Merge pull request #1020 from borglab/feature/robustTriangulation
commit
a74da73936
|
@ -923,27 +923,34 @@ class StereoCamera {
|
|||
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
||||
gtsam::Cal3_S2* sharedCal,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
||||
gtsam::Cal3DS2* sharedCal,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulatePoint3(const gtsam::Pose3Vector& poses,
|
||||
gtsam::Cal3Bundler* sharedCal,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3_S2& cameras,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Bundler& cameras,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Fisheye& cameras,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulatePoint3(const gtsam::CameraSetCal3Unified& cameras,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
double rank_tol, bool optimize);
|
||||
double rank_tol, bool optimize,
|
||||
const gtsam::SharedNoiseModel& model = nullptr);
|
||||
gtsam::Point3 triangulateNonlinear(const gtsam::Pose3Vector& poses,
|
||||
gtsam::Cal3_S2* sharedCal,
|
||||
const gtsam::Point2Vector& measurements,
|
||||
|
|
|
@ -182,6 +182,94 @@ TEST(triangulation, fourPoses) {
|
|||
#endif
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, threePoses_robustNoiseModel) {
|
||||
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
poses += pose1, pose2, pose3;
|
||||
measurements += z1, z2, z3;
|
||||
|
||||
// noise free, so should give exactly the landmark
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
|
||||
// Add outlier
|
||||
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||
|
||||
// now estimate does not match landmark
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
// DLT is surprisingly robust, but still off (actual error is around 0.26m):
|
||||
EXPECT( (landmark - *actual2).norm() >= 0.2);
|
||||
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> actual3 =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||
|
||||
// Again with nonlinear optimization, this time with robust loss
|
||||
auto model = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||
poses, sharedCal, measurements, 1e-9, true, model);
|
||||
// using the Huber loss we now have a quite small error!! nice!
|
||||
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, fourPoses_robustNoiseModel) {
|
||||
|
||||
Pose3 pose3 = pose1 * Pose3(Rot3::Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -.1));
|
||||
PinholeCamera<Cal3_S2> camera3(pose3, *sharedCal);
|
||||
Point2 z3 = camera3.project(landmark);
|
||||
|
||||
vector<Pose3> poses;
|
||||
Point2Vector measurements;
|
||||
poses += pose1, pose1, pose2, pose3; // 2 measurements from pose 1
|
||||
measurements += z1, z1, z2, z3;
|
||||
|
||||
// noise free, so should give exactly the landmark
|
||||
boost::optional<Point3> actual =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
EXPECT(assert_equal(landmark, *actual, 1e-2));
|
||||
|
||||
// Add outlier
|
||||
measurements.at(0) += Point2(100, 120); // very large pixel noise!
|
||||
// add noise on other measurements:
|
||||
measurements.at(1) += Point2(0.1, 0.2); // small noise
|
||||
measurements.at(2) += Point2(0.2, 0.2);
|
||||
measurements.at(3) += Point2(0.3, 0.1);
|
||||
|
||||
// now estimate does not match landmark
|
||||
boost::optional<Point3> actual2 = //
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements);
|
||||
// DLT is surprisingly robust, but still off (actual error is around 0.17m):
|
||||
EXPECT( (landmark - *actual2).norm() >= 0.1);
|
||||
EXPECT( (landmark - *actual2).norm() <= 0.5);
|
||||
|
||||
// Again with nonlinear optimization
|
||||
boost::optional<Point3> actual3 =
|
||||
triangulatePoint3<Cal3_S2>(poses, sharedCal, measurements, 1e-9, true);
|
||||
// result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
EXPECT(assert_equal(*actual2, *actual3, 0.1));
|
||||
|
||||
// Again with nonlinear optimization, this time with robust loss
|
||||
auto model = noiseModel::Robust::Create(
|
||||
noiseModel::mEstimator::Huber::Create(1.345), noiseModel::Unit::Create(2));
|
||||
boost::optional<Point3> actual4 = triangulatePoint3<Cal3_S2>(
|
||||
poses, sharedCal, measurements, 1e-9, true, model);
|
||||
// using the Huber loss we now have a quite small error!! nice!
