Debugging matrix version

release/4.3a0
Frank Dellaert 2016-01-02 23:50:05 -08:00
parent 8f507d83f2
commit a5c955a44c
2 changed files with 100 additions and 27 deletions

View File

@ -52,6 +52,12 @@ AggregateImuReadings::AggregateImuReadings(const boost::shared_ptr<Params>& p,
values.insert<Vector3>(P(0), kZero);
values.insert<Vector3>(V(0), kZero);
values.insert<Bias>(kBiasKey, estimatedBias_);
ttCov_.setZero();
tpCov_.setZero();
tvCov_.setZero();
ppCov_.setZero();
pvCov_.setZero();
vvCov_.setZero();
}
SharedDiagonal AggregateImuReadings::discreteAccelerometerNoiseModel(
@ -79,12 +85,51 @@ void AggregateImuReadings::updateEstimate(const Vector3& measuredAcc,
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
// Calculate exact mean propagation
Matrix3 H;
const Rot3 R = Rot3::Expmap(theta, H);
const Vector3 theta_plus = theta + H.inverse() * correctedOmega * dt;
const Vector3 vel_plus = vel + R.rotate(correctedAcc) * dt;
const Vector3 vel_avg = 0.5 * (vel + vel_plus);
const Vector3 pos_plus = pos + vel_avg * dt;
Matrix3 dexp;
const Rot3 R = Rot3::Expmap(theta, dexp);
const Matrix3 F = dexp.inverse() * dt, H = R.matrix() * dt;
const Vector3 theta_plus = theta + F * correctedOmega;
const Vector3 pos_plus = pos + vel * dt + H * (0.5 * dt) * correctedAcc;
const Vector3 vel_plus = vel + H * correctedAcc;
// Propagate uncertainty
// TODO(frank): specialize to diagonal and upper triangular views
const Matrix3 w = gyroscopeNoiseModel_->covariance() / dt;
const Matrix3 a = accelerometerNoiseModel_->covariance() / dt;
const Matrix3 Avt = skewSymmetric(-correctedAcc * dt);
#define DEBUG_COVARIANCE
#ifdef DEBUG_COVARIANCE
// Slow covariance calculation for debugging
Matrix9 cov = zetaCov();
Matrix9 A;
A.setIdentity();
A.block<3, 3>(6, 0) = Avt;
A.block<3, 3>(3, 6) = I_3x3 * dt;
Matrix93 Ba, Bw;
Bw << F, Z_3x3, Z_3x3;
Ba << Z_3x3, H*(dt * 0.5), H;
cov = A * cov * A.transpose() + Bw * w * Bw.transpose() +
Ba * a * Ba.transpose();
assert_equal(cov, zetaCov(), 1e-2);
#endif
const Matrix3 HaH = H * a * H.transpose();
const Matrix3 temp = Avt * tvCov_ + tvCov_.transpose() * Avt.transpose();
tpCov_ += dt * tvCov_;
// H**2*a*dt**2/4 + dt*vp + dt*(dt*vv + pv)
ppCov_ += dt * (0.25 * dt * HaH + pvCov_ + pvCov_.transpose() + dt * vvCov_);
pvCov_ += dt * (0.5 * HaH + vvCov_ + temp);
tvCov_ += ttCov_ * Avt.transpose();
vvCov_ += HaH + Avt * ttCov_ * Avt.transpose() + temp;
ttCov_ += F * w * F.transpose();
#ifdef DEBUG_COVARIANCE
assert_equal(cov, zetaCov(), 1e-2);
#endif
// Add those values to estimate and linearize around them
values.insert<Vector3>(T(k_ + 1), theta_plus);
@ -225,36 +270,57 @@ NavState AggregateImuReadings::predict(const NavState& state_i,
return state_i.retract(zeta);
}
SharedGaussian AggregateImuReadings::noiseModel() const {
// Get covariance on zeta from Bayes Net, which stores P(zeta|bias) as a
// quadratic |R*zeta + S*bias -d|^2
Matrix RS;
Vector d;
boost::tie(RS, d) = posterior_k_->matrix();
// NOTEfrank): R'*R = inv(zetaCov)
Matrix9 R = RS.block<9, 9>(0, 0);
Matrix9 AggregateImuReadings::zetaCov() const {
