(GtsamTestCase):
|
||||||
|
|
||||||
return measurements, cameras
|
return measurements, cameras
|
||||||
|
|
||||||
def test_TriangulationExample(self):
|
def test_TriangulationExample(self) -> None:
|
||||||
""" Tests triangulation with shared Cal3_S2 calibration"""
|
"""Tests triangulation with shared Cal3_S2 calibration"""
|
||||||
# Some common constants
|
# Some common constants
|
||||||
sharedCal = (1500, 1200, 0, 640, 480)
|
sharedCal = (1500, 1200, 0, 640, 480)
|
||||||
|
|
||||||
measurements, _ = self.generate_measurements(Cal3_S2,
|
measurements, _ = self.generate_measurements(
|
||||||
PinholeCameraCal3_S2,
|
calibration=Cal3_S2,
|
||||||
(sharedCal, sharedCal))
|
camera_model=PinholeCameraCal3_S2,
|
||||||
|
cal_params=(sharedCal, sharedCal))
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
||||||
Cal3_S2(sharedCal),
|
Cal3_S2(sharedCal),
|
||||||
|
@ -95,16 +117,17 @@ class TestVisualISAMExample(GtsamTestCase):
|
||||||
|
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
|
||||||
|
|
||||||
def test_distinct_Ks(self):
|
def test_distinct_Ks(self) -> None:
|
||||||
""" Tests triangulation with individual Cal3_S2 calibrations """
|
"""Tests triangulation with individual Cal3_S2 calibrations"""
|
||||||
# two camera parameters
|
# two camera parameters
|
||||||
K1 = (1500, 1200, 0, 640, 480)
|
K1 = (1500, 1200, 0, 640, 480)
|
||||||
K2 = (1600, 1300, 0, 650, 440)
|
K2 = (1600, 1300, 0, 650, 440)
|
||||||
|
|
||||||
measurements, cameras = self.generate_measurements(Cal3_S2,
|
measurements, cameras = self.generate_measurements(
|
||||||
PinholeCameraCal3_S2,
|
calibration=Cal3_S2,
|
||||||
(K1, K2),
|
camera_model=PinholeCameraCal3_S2,
|
||||||
camera_set=CameraSetCal3_S2)
|
cal_params=(K1, K2),
|
||||||
|
camera_set=CameraSetCal3_S2)
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||||
measurements,
|
measurements,
|
||||||
|
@ -112,16 +135,17 @@ class TestVisualISAMExample(GtsamTestCase):
|
||||||
optimize=True)
|
optimize=True)
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||||
|
|
||||||
def test_distinct_Ks_Bundler(self):
|
def test_distinct_Ks_Bundler(self) -> None:
|
||||||
""" Tests triangulation with individual Cal3Bundler calibrations"""
|
"""Tests triangulation with individual Cal3Bundler calibrations"""
|
||||||
# two camera parameters
|
# two camera parameters
|
||||||
K1 = (1500, 0, 0, 640, 480)
|
K1 = (1500, 0, 0, 640, 480)
|
||||||
K2 = (1600, 0, 0, 650, 440)
|
K2 = (1600, 0, 0, 650, 440)
|
||||||
|
|
||||||
measurements, cameras = self.generate_measurements(Cal3Bundler,
|
measurements, cameras = self.generate_measurements(
|
||||||
PinholeCameraCal3Bundler,
|
calibration=Cal3Bundler,
|
||||||
(K1, K2),
|
camera_model=PinholeCameraCal3Bundler,
|
||||||
camera_set=CameraSetCal3Bundler)
|
cal_params=(K1, K2),
|
||||||
|
camera_set=CameraSetCal3Bundler)
|
||||||
|
|
||||||
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||||
measurements,
|
measurements,
|
||||||
|
@ -129,6 +153,71 @@ class TestVisualISAMExample(GtsamTestCase):
|
||||||
optimize=True)
|
optimize=True)
|
||||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||||
|
|
||||||
|
def test_triangulation_robust_three_poses(self) -> None:
|
||||||
|
"""Ensure triangulation with a robust model works."""
|
||||||
|
sharedCal = Cal3_S2(1500, 1200, 0, 640, 480)
|
||||||
|
|
||||||
|
# landmark ~5 meters infront of camera
|
||||||
|
landmark = Point3(5, 0.5, 1.2)
|
||||||
|
|
||||||
|
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
|
||||||
|
pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0))
|
||||||
|
pose3 = pose1 * Pose3(Rot3.Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -0.1))
|
||||||
|
|
||||||
|
camera1 = PinholeCameraCal3_S2(pose1, sharedCal)
|
||||||
|
camera2 = PinholeCameraCal3_S2(pose2, sharedCal)
|
||||||
|
camera3 = PinholeCameraCal3_S2(pose3, sharedCal)
|
||||||
|
|
||||||
|
z1: Point2 = camera1.project(landmark)
|
||||||
|
z2: Point2 = camera2.project(landmark)
|
||||||
|
z3: Point2 = camera3.project(landmark)
|
||||||
|
|
||||||
|
poses = gtsam.Pose3Vector([pose1, pose2, pose3])
|
||||||
|
measurements = Point2Vector([z1, z2, z3])
|
||||||
|
|
||||||
|
# noise free, so should give exactly the landmark
|
||||||
|
actual = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=False)
|
||||||
|
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
|
||||||
|
|
||||||
|
# Add outlier
|
||||||
|
measurements[0] += Point2(100, 120) # very large pixel noise!
|
||||||
|
|
||||||
|
# now estimate does not match landmark
|
||||||
|
actual2 = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=False)
|
||||||
|
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
|
||||||
|
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
|
||||||
|
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
|
||||||
|
|
||||||
|
# Again with nonlinear optimization
|
||||||
|
actual3 = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True)
|
||||||
|
# result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||||
|
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
|
||||||
|
|
||||||
|
# Again with nonlinear optimization, this time with robust loss
|
||||||
|
model = gtsam.noiseModel.Robust.Create(
|
||||||
|
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
|
||||||
|
gtsam.noiseModel.Unit.Create(2))
|
||||||
|
actual4 = gtsam.triangulatePoint3(poses,
|
||||||
|
sharedCal,
|
||||||
|
measurements,
|
||||||
|
rank_tol=1e-9,
|
||||||
|
optimize=True,
|
||||||
|
model=model)
|
||||||
|
# using the Huber loss we now have a quite small error!! nice!
|
||||||
|
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
|
Loading…
Reference in New Issue