|
||||
EXPECT(assert_equal(landmark, *actual4, 0.05));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(triangulation, fourPoses_distinct_Ks) {
|
||||
Cal3_S2 K1(1500, 1200, 0, 640, 480);
|
||||
|
|
|
@ -14,6 +14,7 @@
|
|||
* @brief Functions for triangulation
|
||||
* @date July 31, 2013
|
||||
* @author Chris Beall
|
||||
* @author Luca Carlone
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
@ -105,18 +106,18 @@ template<class CALIBRATION>
|
|||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||
const std::vector<Pose3>& poses, boost::shared_ptr<CALIBRATION> sharedCal,
|
||||
const Point2Vector& measurements, Key landmarkKey,
|
||||
const Point3& initialEstimate) {
|
||||
const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
Values values;
|
||||
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
||||
NonlinearFactorGraph graph;
|
||||
static SharedNoiseModel unit2(noiseModel::Unit::Create(2));
|
||||
static SharedNoiseModel prior_model(noiseModel::Isotropic::Sigma(6, 1e-6));
|
||||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const Pose3& pose_i = poses[i];
|
||||
typedef PinholePose<CALIBRATION> Camera;
|
||||
Camera camera_i(pose_i, sharedCal);
|
||||
graph.emplace_shared<TriangulationFactor<Camera> > //
|
||||
(camera_i, measurements[i], unit2, landmarkKey);
|
||||
(camera_i, measurements[i], model? model : unit2, landmarkKey);
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
@ -134,7 +135,8 @@ template<class CAMERA>
|
|||
std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
||||
const CameraSet<CAMERA>& cameras,
|
||||
const typename CAMERA::MeasurementVector& measurements, Key landmarkKey,
|
||||
const Point3& initialEstimate) {
|
||||
const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
Values values;
|
||||
values.insert(landmarkKey, initialEstimate); // Initial landmark value
|
||||
NonlinearFactorGraph graph;
|
||||
|
@ -143,7 +145,7 @@ std::pair<NonlinearFactorGraph, Values> triangulationGraph(
|
|||
for (size_t i = 0; i < measurements.size(); i++) {
|
||||
const CAMERA& camera_i = cameras[i];
|
||||
graph.emplace_shared<TriangulationFactor<CAMERA> > //
|
||||
(camera_i, measurements[i], unit, landmarkKey);
|
||||
(camera_i, measurements[i], model? model : unit, landmarkKey);
|
||||
}
|
||||
return std::make_pair(graph, values);
|
||||
}
|
||||
|
@ -169,13 +171,14 @@ GTSAM_EXPORT Point3 optimize(const NonlinearFactorGraph& graph,
|
|||
template<class CALIBRATION>
|
||||
Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
||||
boost::shared_ptr<CALIBRATION> sharedCal,
|
||||
const Point2Vector& measurements, const Point3& initialEstimate) {
|
||||
const Point2Vector& measurements, const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
// Create a factor graph and initial values
|
||||
Values values;
|
||||
NonlinearFactorGraph graph;
|
||||
boost::tie(graph, values) = triangulationGraph<CALIBRATION> //
|
||||
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate);
|
||||
(poses, sharedCal, measurements, Symbol('p', 0), initialEstimate, model);
|
||||
|
||||
return optimize(graph, values, Symbol('p', 0));
|
||||
}
|
||||
|
@ -190,13 +193,14 @@ Point3 triangulateNonlinear(const std::vector<Pose3>& poses,
|
|||
template<class CAMERA>
|
||||
Point3 triangulateNonlinear(
|
||||
const CameraSet<CAMERA>& cameras,
|
||||
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate) {
|
||||
const typename CAMERA::MeasurementVector& measurements, const Point3& initialEstimate,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
// Create a factor graph and initial values
