Debugging matrix version
parent
8f507d83f2
commit
a5c955a44c
|
@ -52,6 +52,12 @@ AggregateImuReadings::AggregateImuReadings(const boost::shared_ptr<Params>& p,
|
|||
values.insert<Vector3>(P(0), kZero);
|
||||
values.insert<Vector3>(V(0), kZero);
|
||||
values.insert<Bias>(kBiasKey, estimatedBias_);
|
||||
ttCov_.setZero();
|
||||
tpCov_.setZero();
|
||||
tvCov_.setZero();
|
||||
ppCov_.setZero();
|
||||
pvCov_.setZero();
|
||||
vvCov_.setZero();
|
||||
}
|
||||
|
||||
SharedDiagonal AggregateImuReadings::discreteAccelerometerNoiseModel(
|
||||
|
@ -79,12 +85,51 @@ void AggregateImuReadings::updateEstimate(const Vector3& measuredAcc,
|
|||
const Vector3 correctedOmega = measuredOmega - estimatedBias_.gyroscope();
|
||||
|
||||
// Calculate exact mean propagation
|
||||
Matrix3 H;
|
||||
const Rot3 R = Rot3::Expmap(theta, H);
|
||||
const Vector3 theta_plus = theta + H.inverse() * correctedOmega * dt;
|
||||
const Vector3 vel_plus = vel + R.rotate(correctedAcc) * dt;
|
||||
const Vector3 vel_avg = 0.5 * (vel + vel_plus);
|
||||
const Vector3 pos_plus = pos + vel_avg * dt;
|
||||
Matrix3 dexp;
|
||||
const Rot3 R = Rot3::Expmap(theta, dexp);
|
||||
const Matrix3 F = dexp.inverse() * dt, H = R.matrix() * dt;
|
||||
const Vector3 theta_plus = theta + F * correctedOmega;
|
||||
const Vector3 pos_plus = pos + vel * dt + H * (0.5 * dt) * correctedAcc;
|
||||
const Vector3 vel_plus = vel + H * correctedAcc;
|
||||
|
||||
// Propagate uncertainty
|
||||
// TODO(frank): specialize to diagonal and upper triangular views
|
||||
const Matrix3 w = gyroscopeNoiseModel_->covariance() / dt;
|
||||
const Matrix3 a = accelerometerNoiseModel_->covariance() / dt;
|
||||
const Matrix3 Avt = skewSymmetric(-correctedAcc * dt);
|
||||
|
||||
#define DEBUG_COVARIANCE
|
||||
#ifdef DEBUG_COVARIANCE
|
||||
// Slow covariance calculation for debugging
|
||||
Matrix9 cov = zetaCov();
|
||||
Matrix9 A;
|
||||
A.setIdentity();
|
||||
A.block<3, 3>(6, 0) = Avt;
|
||||
A.block<3, 3>(3, 6) = I_3x3 * dt;
|
||||
Matrix93 Ba, Bw;
|
||||
Bw << F, Z_3x3, Z_3x3;
|
||||
Ba << Z_3x3, H*(dt * 0.5), H;
|
||||
cov = A * cov * A.transpose() + Bw * w * Bw.transpose() +
|
||||
Ba * a * Ba.transpose();
|
||||
assert_equal(cov, zetaCov(), 1e-2);
|
||||
#endif
|
||||
|
||||
const Matrix3 HaH = H * a * H.transpose();
|
||||
const Matrix3 temp = Avt * tvCov_ + tvCov_.transpose() * Avt.transpose();
|
||||
|
||||
tpCov_ += dt * tvCov_;
|
||||
// H**2*a*dt**2/4 + dt*vp + dt*(dt*vv + pv)
|
||||
ppCov_ += dt * (0.25 * dt * HaH + pvCov_ + pvCov_.transpose() + dt * vvCov_);
|
||||
pvCov_ += dt * (0.5 * HaH + vvCov_ + temp);
|
||||
|
||||
tvCov_ += ttCov_ * Avt.transpose();
|
||||
vvCov_ += HaH + Avt * ttCov_ * Avt.transpose() + temp;
|
||||
|
||||
ttCov_ += F * w * F.transpose();
|
||||
|
||||
#ifdef DEBUG_COVARIANCE
|
||||
assert_equal(cov, zetaCov(), 1e-2);
|
||||
#endif
|
||||
|
||||
// Add those values to estimate and linearize around them
|
||||
values.insert<Vector3>(T(k_ + 1), theta_plus);
|
||||
|
@ -225,36 +270,57 @@ NavState AggregateImuReadings::predict(const NavState& state_i,
|
|||
return state_i.retract(zeta);
|
||||
}
|
||||
|
||||
SharedGaussian AggregateImuReadings::noiseModel() const {
|
||||
// Get covariance on zeta from Bayes Net, which stores P(zeta|bias) as a
|
||||
// quadratic |R*zeta + S*bias -d|^2
|
||||
Matrix RS;
|
||||
Vector d;
|
||||
boost::tie(RS, d) = posterior_k_->matrix();
|
||||
// NOTEfrank): R'*R = inv(zetaCov)
|
||||
Matrix9 R = RS.block<9, 9>(0, 0);
|
||||
Matrix9 AggregateImuReadings::zetaCov() const {
|
||||
Matrix9 cov;
|
||||
cov << ttCov_, tpCov_, tvCov_, //
|
||||