Matrix9 cov;
cov << ttCov_, tpCov_, tvCov_, //
tpCov_.transpose(), ppCov_, pvCov_, //
tvCov_.transpose(), pvCov_.transpose(), vvCov_;
return cov;
}
SharedGaussian AggregateImuReadings::noiseModel() const {
Matrix9 cov;
cov << ttCov_, tpCov_, tvCov_, //
tpCov_.transpose(), ppCov_, pvCov_, //
tvCov_.transpose(), pvCov_.transpose(), vvCov_;
// Correct for application of retract, by calculating the retract derivative H
// We have inv(Rp'Rp) = H inv(Rz'Rz) H' => Rp = Rz * inv(H)
// From NavState::retract:
// H << D_R_theta, Z_3x3, Z_3x3,
// Z_3x3, iRj.transpose(), Z_3x3,
// Z_3x3, Z_3x3, iRj.transpose();
Matrix3 D_R_theta;
Vector3 theta = values.at<Vector3>(T(k_));
// TODO(frank): yet another application of expmap and expmap derivative
const Matrix3 iRj = Rot3::Expmap(theta, D_R_theta).matrix();
Matrix9 H;
H << D_R_theta, Z_3x3, Z_3x3, //
Z_3x3, iRj.transpose(), Z_3x3, //
Z_3x3, Z_3x3, iRj.transpose();
// Rp = R * H.inverse(), implemented blockwise in-place below
// NOTE(frank): makes sense: a change in the j-frame has to be converted to a
// change in the i-frame, byy rotating with iRj. Similarly, a change in
// rotation nRj is mapped to a change in theta via the inverse dexp.
R.block<9, 3>(0, 0) *= D_R_theta.inverse();
R.block<9, 3>(0, 3) *= iRj;
R.block<9, 3>(0, 6) *= iRj;
Matrix9 HcH = H * cov * H.transpose();
return noiseModel::Gaussian::Covariance(cov, false);
// TODO(frank): think of a faster way - implement in noiseModel
return noiseModel::Gaussian::SqrtInformation(R, false);
// // Get covariance on zeta from Bayes Net, which stores P(zeta|bias) as a
// // quadratic |R*zeta + S*bias -d|^2
// Matrix RS;
// Vector d;
// boost::tie(RS, d) = posterior_k_->matrix();
// // NOTEfrank): R'*R = inv(zetaCov)
//
// Matrix9 R = RS.block<9, 9>(0, 0);
// cout << "R'R" << endl;
// cout << (R.transpose() * R).inverse() << endl;
// cout << "cov" << endl;
// cout << cov << endl;
// // Rp = R * H.inverse(), implemented blockwise in-place below
// // TODO(frank): yet another application of expmap and expmap derivative
// // NOTE(frank): makes sense: a change in the j-frame has to be converted
// // to a change in the i-frame, byy rotating with iRj. Similarly, a change
// // in rotation nRj is mapped to a change in theta via the inverse dexp.
// R.block<9, 3>(0, 0) *= D_R_theta.inverse();
// R.block<9, 3>(0, 3) *= iRj;
// R.block<9, 3>(0, 6) *= iRj;
//
// // TODO(frank): think of a faster way - implement in noiseModel
// return noiseModel::Gaussian::SqrtInformation(R, false);
}
Matrix9 AggregateImuReadings::preintMeasCov() const {

View File

@ -65,6 +65,11 @@ class AggregateImuReadings {
/// Current estimate of zeta_k
Values values;
/// Covariances
Matrix3 ttCov_, tpCov_, tvCov_, //
ppCov_, pvCov_, //
vvCov_;
public:
AggregateImuReadings(const boost::shared_ptr<Params>& p,
const Bias& estimatedBias = Bias());
@ -98,6 +103,8 @@ class AggregateImuReadings {
Matrix9 preintMeasCov() const;
private:
Matrix9 zetaCov() const;
void updateEstimate(const Vector3& measuredAcc, const Vector3& measuredOmega,
double dt);