|
||||
Values values;
|
||||
NonlinearFactorGraph graph;
|
||||
boost::tie(graph, values) = triangulationGraph<CAMERA> //
|
||||
(cameras, measurements, Symbol('p', 0), initialEstimate);
|
||||
(cameras, measurements, Symbol('p', 0), initialEstimate, model);
|
||||
|
||||
return optimize(graph, values, Symbol('p', 0));
|
||||
}
|
||||
|
@ -239,7 +243,8 @@ template<class CALIBRATION>
|
|||
Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
||||
boost::shared_ptr<CALIBRATION> sharedCal,
|
||||
const Point2Vector& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
bool optimize = false,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
assert(poses.size() == measurements.size());
|
||||
if (poses.size() < 2)
|
||||
|
@ -254,7 +259,7 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
|
|||
// Then refine using non-linear optimization
|
||||
if (optimize)
|
||||
point = triangulateNonlinear<CALIBRATION> //
|
||||
(poses, sharedCal, measurements, point);
|
||||
(poses, sharedCal, measurements, point, model);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
|
@ -284,7 +289,8 @@ template<class CAMERA>
|
|||
Point3 triangulatePoint3(
|
||||
const CameraSet<CAMERA>& cameras,
|
||||
const typename CAMERA::MeasurementVector& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
bool optimize = false,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
|
||||
size_t m = cameras.size();
|
||||
assert(measurements.size() == m);
|
||||
|
@ -298,7 +304,7 @@ Point3 triangulatePoint3(
|
|||
|
||||
// The n refine using non-linear optimization
|
||||
if (optimize)
|
||||
point = triangulateNonlinear<CAMERA>(cameras, measurements, point);
|
||||
point = triangulateNonlinear<CAMERA>(cameras, measurements, point, model);
|
||||
|
||||
#ifdef GTSAM_THROW_CHEIRALITY_EXCEPTION
|
||||
// verify that the triangulated point lies in front of all cameras
|
||||
|
@ -317,9 +323,10 @@ template<class CALIBRATION>
|
|||
Point3 triangulatePoint3(
|
||||
const CameraSet<PinholeCamera<CALIBRATION> >& cameras,
|
||||
const Point2Vector& measurements, double rank_tol = 1e-9,
|
||||
bool optimize = false) {
|
||||
bool optimize = false,
|
||||
const SharedNoiseModel& model = nullptr) {
|
||||
return triangulatePoint3<PinholeCamera<CALIBRATION> > //
|
||||
(cameras, measurements, rank_tol, optimize);
|
||||
(cameras, measurements, rank_tol, optimize, model);
|
||||
}
|
||||
|
||||
struct GTSAM_EXPORT TriangulationParameters {
|
||||
|
@ -341,20 +348,25 @@ struct GTSAM_EXPORT TriangulationParameters {
|
|||
*/
|
||||
double dynamicOutlierRejectionThreshold;
|
||||
|
||||
SharedNoiseModel noiseModel; ///< used in the nonlinear triangulation
|
||||
|
||||
/**
|
||||
* Constructor
|
||||
* @param rankTol tolerance used to check if point triangulation is degenerate
|
||||
* @param enableEPI if true refine triangulation with embedded LM iterations
|
||||
* @param landmarkDistanceThreshold flag as degenerate if point further than this
|
||||
* @param dynamicOutlierRejectionThreshold or if average error larger than this
|
||||
* @param noiseModel noise model to use during nonlinear triangulation
|
||||
*
|
||||
*/
|
||||
TriangulationParameters(const double _rankTolerance = 1.0,
|
||||
const bool _enableEPI = false, double _landmarkDistanceThreshold = -1,
|
||||
double _dynamicOutlierRejectionThreshold = -1) :
|
||||
double _dynamicOutlierRejectionThreshold = -1,
|
||||
const SharedNoiseModel& _noiseModel = nullptr) :
|
||||
rankTolerance(_rankTolerance), enableEPI(_enableEPI), //
|
||||
landmarkDistanceThreshold(_landmarkDistanceThreshold), //