tpCov_.transpose(), ppCov_, pvCov_, //
|
||||
tvCov_.transpose(), pvCov_.transpose(), vvCov_;
|
||||
return cov;
|
||||
}
|
||||
|
||||
SharedGaussian AggregateImuReadings::noiseModel() const {
|
||||
Matrix9 cov;
|
||||
cov << ttCov_, tpCov_, tvCov_, //
|
||||
tpCov_.transpose(), ppCov_, pvCov_, //
|
||||
tvCov_.transpose(), pvCov_.transpose(), vvCov_;
|
||||
// Correct for application of retract, by calculating the retract derivative H
|
||||
// We have inv(Rp'Rp) = H inv(Rz'Rz) H' => Rp = Rz * inv(H)
|
||||
// From NavState::retract:
|
||||
// H << D_R_theta, Z_3x3, Z_3x3,
|
||||
// Z_3x3, iRj.transpose(), Z_3x3,
|
||||
// Z_3x3, Z_3x3, iRj.transpose();
|
||||
Matrix3 D_R_theta;
|
||||
Vector3 theta = values.at<Vector3>(T(k_));
|
||||
// TODO(frank): yet another application of expmap and expmap derivative
|
||||
const Matrix3 iRj = Rot3::Expmap(theta, D_R_theta).matrix();
|
||||
Matrix9 H;
|
||||
H << D_R_theta, Z_3x3, Z_3x3, //
|
||||
Z_3x3, iRj.transpose(), Z_3x3, //
|
||||
Z_3x3, Z_3x3, iRj.transpose();
|
||||
|
||||
// Rp = R * H.inverse(), implemented blockwise in-place below
|
||||
// NOTE(frank): makes sense: a change in the j-frame has to be converted to a
|
||||
// change in the i-frame, byy rotating with iRj. Similarly, a change in
|
||||
// rotation nRj is mapped to a change in theta via the inverse dexp.
|
||||
R.block<9, 3>(0, 0) *= D_R_theta.inverse();
|
||||
R.block<9, 3>(0, 3) *= iRj;
|
||||
R.block<9, 3>(0, 6) *= iRj;
|
||||
Matrix9 HcH = H * cov * H.transpose();
|
||||
return noiseModel::Gaussian::Covariance(cov, false);
|
||||
|
||||
// TODO(frank): think of a faster way - implement in noiseModel
|
||||
return noiseModel::Gaussian::SqrtInformation(R, false);
|
||||
// // Get covariance on zeta from Bayes Net, which stores P(zeta|bias) as a
|
||||
// // quadratic |R*zeta + S*bias -d|^2
|
||||
// Matrix RS;
|
||||
// Vector d;
|
||||
// boost::tie(RS, d) = posterior_k_->matrix();
|
||||
// // NOTEfrank): R'*R = inv(zetaCov)
|
||||
//
|
||||
// Matrix9 R = RS.block<9, 9>(0, 0);
|
||||
// cout << "R'R" << endl;
|
||||
// cout << (R.transpose() * R).inverse() << endl;
|
||||
// cout << "cov" << endl;
|
||||
// cout << cov << endl;
|
||||
|
||||
// // Rp = R * H.inverse(), implemented blockwise in-place below
|
||||
// // TODO(frank): yet another application of expmap and expmap derivative
|
||||
// // NOTE(frank): makes sense: a change in the j-frame has to be converted
|
||||
// // to a change in the i-frame, byy rotating with iRj. Similarly, a change
|
||||
// // in rotation nRj is mapped to a change in theta via the inverse dexp.
|
||||
// R.block<9, 3>(0, 0) *= D_R_theta.inverse();
|
||||
// R.block<9, 3>(0, 3) *= iRj;
|
||||
// R.block<9, 3>(0, 6) *= iRj;
|
||||
//
|
||||
// // TODO(frank): think of a faster way - implement in noiseModel
|
||||
// return noiseModel::Gaussian::SqrtInformation(R, false);
|
||||
}
|
||||
|
||||
Matrix9 AggregateImuReadings::preintMeasCov() const {
|
||||
|
|
|
@ -65,6 +65,11 @@ class AggregateImuReadings {
|
|||
/// Current estimate of zeta_k
|
||||
Values values;
|
||||
|
||||
/// Covariances
|
||||
Matrix3 ttCov_, tpCov_, tvCov_, //
|
||||
ppCov_, pvCov_, //
|
||||
vvCov_;
|
||||
|
||||
public:
|
||||
AggregateImuReadings(const boost::shared_ptr<Params>& p,
|
||||
const Bias& estimatedBias = Bias());
|
||||
|
@ -98,6 +103,8 @@ class AggregateImuReadings {
|
|||
Matrix9 preintMeasCov() const;
|
||||
|
||||
private:
|
||||
Matrix9 zetaCov() const;
|
||||
|
||||
void updateEstimate(const Vector3& measuredAcc, const Vector3& measuredOmega,
|
||||
double dt);
|
||||
|
||||
|
|
Loading…
Reference in New Issue