|
||||
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold) {
|
||||
dynamicOutlierRejectionThreshold(_dynamicOutlierRejectionThreshold),
|
||||
noiseModel(_noiseModel){
|
||||
}
|
||||
|
||||
// stream to output
|
||||
|
@ -366,6 +378,7 @@ struct GTSAM_EXPORT TriangulationParameters {
|
|||
<< std::endl;
|
||||
os << "dynamicOutlierRejectionThreshold = "
|
||||
<< p.dynamicOutlierRejectionThreshold << std::endl;
|
||||
os << "noise model" << std::endl;
|
||||
return os;
|
||||
}
|
||||
|
||||
|
@ -468,8 +481,9 @@ TriangulationResult triangulateSafe(const CameraSet<CAMERA>& cameras,
|
|||
else
|
||||
// We triangulate the 3D position of the landmark
|
||||
try {
|
||||
Point3 point = triangulatePoint3<CAMERA>(cameras, measured,
|
||||
params.rankTolerance, params.enableEPI);
|
||||
Point3 point =
|
||||
triangulatePoint3<CAMERA>(cameras, measured, params.rankTolerance,
|
||||
params.enableEPI, params.noiseModel);
|
||||
|
||||
// Check landmark distance and re-projection errors to avoid outliers
|
||||
size_t i = 0;
|
||||
|
|
|
@ -6,28 +6,40 @@ All Rights Reserved
|
|||
See LICENSE for the license information
|
||||
|
||||
Test Triangulation
|
||||
Author: Frank Dellaert & Fan Jiang (Python)
|
||||
Authors: Frank Dellaert & Fan Jiang (Python) & Sushmita Warrier & John Lambert
|
||||
"""
|
||||
import unittest
|
||||
from typing import Iterable, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
import gtsam
|
||||
from gtsam import (Cal3_S2, Cal3Bundler, CameraSetCal3_S2,
|
||||
CameraSetCal3Bundler, PinholeCameraCal3_S2,
|
||||
PinholeCameraCal3Bundler, Point2Vector, Point3, Pose3,
|
||||
Pose3Vector, Rot3)
|
||||
from gtsam import (
|
||||
Cal3_S2,
|
||||
Cal3Bundler,
|
||||
CameraSetCal3_S2,
|
||||
CameraSetCal3Bundler,
|
||||
PinholeCameraCal3_S2,
|
||||
PinholeCameraCal3Bundler,
|
||||
Point2,
|
||||
Point2Vector,
|
||||
Point3,
|
||||
Pose3,
|
||||
Pose3Vector,
|
||||
Rot3,
|
||||
)
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
UPRIGHT = Rot3.Ypr(-np.pi / 2, 0.0, -np.pi / 2)
|
||||
|
||||
class TestVisualISAMExample(GtsamTestCase):
|
||||
""" Tests for triangulation with shared and individual calibrations """
|
||||
|
||||
class TestTriangulationExample(GtsamTestCase):
|
||||
"""Tests for triangulation with shared and individual calibrations"""
|
||||
|
||||
def setUp(self):
|
||||
""" Set up two camera poses """
|
||||
"""Set up two camera poses"""
|
||||
# Looking along X-axis, 1 meter above ground plane (x-y)
|
||||
upright = Rot3.Ypr(-np.pi / 2, 0., -np.pi / 2)
|
||||
pose1 = Pose3(upright, Point3(0, 0, 1))
|
||||
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
|
||||
|
||||
# create second camera 1 meter to the right of first camera
|
||||
pose2 = pose1.compose(Pose3(Rot3(), Point3(1, 0, 0)))
|
||||
|
@ -39,15 +51,24 @@ class TestVisualISAMExample(GtsamTestCase):
|
|||
# landmark ~5 meters infront of camera
|
||||
self.landmark = Point3(5, 0.5, 1.2)
|
||||
|
||||
def generate_measurements(self, calibration, camera_model, cal_params, camera_set=None):
|
||||
def generate_measurements(
|
||||
self,
|
||||
calibration: Union[Cal3Bundler, Cal3_S2],
|
||||
camera_model: Union[PinholeCameraCal3Bundler, PinholeCameraCal3_S2],
|
||||
cal_params: Iterable[Iterable[Union[int, float]]],
|
||||
camera_set: Optional[Union[CameraSetCal3Bundler,
|
||||
CameraSetCal3_S2]] = None,
|
||||
) -> Tuple[Point2Vector, Union[CameraSetCal3Bundler, CameraSetCal3_S2,
|
||||
List[Cal3Bundler], List[Cal3_S2]]]:
|
||||
"""
|
||||
Generate vector of measurements for given calibration and camera model.
|
||||
|
||||
Args:
|
||||
Args:
|
||||
calibration: Camera calibration e.g. Cal3_S2
|
||||
camera_model: Camera model e.g. PinholeCameraCal3_S2
|
||||
cal_params: Iterable of camera parameters for `calibration` e.g. [K1, K2]
|
||||
camera_set: Cameraset object (for individual calibrations)
|
||||
|
||||
Returns:
|
||||
list of measurements and list/CameraSet object for cameras
|
||||
"""
|
||||
|
@ -66,14 +87,15 @@ class TestVisualISAMExample(GtsamTestCase):
|
|||
|
||||
return measurements, cameras
|
||||
|
||||
def test_TriangulationExample(self):
|
||||
""" Tests triangulation with shared Cal3_S2 calibration"""
|
||||
def test_TriangulationExample(self) -> None:
|
||||
"""Tests triangulation with shared Cal3_S2 calibration"""
|
||||
# Some common constants
|
||||
sharedCal = (1500, 1200, 0, 640, 480)
|
||||
|
||||
measurements, _ = self.generate_measurements(Cal3_S2,
|
||||
PinholeCameraCal3_S2,
|
||||
(sharedCal, sharedCal))
|
||||
measurements, _ = self.generate_measurements(
|
||||
calibration=Cal3_S2,
|
||||
camera_model=PinholeCameraCal3_S2,
|
||||
cal_params=(sharedCal, sharedCal))
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(self.poses,
|
||||
Cal3_S2(sharedCal),
|
||||
|
@ -95,16 +117,17 @@ class TestVisualISAMExample(GtsamTestCase):
|
|||
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-2)
|
||||
|
||||
def test_distinct_Ks(self):
|
||||
""" Tests triangulation with individual Cal3_S2 calibrations """
|
||||
def test_distinct_Ks(self) -> None:
|
||||
"""Tests triangulation with individual Cal3_S2 calibrations"""
|
||||
# two camera parameters
|
||||
K1 = (1500, 1200, 0, 640, 480)
|
||||
K2 = (1600, 1300, 0, 650, 440)
|
||||
|
||||
measurements, cameras = self.generate_measurements(Cal3_S2,
|
||||
PinholeCameraCal3_S2,
|
||||
(K1, K2),
|
||||
camera_set=CameraSetCal3_S2)
|
||||
measurements, cameras = self.generate_measurements(
|
||||
calibration=Cal3_S2,
|
||||
camera_model=PinholeCameraCal3_S2,
|
||||
cal_params=(K1, K2),
|
||||
camera_set=CameraSetCal3_S2)
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||
measurements,
|
||||
|
@ -112,16 +135,17 @@ class TestVisualISAMExample(GtsamTestCase):
|
|||
optimize=True)
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||
|
||||
def test_distinct_Ks_Bundler(self):
|
||||
""" Tests triangulation with individual Cal3Bundler calibrations"""
|
||||
def test_distinct_Ks_Bundler(self) -> None:
|
||||
"""Tests triangulation with individual Cal3Bundler calibrations"""
|
||||
# two camera parameters
|
||||
K1 = (1500, 0, 0, 640, 480)
|
||||
K2 = (1600, 0, 0, 650, 440)
|
||||
|
||||
measurements, cameras = self.generate_measurements(Cal3Bundler,
|
||||
PinholeCameraCal3Bundler,
|
||||
(K1, K2),
|
||||
camera_set=CameraSetCal3Bundler)
|
||||
measurements, cameras = self.generate_measurements(
|
||||
calibration=Cal3Bundler,
|
||||
camera_model=PinholeCameraCal3Bundler,
|
||||
cal_params=(K1, K2),
|
||||
camera_set=CameraSetCal3Bundler)
|
||||
|
||||
triangulated_landmark = gtsam.triangulatePoint3(cameras,
|
||||
measurements,
|
||||
|
@ -129,6 +153,71 @@ class TestVisualISAMExample(GtsamTestCase):
|
|||
optimize=True)
|
||||
self.gtsamAssertEquals(self.landmark, triangulated_landmark, 1e-9)
|
||||
|
||||
def test_triangulation_robust_three_poses(self) -> None:
|
||||
"""Ensure triangulation with a robust model works."""
|
||||
sharedCal = Cal3_S2(1500, 1200, 0, 640, 480)
|
||||
|
||||
# landmark ~5 meters infront of camera
|
||||
landmark = Point3(5, 0.5, 1.2)
|
||||
|
||||
pose1 = Pose3(UPRIGHT, Point3(0, 0, 1))
|
||||
pose2 = pose1 * Pose3(Rot3(), Point3(1, 0, 0))
|
||||
pose3 = pose1 * Pose3(Rot3.Ypr(0.1, 0.2, 0.1), Point3(0.1, -2, -0.1))
|
||||
|
||||
camera1 = PinholeCameraCal3_S2(pose1, sharedCal)
|
||||
camera2 = PinholeCameraCal3_S2(pose2, sharedCal)
|
||||
camera3 = PinholeCameraCal3_S2(pose3, sharedCal)
|
||||
|
||||
z1: Point2 = camera1.project(landmark)
|
||||
z2: Point2 = camera2.project(landmark)
|
||||
z3: Point2 = camera3.project(landmark)
|
||||
|
||||
poses = gtsam.Pose3Vector([pose1, pose2, pose3])
|
||||
measurements = Point2Vector([z1, z2, z3])
|
||||
|
||||
# noise free, so should give exactly the landmark
|
||||
actual = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=False)
|
||||
self.assertTrue(np.allclose(landmark, actual, atol=1e-2))
|
||||
|
||||
# Add outlier
|
||||
measurements[0] += Point2(100, 120) # very large pixel noise!
|
||||
|
||||
# now estimate does not match landmark
|
||||
actual2 = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=False)
|
||||
# DLT is surprisingly robust, but still off (actual error is around 0.26m)
|
||||
self.assertTrue(np.linalg.norm(landmark - actual2) >= 0.2)
|
||||
self.assertTrue(np.linalg.norm(landmark - actual2) <= 0.5)
|
||||
|
||||
# Again with nonlinear optimization
|
||||
actual3 = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True)
|
||||
# result from nonlinear (but non-robust optimization) is close to DLT and still off
|
||||
self.assertTrue(np.allclose(actual2, actual3, atol=0.1))
|
||||
|
||||
# Again with nonlinear optimization, this time with robust loss
|
||||
model = gtsam.noiseModel.Robust.Create(
|
||||
gtsam.noiseModel.mEstimator.Huber.Create(1.345),
|
||||
gtsam.noiseModel.Unit.Create(2))
|
||||
actual4 = gtsam.triangulatePoint3(poses,
|
||||
sharedCal,
|
||||
measurements,
|
||||
rank_tol=1e-9,
|
||||
optimize=True,
|
||||
model=model)
|
||||
# using the Huber loss we now have a quite small error!! nice!
|
||||
self.assertTrue(np.allclose(landmark, actual4, atol=0.05))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
Loading…
Reference in New Issue